1
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
2
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Nah HJ, Park J, Choi S, Kim ES. WblA, a global regulator of antibiotic biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2021; 48:6127318. [PMID: 33928363 PMCID: PMC9113171 DOI: 10.1093/jimb/kuab007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Streptomyces species are soil-dwelling bacteria that produce vast numbers of pharmaceutically valuable secondary metabolites (SMs), such as antibiotics, immunosuppressants, antiviral, and anticancer drugs. On the other hand, the biosynthesis of most SMs remains very low due to tightly controlled regulatory networks. Both global and pathway-specific regulators are involved in the regulation of a specific SM biosynthesis in various Streptomyces species. Over the past few decades, many of these regulators have been identified and new ones are still being discovered. Among them, a global regulator of SM biosynthesis named WblA was identified in several Streptomyces species. The identification and understanding of the WblAs have greatly contributed to increasing the productivity of several Streptomyces SMs. This review summarizes the characteristics and applications on WblAs reported to date, which were found in various Streptomyces species and other actinobacteria.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jihee Park
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Hashimoto Y, Taniguchi M, Uesaka K, Nomura T, Hirakawa H, Tanimoto K, Tamai K, Ruan G, Zheng B, Tomita H. Novel Multidrug-Resistant Enterococcal Mobile Linear Plasmid pELF1 Encoding vanA and vanM Gene Clusters From a Japanese Vancomycin-Resistant Enterococci Isolate. Front Microbiol 2019; 10:2568. [PMID: 31798546 PMCID: PMC6863802 DOI: 10.3389/fmicb.2019.02568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Vancomycin-resistant enterococci are troublesome pathogens in clinical settings because of few treatment options. A VanA/VanM-type vancomycin-resistant Enterococcus faecium clinical isolate was identified in Japan. This strain, named AA708, harbored five plasmids, one of which migrated during agarose gel electrophoresis without S1 nuclease treatment, which is indicative of a linear topology. We named this plasmid pELF1. Whole genome sequencing (WGS) analysis of the AA708 strain revealed that the complete sequence of pELF1 was 143,316 bp long and harbored both the vanA and vanM gene clusters. Furthermore, mfold analysis and WGS data show that the left end of pELF1 presumably forms a hairpin structure, unlike its right end. The pELF1 plasmid was not digested by lambda exonuclease, indicating that terminal proteins were bound to the 5′ end of the plasmid, similar to the Streptomyces linear plasmids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results were also consistent with the exonuclease assay results. In retardation assays, DNAs containing the right end of proteinase K-untreated pELF1 did not appear to move as well as the proteinase K-treated pELF1, suggesting that terminal proteins might be attached to the right end of pELF1. Palindromic sequences formed hairpin structures at the right terminal sequence of pELF1; however, sequence similarity with the well-known linear plasmids of Streptomyces spp. was not high. pELF1 was unique as it possessed two different terminal structures. Conjugation experiments revealed that pELF1 could be transferred to E. faecalis, E. faecium, E. casseliflavus, and E. hirae. These transconjugants exhibited not only high resistance levels to vancomycin, but also resistance to streptomycin, kanamycin, and erythromycin. These results indicate that pELF1 has the ability to confer multidrug resistance to Enterococcus spp. simultaneously, which might lead to clinical hazards.
Collapse
Affiliation(s)
- Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Taniguchi
- Oral Microbiome Center, Taniguchi Dental Clinic, Takamatsu, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Nomura
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Genjie Ruan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
5
|
Kumelj T, Sulheim S, Wentzel A, Almaas E. Predicting Strain Engineering Strategies Using iKS1317: A Genome‐Scale Metabolic Model of
Streptomyces coelicolor. Biotechnol J 2019; 14:e1800180. [DOI: 10.1002/biot.201800180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 11/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tjaša Kumelj
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Snorre Sulheim
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Alexander Wentzel
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- K.G. Jebsen Center for Genetic EpidemiologyNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
6
|
Rebets Y, Tsolis KC, Guðmundsdóttir EE, Koepff J, Wawiernia B, Busche T, Bleidt A, Horbal L, Myronovskyi M, Ahmed Y, Wiechert W, Rückert C, Hamed MB, Bilyk B, Anné J, Friðjónsson Ó, Kalinowski J, Oldiges M, Economou A, Luzhetskyy A. Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions. Front Microbiol 2018; 9:3033. [PMID: 30619125 PMCID: PMC6295645 DOI: 10.3389/fmicb.2018.03033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Alternative sigma factors control numerous aspects of bacterial life, including adaptation to physiological stresses, morphological development, persistence states and virulence. This is especially true for the physiologically complex actinobacteria. Here we report the development of a robust gene deletions system for Streptomyces lividans TK24 based on a BAC library combined with the λ-Red recombination technique. The developed system was validated by systematically deleting the most highly expressed genes encoding alternative sigma factors and several other regulatory genes within the chromosome of S. lividans TK24. To demonstrate the possibility of large scale genomic manipulations, the major part of the undecylprodigiosin gene cluster was deleted as well. The resulting mutant strains were characterized in terms of morphology, growth parameters, secondary metabolites production and response to thiol-oxidation and cell-wall stresses. Deletion of SLIV_12645 gene encoding S. coelicolor SigR1 ortholog has the most prominent phenotypic effect, resulted in overproduction of actinorhodin and coelichelin P1 and increased sensitivity to diamide. The secreted proteome analysis of SLIV_12645 mutant revealed SigR1 influence on trafficking of proteins involved in cell wall biogenesis and refactoring. The reported here gene deletion system will further facilitate work on S. lividans strain improvement as a host for either secondary metabolites or protein production and will contribute to basic research in streptomycetes physiology, morphological development, secondary metabolism. On the other hand, the systematic deletion of sigma factors encoding genes demonstrates the complexity and conservation of regulatory processes conducted by sigma factors in streptomycetes.
Collapse
Affiliation(s)
- Yuriy Rebets
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Arne Bleidt
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Liliya Horbal
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Yousra Ahmed
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Mohamed B. Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Bohdan Bilyk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
- Actinobacteria Metabolic Engineering Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| |
Collapse
|
7
|
Ortlieb N, Bretzel K, Kulik A, Haas J, Lüdeke S, Keilhofer N, Schrey SD, Gross H, Niedermeyer THJ. Xanthocidin Derivatives from the Endophytic Streptomyces sp. AcE210 Provide Insight into Xanthocidin Biosynthesis. Chembiochem 2018; 19:2472-2480. [PMID: 30300957 DOI: 10.1002/cbic.201800467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Indexed: 11/12/2022]
Abstract
Xanthocidin and six new derivatives were isolated from the endophytic Streptomyces sp. AcE210. Their planar structures were elucidated by 1D and 2D NMR spectroscopy as well as by HRMS. The absolute configuration of one compound was determined by using vibrational circular dichroism spectroscopy (VCD). The structural similarities of xanthocidin and some of the isolated xanthocidin congeners to the methylenomycins A, B, and C suggested that the biosynthesis of these compounds might follow a similar route. Feeding studies with isotopically labelled [13 C5 ]-l-valine showed that instead of utilizing acetyl-CoA as starter unit, which has been proposed for the methylenomycin biosynthesis, Streptomyces sp. AcE210 employs an isobutyryl-CoA starter unit, resulting in a branched side chain in xanthocidin. Further evidence for a comparable biosynthesis was given by the analysis of the genome sequence of Streptomyces sp. AcE210 that revealed a cluster of homologues to the mmy genes involved in methylenomycin biosynthesis.
Collapse
Affiliation(s)
- Nico Ortlieb
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Karin Bretzel
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Julian Haas
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Nadine Keilhofer
- Department of Physiological Ecology of Plants, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Silvia Diane Schrey
- Department of Physiological Ecology of Plants, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany.,IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Harald Gross
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Timo Horst Johannes Niedermeyer
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| |
Collapse
|
8
|
Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 2018; 110:663-676. [PMID: 30179278 PMCID: PMC6282962 DOI: 10.1111/mmi.14117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
The WhiB‐like (Wbl) family of proteins are exclusively found in Actinobacteria. Wbls have been shown to play key roles in virulence and antibiotic resistance in Mycobacteria and Corynebacteria, reflecting their importance during infection by the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Corynebacterium diphtheriae. In the antibiotic‐producing Streptomyces, several Wbls have important roles in the regulation of morphological differentiation, including WhiB, a protein that controls the initiation of sporulation septation and the founding member of the Wbl family. In recent years, genome sequencing has revealed the prevalence of Wbl paralogues in species throughout the Actinobacteria. Wbl proteins are small (generally ~80–140 residues) and each contains four invariant cysteine residues that bind an O2‐ and NO‐sensitive [4Fe–4S] cluster, raising the question as to how they can maintain distinct cellular functions within a given species. Despite their discovery over 25 years ago, the Wbl protein family has largely remained enigmatic. Here I summarise recent research in Mycobacteria, Corynebacteria and Streptomyces that sheds light on the biochemical function of Wbls as transcription factors and as potential sensors of O2 and NO. I suggest that Wbl evolution has created diversity in protein–protein interactions, [4Fe–4S] cluster‐sensitivity and the ability to bind DNA.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
9
|
Bowyer JE, Lc de Los Santos E, Styles KM, Fullwood A, Corre C, Bates DG. Modeling the architecture of the regulatory system controlling methylenomycin production in Streptomyces coelicolor. J Biol Eng 2017; 11:30. [PMID: 29026441 PMCID: PMC5625687 DOI: 10.1186/s13036-017-0071-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023] Open
Abstract
Background The antibiotic methylenomycin A is produced naturally by Streptomyces coelicolor A3(2), a model organism for streptomycetes. This compound is of particular interest to synthetic biologists because all of the associated biosynthetic, regulatory and resistance genes are located on a single cluster on the SCP1 plasmid, making the entire module easily transferable between different bacterial strains. Understanding further the regulation and biosynthesis of the methylenomycin producing gene cluster could assist in the identification of motifs that can be exploited in synthetic regulatory systems for the rational engineering of novel natural products and antibiotics. Results We identify and validate a plausible architecture for the regulatory system controlling methylenomycin production in S. coelicolor using mathematical modeling approaches. Model selection via an approximate Bayesian computation (ABC) approach identifies three candidate model architectures that are most likely to produce the available experimental data, from a set of 48 possible candidates. Subsequent global optimization of the parameters of these model architectures identifies a single model that most accurately reproduces the dynamical response of the system, as captured by time series data on methylenomycin production. Further analyses of variants of this model architecture that capture the effects of gene knockouts also reproduce qualitative experimental results observed in mutant S. coelicolor strains. Conclusions The mechanistic mathematical model developed in this study recapitulates current biological knowledge of the regulation and biosynthesis of the methylenomycin producing gene cluster, and can be used in future studies to make testable predictions and formulate experiments to further improve our understanding of this complex regulatory system.
Collapse
Affiliation(s)
- Jack E Bowyer
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL UK
| | - Emmanuel Lc de Los Santos
- Warwick Integrative Synthetic Biology Centre, Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Kathryn M Styles
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Alex Fullwood
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Christophe Corre
- Warwick Integrative Synthetic Biology Centre, Department of Chemistry and School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Declan G Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
10
|
Elimination of indigenous linear plasmids in Streptomyces hygroscopicus var. jinggangensis and Streptomyces sp. FR008 to increase validamycin A and candicidin productivities. Appl Microbiol Biotechnol 2017; 101:4247-4257. [DOI: 10.1007/s00253-017-8165-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/14/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
|
11
|
Donczew M, Mackiewicz P, Wróbel A, Flärdh K, Zakrzewska-Czerwińska J, Jakimowicz D. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol 2016; 6:150263. [PMID: 27248800 PMCID: PMC4852455 DOI: 10.1098/rsob.150263] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.
Collapse
Affiliation(s)
- Magdalena Donczew
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14A, Wrocław 50-383, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14A, Wrocław 50-383, Poland
| | - Agnieszka Wróbel
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14A, Wrocław 50-383, Poland
| | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, Lund 22362, Sweden
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14A, Wrocław 50-383, Poland Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław 53-114, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14A, Wrocław 50-383, Poland Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław 53-114, Poland
| |
Collapse
|
12
|
Abstract
Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.
Collapse
|
13
|
Dib JR, Wagenknecht M, Farías ME, Meinhardt F. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements? Front Microbiol 2015; 6:463. [PMID: 26074886 PMCID: PMC4443254 DOI: 10.3389/fmicb.2015.00463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions.
Collapse
Affiliation(s)
- Julián R Dib
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina ; Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán , Tucumán, Argentina
| | - Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster , Münster, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany
| |
Collapse
|
14
|
Nindita Y, Cao Z, Yang Y, Arakawa K, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Kinashi H. The tap-tpg gene pair on the linear plasmid functions to maintain a linear topology of the chromosome in Streptomyces rochei. Mol Microbiol 2015; 95:846-58. [PMID: 25495952 DOI: 10.1111/mmi.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
Abstract
Streptomyces rochei 7434AN4 carries three linear plasmids, pSLA2-L (211 kb), pSLA2-M (113 kb) and pSLA2-S (18 kb), their complete nucleotide sequences having been determined. Restriction and sequencing analysis revealed that the telomere sequences at both ends of the linear chromosome are identical to each other, are 98.5% identical to the right end sequences of pSLA2-L and pSLA2-M up to 3.1 kb from the ends and have homology to those of typical Streptomyces species. Mutant 2-39, which lost all the three linear plasmids, was found to carry a circularized chromosome. Sequence comparison of the fusion junction and both deletion ends revealed that chromosomal circularization occurred by terminal deletions followed by nonhomologous recombination. Curing of pSLA2-L from strain 51252, which carries only pSLA2-L, also resulted in terminal deletions in newly obtained mutants. The tap-tpg gene pair, which encodes a telomere-associated protein and a terminal protein for end patching, is located on pSLA2-L and pSLA2-M but has not hitherto been found on the chromosome. These results led us to the idea that the tap-tpg of pSLA2-L or pSLA2-M functions to maintain a linear chromosome in strain 7434AN4. This hypothesis was finally confirmed by complementation and curing experiments of the tap-tpg of pSLA2-M.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Production of specialized metabolites by Streptomyces coelicolor A3(2). ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:217-66. [PMID: 25131404 DOI: 10.1016/b978-0-12-800259-9.00006-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
Collapse
|
16
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
17
|
Arakawa K. Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid. Biosci Biotechnol Biochem 2014; 78:183-9. [PMID: 25036669 DOI: 10.1080/09168451.2014.882761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1' position is crucial for inducing activity.
Collapse
Affiliation(s)
- Kenji Arakawa
- a Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
18
|
Challis GL. Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 2013; 41:219-32. [PMID: 24322202 DOI: 10.1007/s10295-013-1383-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
Streptomyces, and related genera of Actinobacteria, are renowned for their ability to produce antibiotics and other bioactive natural products with a wide range of applications in medicine and agriculture. Streptomyces coelicolor A3(2) is a model organism that has been used for more than five decades to study the genetic and biochemical basis for the production of bioactive metabolites. In 2002, the complete genome sequence of S. coelicolor was published. This greatly accelerated progress in understanding the biosynthesis of metabolites known or suspected to be produced by S. coelicolor and revealed that streptomycetes have far greater potential to produce bioactive natural products than suggested by classical bioassay-guided isolation studies. In this article, efforts to exploit the S. coelicolor genome sequence for the discovery of novel natural products and biosynthetic pathways are summarized.
Collapse
Affiliation(s)
- Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK,
| |
Collapse
|
19
|
Ramón-García S, Ng C, Jensen PR, Dosanjh M, Burian J, Morris RP, Folcher M, Eltis LD, Grzesiek S, Nguyen L, Thompson CJ. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J Biol Chem 2013; 288:34514-28. [PMID: 24126912 DOI: 10.1074/jbc.m113.516385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WhiB-like (Wbl) proteins are well known for their diverse roles in actinobacterial morphogenesis, cell division, virulence, primary and secondary metabolism, and intrinsic antibiotic resistance. Gene disruption experiments showed that three different Actinobacteria (Mycobacterium smegmatis, Streptomyces lividans, and Rhodococcus jostii) each exhibited a different whiB7-dependent resistance profile. Heterologous expression of whiB7 genes showed these resistance profiles reflected the host's repertoire of endogenous whiB7-dependent genes. Transcriptional activation of two resistance genes in the whiB7 regulon, tap (a multidrug transporter) and erm(37) (a ribosomal methyltransferase), required interaction of WhiB7 with their promoters. Furthermore, heterologous expression of tap genes isolated from Mycobacterium species demonstrated that divergencies in drug specificity of homologous structural proteins contribute to the variation of WhiB7-dependent drug resistance. WhiB7 has a specific tryptophan/glycine-rich region and four conserved cysteine residues; it also has a peptide sequence (AT-hook) at its C terminus that binds AT-rich DNA sequence motifs upstream of the promoters it activates. Targeted mutagenesis showed that these motifs were required to provide antibiotic resistance in vivo. Anaerobically purified WhiB7 from S. lividans was dimeric and contained 2.1 ± 0.3 and 2.2 ± 0.3 mol of iron and sulfur, respectively, per protomer (consistent with the presence of a 2Fe-2S cluster). However, the properties of the dimer's absorption spectrum were most consistent with the presence of an oxygen-labile 4Fe-4S cluster, suggesting 50% occupancy. These data provide the first insights into WhiB7 iron-sulfur clusters as they exist in vivo, a major unresolved issue in studies of Wbl proteins.
Collapse
Affiliation(s)
- Santiago Ramón-García
- From the Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 2013; 70:289-302. [PMID: 24129002 PMCID: PMC3913187 DOI: 10.1016/j.plasmid.2013.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The conjugative transfer mechanism of broad-host-range, Enterococcus sex pheromone and Clostridium plasmids is reviewed. Comparisons with Gram-negative type IV secretion systems are presented. The current understanding of the unique Streptomyces double stranded DNA transfer mechanism is reviewed.
Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.
Collapse
|
21
|
Peng S, Zeng A, Zhong L, Zhang R, Zhou M, Cheng Q, Zhao L, Wang T, Tan H, Qin Z. Three functional replication origins of the linear and artificially circularized plasmid SCP1 of Streptomyces coelicolor. Microbiology (Reading) 2013; 159:2127-2140. [DOI: 10.1099/mic.0.067363-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shiyuan Peng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ana Zeng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Li Zhong
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Zhang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Min Zhou
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Qiuxiang Cheng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Liqian Zhao
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Tao Wang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
22
|
Burian J, Yim G, Hsing M, Axerio-Cilies P, Cherkasov A, Spiegelman GB, Thompson CJ. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 2013; 41:10062-76. [PMID: 23990327 PMCID: PMC3905903 DOI: 10.1093/nar/gkt751] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis therapeutic options are limited by the high intrinsic antibiotic resistance of Mycobacterium tuberculosis. The putative transcriptional regulator WhiB7 is crucial for the activation of systems that provide resistance to diverse antibiotic classes. Here, we used in vitro run-off, two-hybrid assays, as well as mutagenic, complementation and protein pull-down experiments, to characterize WhiB7 as an auto-regulatory, redox-sensitive transcriptional activator in Mycobacterium smegmatis. We provide the first direct biochemical proof that a WhiB protein promotes transcription and also demonstrate that this activity is sensitive to oxidation (diamide). Its partner protein for transcriptional activation was identified as SigA, the primary sigma factor subunit of RNA polymerase. Residues required for the interaction mapped to region 4 of SigA (including R515H) or adjacent domains of WhiB7 (including E63D). WhiB7's ability to provide a specific spectrum of antibiotic-resistance was dependent on these residues as well as its C-terminal AT-hook module that binds to an AT-rich motif immediately upstream of the -35 hexamer recognized by SigA. These experimentally established constrains, combined with protein structure predictions, were used to generate a working model of the WhiB7-SigA-promoter complex. Inhibitors preventing WhiB7 interactions could allow the use of previously ineffective antibiotics for treatment of mycobacterial diseases.
Collapse
Affiliation(s)
- Ján Burian
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3, Centre for Tuberculosis Research, University of British Columbia, Vancouver, Canada V6T 1Z3 and Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang R, Xia H, Xu Q, Dang F, Qin Z. Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 ofStreptomyces coelicolorA3(2). FEMS Microbiol Lett 2013; 345:39-48. [DOI: 10.1111/1574-6968.12183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/19/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ran Zhang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Qingyu Xu
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Fujun Dang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
24
|
Wu H, Qu S, Lu C, Zheng H, Zhou X, Bai L, Deng Z. Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 2012; 13:337. [PMID: 22827618 PMCID: PMC3424136 DOI: 10.1186/1471-2164-13-337] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/24/2012] [Indexed: 01/11/2023] Open
Abstract
Background Streptomyces hygroscopicus 5008 has been used for the production of the antifungal validamycin/jinggangmycin for more than 40 years. A high yield of validamycin is achieved by culturing the strain at 37°C, rather than at 30°C for normal growth and sporulation. The mechanism(s) of its thermo-regulated biosynthesis was largely unknown. Results The 10,383,684-bp genome of strain 5008 was completely sequenced and composed of a linear chromosome, a 164.57-kb linear plasmid, and a 73.28-kb circular plasmid. Compared with other Streptomyces genomes, the chromosome of strain 5008 has a smaller core region and shorter terminal inverted repeats, encodes more α/β hydrolases, major facilitator superfamily transporters, and Mg2+/Mn2+-dependent regulatory phosphatases. Transcriptomic analysis revealed that the expression of 7.5% of coding sequences was increased at 37°C, including biosynthetic genes for validamycin and other three secondary metabolites. At 37°C, a glutamate dehydrogenase was transcriptionally up-regulated, and further proved its involvement in validamycin production by gene replacement. Moreover, efficient synthesis and utilization of intracellular glutamate were noticed in strain 5008 at 37°C, revealing glutamate as the nitrogen source for validamycin biosynthesis. Furthermore, a SARP-family regulatory gene with enhanced transcription at 37°C was identified and confirmed to be positively involved in the thermo-regulation of validamycin production by gene inactivation and transcriptional analysis. Conclusions Strain 5008 seemed to have evolved with specific genomic components to facilitate the thermo-regulated validamycin biosynthesis. The data obtained here will facilitate future studies for validamycin yield improvement and industrial bioprocess optimization.
Collapse
Affiliation(s)
- Hang Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 2012; 333:169-79. [DOI: 10.1111/j.1574-6968.2012.02609.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Min Zhou
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Pengfei Xie
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Weihua Chen
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Tao Wang
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
26
|
Park JS, Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS. The role of Corynebacterium glutamicum spiA gene in whcA-mediated oxidative stress gene regulation. FEMS Microbiol Lett 2012; 331:63-9. [DOI: 10.1111/j.1574-6968.2012.02554.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/17/2012] [Accepted: 03/18/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Joon-Song Park
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| | - Joo-Young Lee
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| | - Hyung-Joon Kim
- CJ Research Institute of Biotechnology; CJ Cheiljedang Corporation; Seoul; Korea
| | - Eung-Soo Kim
- Department of Biological Engineering; Inha University; Incheon; Korea
| | - Pil Kim
- Department of Biotechnology; Catholic University of Korea; Bucheon; Gyeonggi; Korea
| | - Younhee Kim
- Department of Oriental Medicine; Semyung University; Checheon; Chungbuk; Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| |
Collapse
|
27
|
Toussaint A, Chandler M. Prokaryote genome fluidity: toward a system approach of the mobilome. Methods Mol Biol 2012; 804:57-80. [PMID: 22144148 DOI: 10.1007/978-1-61779-361-5_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by "classical" phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.
Collapse
Affiliation(s)
- Ariane Toussaint
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, Bruxelles, Belgium.
| | | |
Collapse
|
28
|
Lee HH, Hsu CC, Lin YL, Chen CW. Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the ‘end first’ model of conjugal transfer. Microbiology (Reading) 2011; 157:2556-2568. [DOI: 10.1099/mic.0.051441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gram-positive bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids capped by terminal proteins covalently bound to the 5′ ends of the DNA. The linearity of Streptomyces chromosomes raises the question of how they are transferred during conjugation, particularly when the mobilizing plasmids are also linear. The classical rolling circle replication model for transfer of circular plasmids and chromosomes from an internal origin cannot be applied to this situation. Instead it has been proposed that linear Streptomyces plasmids mobilize themselves and the linear chromosomes from their telomeres using terminal-protein-primed DNA synthesis. In support of this ‘end first’ model, we found that artificially circularized Streptomyces chromosomes could not be mobilized by linear plasmids (SLP2 and SCP1), while linear chromosomes could. In comparison, a circular plasmid (pIJ303) could mobilize both circular and linear chromosomes at the same efficiencies. Interestingly, artificially circularized SLP2 exhibited partial self-transfer capability, indicating that, being a composite replicon, it may have acquired the additional internal origin of transfer from an ancestral circular plasmid during evolution.
Collapse
Affiliation(s)
- Hsuan-Hsuan Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Chen Hsu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yen-Ling Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Carton W. Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
29
|
Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z. Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin (Shanghai) 2011; 43:630-9. [PMID: 21705768 DOI: 10.1093/abbs/gmr052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete nucleotide sequence including the novel telomere sequence of Streptomyces linear plasmid pSHK1 consists of 187,263-bp, 158 genes, in which 51 genes resemble those of the linear plasmid SCP1 of Streptomyces coelicolor A3(2), and 20 genes encode transposases. Strikingly, the repetitive CRISPRs (clustered regularly interspaced short palindromic repeats) and cas (CRISPR-associated) genes were found, including a cluster of eight cas genes, in the order cas2B-cas1B-cas3B-cas5-cas4-cas2A-cas1A-cas3A, bracketed by a pair of divergent CRISPRs, and five other dispersed CRISPRs. The cas2B-cas1B-cas3B-cas5 or cas4-cas2A-cas1A genes were co-transcribed. Protein-protein interactions between Cas5 and Cas1A, 2A, 2B, 3B were detected by yeast two-hybrids, indicating a critical role of Cas5 for the formation of protein complexes. By polymerase chain reaction and Southern hybridization, 12 cas4 genes including three on linear plasmids were found among 75 newly isolated Streptomyces strains. The paired-CRISPRs and bracketed cas were also conserved in several other Streptomyces or actinomycete species. However, unlike other bacteria, the CRISPRs-cas in pSHK1 could not provide immunity against introduction of phage ΦC31 and plasmid containing the particular spacers in Streptomyces.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
30
|
Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Appl Microbiol Biotechnol 2011; 92:971-84. [PMID: 21792593 DOI: 10.1007/s00253-011-3466-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Streptomyces tacrolimicus (ATCC 55098) was reported to produce the immunosuppressant tacrolimus. The wild-type strain sporulates sparsely and produces very low levels of this immunosuppressant. The lack of genetic knowledge of this strain has hampered strain improvement. In this work, we have cloned the gene encoding a γ-butyrolactone receptor protein (Gbr). The gbr gene is linked to two genes encoding two subunits of the dihydroxyacetone kinase, putatively involved in the biosynthesis of the dihydroxyacetone phosphate precursor of γ-butyrolactone but is not flanked by γ-butyrolactone synthetase genes. The Gbr protein was overexpressed in Escherichia coli and purified. Electrophoretic mobility shift assays showed that Gbr binds to a specific autoregulatory element sequence located 338 bp upstream of the gbr gene, indicating that its expression is self-regulated. The deletion mutant Δgbr showed a very early and intense sporulation in two different media. A phenotype similar to that of the wild-type strain was restored by complementation of the Δgbr mutant with a wild-type gbr allele. Duplication of the gbr gene resulted in a slower sporulation. The Δgbr mutant produced much lower amount (32%) of tacrolimus quantified by high performance liquid chromatography. This analysis, using an optimised system, allowed the resolution of tacrolimus from ascomycin and other contaminant metabolites. Our results indicate that the Gbr protein regulates negatively the sporulation and positively the production of tacrolimus.
Collapse
|
31
|
pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L. Biosci Biotechnol Biochem 2011; 75:1147-53. [PMID: 21670526 DOI: 10.1271/bbb.110054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.
Collapse
|
32
|
A natural plasmid uniquely encodes two biosynthetic pathways creating a potent anti-MRSA antibiotic. PLoS One 2011; 6:e18031. [PMID: 21483852 PMCID: PMC3069032 DOI: 10.1371/journal.pone.0018031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/18/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Understanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin. METHODOLOGY/PRINCIPAL FINDINGS High throughput DNA sequencing of the complete genome of the producer bacterium revealed a novel 97 kb plasmid, pTML1, consisting almost entirely of two distinct gene clusters. Targeted gene knockouts confirmed the role of these clusters in biosynthesis of the two separate components, pseudomonic acid and the pyrrothine, and identified a putative amide synthetase that joins them together. Feeding mupirocin to a mutant unable to make the endogenous pseudomonic acid created a novel hybrid with the pyrrothine via "mutasynthesis" that allows inhibition of mupirocin-resistant isoleucyl-tRNA synthetase, the mupirocin target. A mutant defective in pyrrothine biosynthesis was also able to incorporate alternative amine substrates. CONCLUSIONS/SIGNIFICANCE Plasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA.
Collapse
|
33
|
Abstract
Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution.
Collapse
Affiliation(s)
- Ralph Kirby
- Department of Life Sciences, Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
34
|
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2011; 157:1312-1328. [PMID: 21330440 DOI: 10.1099/mic.0.047555-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Streptomyces coelicolor A3(2) sporulation gene whiB is the paradigm of a family of genes (wbl, whiB-like) that are confined to actinobacteria. The chromosome of S. coelicolor contains 11 wbl genes, among which five are conserved in many actinobacteria: whiB itself; whiD, a sporulation gene; wblC, which is required for multi-drug resistance; and wblA and wblE, whose roles had previously been little studied. We succeeded in disrupting wblA and the six non-conserved genes, but could not disrupt wblE. Although mutations in the six non-conserved wbl genes (including some multiple wbl mutants) produced no readily detectable phenotype, mutations in wblA had novel and complex effects. The aerial mycelium of wblA mutants was coloured red, because of the ectopic presence of pigmented antibiotics (actinorhodin and undecylprodigiosin) normally confined to lower parts of wild-type colonies, and consisted almost entirely of non-sporulating, thin, straight filaments, often bundled together in a fibrillar matrix. Rare spore chains were also formed, which exhibited wild-type properties but were genetically still wblA mutants. A wblA mutant achieved higher biomass than the wild-type. Microarray analysis indicated major transcriptional changes in a wblA mutant: using a relatively stringent cut-off, 183 genes were overexpressed, including genes for assimilative primary metabolism and actinorhodin biosynthesis, and 103 were underexpressed, including genes associated with stages of aerial hyphal growth. We suggest that WblA is important in both the slow-down of biomass accumulation and the change from aerial hyphal initial cells to the subapical stem and apical compartments that precede sporulation; and that the mutant aerial mycelium consists of recapitulated defective aerial hyphal initial cells.
Collapse
Affiliation(s)
- Kay Fowler-Goldsworthy
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Sébastien Mouz
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
35
|
Pettersson BMF, Kirsebom LA. tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor. Mol Microbiol 2011; 79:1602-14. [PMID: 21244529 DOI: 10.1111/j.1365-2958.2011.07543.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptomyces coelicolor undergoes distinct morphological changes as it grows on solid media where spores differentiate into vegetative and aerial mycelium that is followed by the production of spores. Deletion of bldA, encoding the rare tRNA(Leu) UAA, blocks development at the stage of vegetative mycelium formation. From previous data it appears that tRNA(Leu) UAA accumulates relatively late during growth while two other tRNAs do not. Here, we studied the expression of 17 different tRNAs including bldA tRNA, and the RNA subunit of the tRNA processing endoribonuclease RNase P. Our results showed that all selected tRNAs and RNase P RNA increased with time during development. However, accumulation of bldA tRNA and another rare tRNA(Leu) isoacceptor started at an earlier stage compared with the other tRNAs. We also introduced the bldA tRNA anticodon (UAA) into other tRNAs and introduced these into a bldA deletion strain. In particular, one such mutant tRNA derived from the tRNA(Leu) CAA isoacceptor suppressed the bldA phenotype. Thus, the bldA tRNA scaffold is not critical for function as a regulator of S. coelicolor cell differentiation. Further substitution experiments, in which the 5'- and 3'-flanking regions of the suppressor tRNA were changed, indicated that these regions were important for the suppression.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
36
|
Wagenknecht M, Meinhardt F. Copy number determination, expression analysis of genes potentially involved in replication, and stability assays of pAL1 – the linear megaplasmid of Arthrobacter nitroguajacolicus Rü61a. Microbiol Res 2011; 166:14-26. [DOI: 10.1016/j.micres.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
|
37
|
Wagenknecht M, Meinhardt F. Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Rü61a--phylogenetic and transcriptional analysis. Plasmid 2010; 65:176-84. [PMID: 21185858 DOI: 10.1016/j.plasmid.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
Abstract
The 113-kb pAL1 is the only Arthrobacter linear plasmid known; it has terminal inverted repeats and 5' covalently attached terminal proteins (TPs). The latter and a telomere-associated protein (Tap) are encoded by plasmid ORFs 102 and 101, respectively. As for Streptomyces linear replicons, in which both above proteins are instrumental in telomere patching, they are involved in pAL1 replication as well. However, the alignment of actinobacterial Taps and TPs revealed that pAL1 and the linear elements from Rhodococci comprise a discrete phylogenetic group, clearly delineated from the streptomycetes linear plasmids. In line with such findings is the same genetic arrangement of ORF 101 and 102 counterparts in the rhodococcal elements. Furthermore, the adjacent gene (ORF100) has matches in the rhodococcal plasmids as well. In linear elements of Streptomyces there is no ORF100 homolog. Two alternative annotations are possible for ORF100 gene products. As RT-PCR revealed cotranscription of ORFs 100-102, the ORF100 gene product is presumably involved in replicative processes. Taken also into consideration the likely absence of an internal replication origin (other than in Streptomyces linear elements), we assume a distinct replication/telomere patching mechanism for pAL1 type replicons.
Collapse
Affiliation(s)
- Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | | |
Collapse
|
38
|
Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot (Tokyo) 2010; 64:19-25. [DOI: 10.1038/ja.2010.146] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Tsai HH, Huang CH, Tessmer I, Erie DA, Chen CW. Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins. Nucleic Acids Res 2010; 39:2165-74. [PMID: 21109537 PMCID: PMC3064793 DOI: 10.1093/nar/gkq1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RAL, Breitling R, Takano E. The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2010; 2:212-24. [PMID: 20624727 PMCID: PMC2997539 DOI: 10.1093/gbe/evq013] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmids are mobile genetic elements that play a key role in the evolution of bacteria by mediating genome plasticity and lateral transfer of useful genetic information. Although originally considered to be exclusively circular, linear plasmids have also been identified in certain bacterial phyla, notably the actinomycetes. In some cases, linear plasmids engage with chromosomes in an intricate evolutionary interplay, facilitating the emergence of new genome configurations by transfer and recombination or plasmid integration. Genome sequencing of Streptomyces clavuligerus ATCC 27064, a Gram-positive soil bacterium known for its production of a diverse array of biotechnologically important secondary metabolites, revealed a giant linear plasmid of 1.8 Mb in length. This megaplasmid (pSCL4) is one of the largest plasmids ever identified and the largest linear plasmid to be sequenced. It contains more than 20% of the putative protein-coding genes of the species, but none of these is predicted to be essential for primary metabolism. Instead, the plasmid is densely packed with an exceptionally large number of gene clusters for the potential production of secondary metabolites, including a large number of putative antibiotics, such as staurosporine, moenomycin, β-lactams, and enediynes. Interestingly, cross-regulation occurs between chromosomal and plasmid-encoded genes. Several factors suggest that the megaplasmid came into existence through recombination of a smaller plasmid with the arms of the main chromosome. Phylogenetic analysis indicates that heavy traffic of genetic information between Streptomyces plasmids and chromosomes may facilitate the rapid evolution of secondary metabolite repertoires in these bacteria.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Analysis of developmental gene conservation in the Actinomycetales using DNA/DNA microarray comparisons. Antonie van Leeuwenhoek 2010; 99:159-77. [DOI: 10.1007/s10482-010-9473-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/11/2010] [Indexed: 01/21/2023]
|
42
|
Wang J, Pettis GS. The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. MICROBIOLOGY-SGM 2010; 156:2723-2733. [PMID: 20522498 DOI: 10.1099/mic.0.036467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conjugal transfer of circular plasmids in Streptomyces involves a unique mechanism employing few plasmid-encoded loci and the transfer of double-stranded DNA by an as yet uncharacterized intercellular route. Efficient transfer of the circular streptomycete plasmid pIJ101 requires only two plasmid loci: the pIJ101 tra gene, and as a cis-acting function known as clt. Here, we compared the ability of the pIJ101 transfer apparatus to promote conjugal transfer of circular versus linear versions of the same replicon. While the pIJ101 tra locus readily transferred the circular form of the replicon, the linear version was transferred orders of magnitude less efficiently and all plasmids isolated from the transconjugants were circular, regardless of their original configuration in the donor. Additionally, relatively rare circularization of linear plasmids was detectable in the donor cells, which is consistent with the notion that this event was a prerequisite for transfer by TraB(pIJ101). Linear versions of this same replicon did transfer efficiently, in that configuration, from strains containing the conjugative linear plasmid SLP2. Our data indicate that functions necessary and sufficient for transfer of circular DNA were insufficient for transfer of a related linear DNA molecule. The results here suggest that the conjugation mechanisms of linear versus circular DNA in Streptomyces spp. are inherently different and/or that efficient transfer of linear DNA requires additional components.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
43
|
Characterization of the replication, transfer, and plasmid/lytic phage cycle of the Streptomyces plasmid-phage pZL12. J Bacteriol 2010; 192:3747-54. [PMID: 20472796 DOI: 10.1128/jb.00123-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the isolation and recombinational cloning of a large plasmid, pZL12, from endophytic Streptomyces sp. 9R-2. pZL12 comprises 90,435 bp, encoding 112 genes, 30 of which are organized in a large operon resembling bacteriophage genes. A replication locus (repA) and a conjugal transfer locus (traA-traC) were identified in pZL12. Surprisingly, the supernatant of a 9R-2 liquid culture containing partially purified phage particles infected 9R-2 cured of pZL12 (9R-2X) to form plaques, and a phage particle (phiZL12) was observed by transmission electron microscopy. Major structural proteins (capsid, portal, and tail) of phiZL12 virions were encoded by pZL12 genes. Like bacteriophage P1, linear phiZL12 DNA contained ends from a largely random pZL12 sequence. There was also a hot end sequence in linear phiZL12. phiZL12 virions efficiently infected only one host, 9R-2X, but failed to infect and form plaques in 18 other Streptomyces strains. Some 9R-2X spores rescued from lysis by infection of phiZL12 virions contained a circular pZL12 plasmid, completing a cycle comprising autonomous plasmid pZL12 and lytic phage phiZL12. These results confirm pZL12 as the first example of a plasmid-phage in Streptomyces.
Collapse
|
44
|
Cloning and characterization of a gene cluster for hatomarubigin biosynthesis in Streptomyces sp. strain 2238-SVT4. Appl Environ Microbiol 2010; 76:4201-6. [PMID: 20453135 DOI: 10.1128/aem.00668-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces sp. strain 2238-SVT4 produces hatomarubigins A, B, C, and D, which belong to the angucycline family. Among them, hatomarubigin D has a unique dimeric structure with a methylene linkage. PCR using aromatase and cyclase gene-specific primers identified the hrb gene cluster for angucycline biosynthesis in Streptomyces sp. 2238-SVT4. The cluster consisted of 30 open reading frames, including those for the minimal polyketide synthase, ketoreductase, aromatase, cyclase, O-methyltransferase, oxidoreductase, and oxygenase genes. Expression of a part of the gene cluster containing hrbR1 to hrbX in Streptomyces lividans TK23 resulted in the production of hatomarubigins A, B, and C. Hatomarubigin D was obtained from the conversion of hatomarubigin C by a purified enzyme encoded by hrbY, among the remaining genes.
Collapse
|
45
|
Aínsa JA, Bird N, Ryding NJ, Findlay KC, Chater KF. The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2). Antonie van Leeuwenhoek 2010; 98:225-36. [PMID: 20405209 DOI: 10.1007/s10482-010-9443-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/01/2010] [Indexed: 11/27/2022]
Abstract
A segment of DNA was isolated that complemented several poorly characterised sporulation-defective white-colony mutants of Streptomyces coelicolor A3(2) from an early collection (Hopwood et al., J Gen Microbiol 61: 397-408, 1970). Complementation was attributable to a gene, SCO4543, named whiJ, encoding a likely DNA-binding protein. Surprisingly, although some mutations in whiJ had a white colony phenotype, complete deletion of the wild-type or mutant gene gave a wild-type morphology. The whiJ gene is a member of a large paralogous set of S. coelicolor genes including abaAorfA, which regulates antibiotic production; and genes flanking whiJ are paralogues of other gene classes that are often associated with whiJ-like genes (Gehring et al., Proc Natl Acad Sci USA 97: 9642-9647, 2000). Thus, the small gene SCO4542 encodes a paralogue of the abaAorfD gene product, and SCO4544 encodes a paralogue of a family of likely anti-sigma factors (including the product of abaAorfB). Deletion of SCO4542 resulted in a medium-dependent bald- or white-colony phenotype, which could be completely suppressed by the simultaneous deletion of whiJ. A model is proposed in which WhiJ binds to operator sequences to repress developmental genes, with repression being released by interaction with the WhiJ-associated SCO4542 protein. It is suggested that this activity of SCO4542 protein is prevented by an unknown signal.
Collapse
Affiliation(s)
- José A Aínsa
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
46
|
Linear plasmid SLP2 is maintained by partitioning, intrahyphal spread, and conjugal transfer in Streptomyces. J Bacteriol 2010; 192:307-15. [PMID: 19880600 DOI: 10.1128/jb.01192-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids generally encode a partitioning system to ensure proper segregation after replication. Little is known about partitioning of linear plasmids in Streptomyces. SLP2 is a 50-kb low-copy-number linear plasmid in Streptomyces lividans, which contains a typical parAB partitioning operon. In S. lividans and Streptomyces coelicolor, a parAB deletion resulted in moderate plasmid loss and growth retardation of colonies. The latter was caused by conjugal transfer from plasmid-containing hyphae to plasmidless hyphae. Deletion of the transfer (traB) gene eliminated conjugal transfer, lessened the growth retardation of colonies, and increased plasmid loss through sporulation cycles. The additional deletion of an intrahyphal spread gene (spd1) caused almost complete plasmid loss in a sporulation cycle and eliminated all growth retardation. Moreover, deletion of spd1 alone severely reduced conjugal transfer and stability of SLP2 in S. coelicolor M145 but had no effect on S. lividans TK64. These results revealed the following three systems for SLP2 maintenance: partitioning and spread for moving the plasmid DNA along the hyphae and into spores and conjugal transfer for rescuing plasmidless hyphae. In S. lividans, both spread and partitioning appear to overlap functionally, but in S. coelicolor, spread appears to play the main role.
Collapse
|
47
|
Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26:1362-84. [PMID: 19844637 PMCID: PMC3063060 DOI: 10.1039/b817069j] [Citation(s) in RCA: 560] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora . These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references.
Collapse
Affiliation(s)
- Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 228-8555, Japan.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
48
|
Lin YR, Hahn MY, Roe JH, Huang TW, Tsai HH, Lin YF, Su TS, Chan YJ, Chen CW. Streptomyces telomeres contain a promoter. J Bacteriol 2009; 191:773-81. [PMID: 19060156 PMCID: PMC2632112 DOI: 10.1128/jb.01299-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/19/2008] [Indexed: 11/20/2022] Open
Abstract
Bidirectional replication of the linear chromosomes and plasmids of Streptomyces spp. results in single-strand overhangs at their 3' ends, which contain extensive complex palindromic sequences. The overhangs are believed to be patched by DNA synthesis primed by a terminal protein that remains covalently bound to the 5' ends of the telomeres. We discovered that in vitro a conserved 167-bp telomere DNA binds strongly to RNA polymerase holoenzyme and exhibits promoter activities stronger than those of an rRNA operon. In vivo, the telomere DNA exhibited promoter activity in both orientations on a circular plasmid in Streptomyces. The telomere promoter is also active on a linear plasmid during exponential growth. Such promoter activity in a telomere has not hitherto been observed in eukaryotic or prokaryotic replicons. Streptomyces telomere promoters may be involved in priming the terminal Okazaki fragment (during replication) replicative transfer (during conjugation), or expression of downstream genes (including a conserved ttrA helicase-like gene involved in conjugal transfer). Interestingly, the Streptomyces telomeres also function as a promoter in Escherichia coli and as a transcription enhancer in yeast.
Collapse
Affiliation(s)
- Yuh-ru Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol 2008; 71:763-78. [PMID: 19054329 DOI: 10.1111/j.1365-2958.2008.06560.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bioinformatic analysis of the plasmid-linked gene cluster associated with biosynthesis of methylenomycin (Mm) suggested that part of the cluster directs synthesis of a gamma-butyrolactone-like autoregulator. Autoregulator activity could be extracted from culture fluids, but differed from gamma-butyrolactones in being alkali resistant. The activity has recently been shown to comprise a series of novel autoregulator molecules, the methylenomycin furans (termed MMF). MMF autoregulator activity is shown to account for the ability of certain Mm non-producing mutants to act as 'secretors' in cosynthesis with other 'convertor' mutants. Three genes implicated in MMF biosynthesis are flanked by two regulatory genes, which are related to genes for gamma-butyrolactone-binding proteins. Genetic evidence suggests that these two genes encode components of a hetero-oligomeric repressor of MMF and Mm biosynthesis. The Mm biosynthetic genes themselves depend on the activator gene mmyB, which appears to be repressed by the putative MmyR/MmfR complex until enough MMF accumulates to release repression. The presence of TTA codons in mmyB and the main MMF biosynthetic gene causes Mm production to be dependent on the pleiotropically acting bldA gene, which encodes the tRNA for the rarely used UUA codon.
Collapse
Affiliation(s)
- Sean O'Rourke
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|
50
|
Zhang R, Xia H, Guo P, Qin Z. Variation in the replication loci of Streptomyces linear plasmids. FEMS Microbiol Lett 2008; 290:209-16. [PMID: 19054078 DOI: 10.1111/j.1574-6968.2008.01432.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptomyces linear plasmids start replication at centrally located loci, usually consisting of iterons and adjacent rep genes. Here, we identified four new replication loci from Streptomyces linear plasmids. A discontinuous locus, consisting of two genes and iterons separated by two nonessential genes, was required for replication of pRL2 in both linear and circular modes. A temperature-sensitive plasmid, pRL4, contained a replication locus, a noncoding sequence and a SAP1.35-like gene. A telomere-adjacent locus, another noncoding sequence and SAP1.1-like gene, was identified for replication of the large plasmid pFRL2. The replication locus of pSHK1 consisted of SCP1-rep-like genes and iterons. These results indicate an unexpected variety of components, positions and combinations of replication loci among Streptomyces linear plasmids.
Collapse
Affiliation(s)
- Ran Zhang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|