1
|
Pracser N, Zaiser A, Ciolacu L, Roch FF, Quijada NM, Thalguter S, Dzieciol M, Conrady B, Wagner M, Rychli K. The type of food influences the behaviour of Listeria monocytogenes in a food-gastrointestinal-infection model. NPJ Sci Food 2025; 9:79. [PMID: 40389416 PMCID: PMC12089613 DOI: 10.1038/s41538-025-00436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Food contaminated with Listeria (L.) monocytogenes is the main source of human listeriosis, but how different food matrices affect the survival and invasion in the gastrointestinal (GI) tract is still unclear. This study examined three ready-to-eat foods - soft-cheese, smoked salmon, and sausage - using a food-GI-infection model. We observed strain-dependent growth rates, but food matrices did not significantly impact growth. However, nutrient sources altered gene expression. Passage through the GI model upregulated 23 stress genes and 29 virulence genes (e.g., clpE, hly, and plcB). L. monocytogenes survival was higher in cheese and fish compared to sausage, due to their lower buffer capacity. Invasion efficiency into Caco-2 cells was highest in fish, potentially linked to its fatty acid composition. Food matrices and GI conditions influenced the transcriptional profiles of stress-associated and virulence genes. This study highlights the significant role of food matrices in L. monocytogenes survival and infection.
Collapse
Grants
- P27920-B22 Austrian Science Fund (FWF)
- P27920-B22 Austrian Science Fund (FWF)
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
Collapse
Affiliation(s)
- Nadja Pracser
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Andreas Zaiser
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luminita Ciolacu
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franz-Ferdinand Roch
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Narciso M Quijada
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Monika Dzieciol
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Beate Conrady
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Martin Wagner
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Kathrin Rychli
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Espí-Malillos A, Palacios-Gorba C, López-Almela I, Ruiz-García P, López-Mendoza MC, García-Del Portillo F, Pucciarelli MG, Quereda JJ. Kinetic and proteomic studies in milk show distinct patterns among major Listeria monocytogenes clones. Microbes Infect 2025; 27:105312. [PMID: 38346664 DOI: 10.1016/j.micinf.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Listeria monocytogenes, a contaminant of raw milk, includes hypervirulent clonal complexes (CC) like CC1, CC4, and CC6, highly overrepresented in dairy products when compared to other food types. Whether their higher prevalence in dairy products is the consequence of a growth advantage in this food remains unknown. We examined growth kinetics of five L. monocytogenes isolates (CC1, CC4, CC6, CC9, and CC121) at 37 and 4 °C in ultra-high temperature (UHT) milk and raw milk. At 4 °C, hypovirulent CC9 and CC121 isolates exhibit better growth parameters in UHT milk compared to the hypervirulent CC1, CC4, and CC6 isolates. CC9 isolate in raw milk at 4 °C exhibited the fastest growth and the highest final concentrations. In contrast, hypervirulent isolates (CC1, CC4, and CC6) displayed better growth rates in UHT milk at 37 °C, the mammalian host temperature. Proteomic analysis of representative hyper- (CC1) and hypovirulent (CC9) isolates showed that they respond to milk cues differently with CC-specific traits. Proteins related to metabolism (such as LysA or different phosphotransferase systems), and stress response were upregulated in both isolates during growth in UHT milk. Our results show that there is a Listeria CC-specific and a Listeria CC-common response to the milk environment. These findings shed light on the overrepresentation of hypervirulent L. monocytogenes isolates in dairy products, suggesting that CC1 and CC4 overrepresentation in dairy products made of raw milk may arise from contamination during or after milking at the farm and discard an advantage of hypervirulent isolates in milk products when stored at refrigeration temperatures.
Collapse
Affiliation(s)
- Alba Espí-Malillos
- Grupo de investigación Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carla Palacios-Gorba
- Grupo de investigación Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada López-Almela
- Grupo de investigación Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pilar Ruiz-García
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Carmen López-Mendoza
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain; Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology 'Severo Ochoa' (CBMSO CSIC-UAM), Madrid, Spain
| | - Juan J Quereda
- Grupo de investigación Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
3
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
5
|
Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) Domains: Unique Surface Displayed Heme Chaperones That Enable Gram-Positive Bacteria to Capture Heme-Iron From Hemoglobin. Front Microbiol 2021; 11:607679. [PMID: 33488548 PMCID: PMC7815599 DOI: 10.3389/fmicb.2020.607679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb's heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb's iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. J Biol Chem 2020; 295:10008-10022. [PMID: 32499371 DOI: 10.1074/jbc.ra120.013510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Angelica Pellegrini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Mariangela J Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Kang CY, Huang IH, Chou CC, Wu TY, Chang JC, Hsiao YY, Cheng CH, Tsai WJ, Hsu KC, Wang S. Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. J Biol Chem 2020; 295:3734-3745. [PMID: 32005667 PMCID: PMC7076211 DOI: 10.1074/jbc.ra119.011322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
Most of Gram-positive bacteria anchor surface proteins to the peptidoglycan cell wall by sortase, a cysteine transpeptidase that targets proteins displaying a cell wall sorting signal. Unlike other bacteria, Clostridium difficile, the major human pathogen responsible for antibiotic-associated diarrhea, has only a single functional sortase (SrtB). Sortase's vital importance in bacterial virulence has been long recognized, and C. difficile sortase B (Cd-SrtB) has become an attractive therapeutic target for managing C. difficile infection. A better understanding of the molecular activity of Cd-SrtB may help spur the development of effective agents against C. difficile infection. In this study, using site-directed mutagenesis, biochemical and biophysical tools, LC-MS/MS, and crystallographic analyses, we identified key residues essential for Cd-SrtB catalysis and substrate recognition. To the best of our knowledge, we report the first evidence that a conserved serine residue near the active site participates in the catalytic activity of Cd-SrtB and also SrtB from Staphylococcus aureus The serine residue indispensable for SrtB activity may be involved in stabilizing a thioacyl-enzyme intermediate because it is neither a nucleophilic residue nor a substrate-interacting residue, based on the LC-MS/MS data and available structural models of SrtB-substrate complexes. Furthermore, we also demonstrated that residues 163-168 located on the β6/β7 loop of Cd-SrtB dominate specific recognition of the peptide substrate PPKTG. The results of this work reveal key residues with roles in catalysis and substrate specificity of Cd-SrtB.
Collapse
Affiliation(s)
- Chia-Yu Kang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Tsai-Yu Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Jyun-Cyuan Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Hsuan Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Jiun Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan. Tel.:
886-6-2353535, Ext. 5634; Fax:
886-6-2082705; E-mail:
| |
Collapse
|
8
|
Chakravorty S, Shipelskiy Y, Kumar A, Majumdar A, Yang T, Nairn BL, Newton SM, Klebba PE. Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens. J Biol Chem 2019; 294:4682-4692. [PMID: 30679312 DOI: 10.1074/jbc.ra118.006921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Sensitive assays of biochemical specificity, affinity, and capacity are valuable both for basic research and drug discovery. We created fluorescent sensors that monitor high-affinity binding reactions and used them to study iron acquisition by ESKAPE bacteria, which are frequently responsible for antibiotic-resistant infections. By introducing site-directed Cys residues in bacterial iron transporters and modifying them with maleimide fluorophores, we generated living cells or purified proteins that bind but do not transport target compounds. These constructs sensitively detected ligand concentrations in solution, enabling accurate, real-time spectroscopic analysis of membrane transport by other cells. We assessed the efficacy of these "fluorescent decoy" (FD) sensors by characterizing active iron transport in the ESKAPE bacteria. The FD sensors monitored uptake of both ferric siderophores and hemin by the pathogens. An FD sensor for a particular ligand was universally effective in observing the uptake of that compound by all organisms we tested. We adapted the FD sensors to microtiter format, where they allow high-throughput screens for chemicals that block iron uptake, without genetic manipulations of the virulent target organisms. Hence, screening assays with FD sensors facilitate studies of mechanistic biochemistry, as well as discovery of chemicals that inhibit prokaryotic membrane transport. With appropriate design, FD sensors are potentially applicable to any pro- or eukaryotic high-affinity ligand transport process.
Collapse
Affiliation(s)
- Somnath Chakravorty
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Yan Shipelskiy
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Ashish Kumar
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Aritri Majumdar
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Taihao Yang
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Brittany L Nairn
- the Department of Biological Sciences, Bethel University, St. Paul, Minnesota 55112
| | - Salete M Newton
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| | - Phillip E Klebba
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and
| |
Collapse
|
9
|
The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans 2019; 47:77-87. [PMID: 30626704 DOI: 10.1042/bst20180275] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Metal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.
Collapse
|
10
|
Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen JH, Brunhede MZ, Lillebæk EMS, Kallipolitis BH. The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018; 9:599. [PMID: 29636750 PMCID: PMC5880928 DOI: 10.3389/fmicb.2018.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
The LhrC family of small regulatory RNAs (sRNAs) is known to be induced when the foodborne pathogen Listeria monocytogenes is exposed to infection-relevant conditions, such as human blood. Here we demonstrate that excess heme, the core component of hemoglobin in blood, leads to a strong induction of the LhrC family members LhrC1–5. The heme-dependent activation of lhrC1–5 relies on the response regulator LisR, which is known to play a role in virulence and stress tolerance. Importantly, our studies revealed that LhrC1–5 and LisR contribute to the adaptation of L. monocytogenes to excess heme. Regarding the regulatory function of the sRNAs, we demonstrate that LhrC1–5 act to down-regulate the expression of known LhrC target genes under heme-rich conditions: oppA, tcsA, and lapB, encoding surface exposed proteins with virulence functions. These genes were originally identified as targets for LhrC-mediated control under cell envelope stress conditions, suggesting a link between the response to heme toxicity and cell envelope stress in L. monocytogenes. We also investigated the role of LhrC1–5 in controlling the expression of genes involved in heme uptake and utilization: lmo2186 and lmo2185, encoding the heme-binding proteins Hbp1 and Hbp2, respectively, and lmo0484, encoding a heme oxygenase-like protein. Using in vitro binding assays, we demonstrated that the LhrC family member LhrC4 interacts with mRNAs encoded from lmo2186, lmo2185, and lmo0484. For lmo0484, we furthermore show that LhrC4 uses a CU-rich loop for basepairing to the AG-rich Shine–Dalgarno region of the mRNA. The presence of a link between the response to heme toxicity and cell envelope stress was further underlined by the observation that LhrC1–5 down-regulate the expression of lmo0484 in response to the cell wall-acting antibiotic cefuroxime. Collectively, this study suggests a role for the LisR-regulated sRNAs LhrC1–5 in a coordinated response to excess heme and cell envelope stress in L. monocytogenes.
Collapse
Affiliation(s)
- Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dharmesh Sabharwal
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jens-Henrik Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maja Z Brunhede
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva M S Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Schardt J, Jones G, Müller-Herbst S, Schauer K, D'Orazio SEF, Fuchs TM. Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Sci Rep 2017; 7:17821. [PMID: 29259308 PMCID: PMC5736727 DOI: 10.1038/s41598-017-17570-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the “Listeria sensu stricto” clade. The members of the second clade, “Listeria sensu lato”, are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes.
Collapse
Affiliation(s)
- Jakob Schardt
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Grant Jones
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Stefanie Müller-Herbst
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Kristina Schauer
- Lehrstuhl für Hygiene und Technologie der Milch, Tiermedizinische Fakultät, Ludwig-Maximilians-Universität München, Schönleutner Str. 8, 85764, Oberschleißheim, Germany
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Thilo M Fuchs
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
12
|
Pieta L, Escudero FLG, Jacobus AP, Cheiran KP, Gross J, Moya MLE, Soares GLG, Margis R, Frazzon APG, Frazzon J. Comparative transcriptomic analysis of Listeria monocytogenes reveals upregulation of stress genes and downregulation of virulence genes in response to essential oil extracted from Baccharis psiadioides. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1277-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. J Bacteriol 2017; 199:JB.00723-16. [PMID: 28031282 DOI: 10.1128/jb.00723-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
Siderophore nutrition tests with Caulobacter crescentus strain NA1000 revealed that it utilized a variety of ferric hydroxamate siderophores, including asperchromes, ferrichromes, ferrichrome A, malonichrome, and ferric aerobactin, as well as hemin and hemoglobin. C. crescentus did not transport ferrioxamine B or ferric catecholates. Because it did not use ferric enterobactin, the catecholate aposiderophore was an effective agent for iron deprivation. We determined the kinetics and thermodynamics of [59Fe]apoferrichrome and 59Fe-citrate binding and transport by NA1000. Its affinity and uptake rate for ferrichrome (equilibrium dissociation constant [Kd ], 1 nM; Michaelis-Menten constant [KM ], 0.1 nM; Vmax, 19 pMol/109 cells/min) were similar to those of Escherichia coli FhuA. Transport properties for 59Fe-citrate were similar to those of E. coli FecA (KM , 5.3 nM; Vmax, 29 pMol/109 cells/min). Bioinformatic analyses implicated Fur-regulated loci 00028, 00138, 02277, and 03023 as TonB-dependent transporters (TBDT) that participate in iron acquisition. We resolved TBDT with elevated expression under high- or low-iron conditions by SDS-PAGE of sodium sarcosinate cell envelope extracts, excised bands of interest, and analyzed them by mass spectrometry. These data identified five TBDT: three were overexpressed during iron deficiency (00028, 02277, and 03023), and 2 were overexpressed during iron repletion (00210 and 01196). CLUSTALW analyses revealed homology of putative TBDT 02277 to Escherichia coli FepA and BtuB. A Δ02277 mutant did not transport hemin or hemoglobin in nutrition tests, leading us to designate the 02277 structural gene as hutA (for heme/hemoglobin utilization).IMPORTANCE The physiological roles of the 62 putative TBDT of C. crescentus are mostly unknown, as are their evolutionary relationships to TBDT of other bacteria. We biochemically studied the iron uptake systems of C. crescentus, identified potential iron transporters, and clarified the phylogenetic relationships among its numerous TBDT. Our findings identified the first outer membrane protein involved in iron acquisition by C. crescentus, its heme/hemoglobin transporter (HutA).
Collapse
|
14
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
15
|
Jarvis NA, O'Bryan CA, Ricke SC, Johnson MG, Crandall PG. A review of minimal and defined media for growth of Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Rapid Heme Transfer Reactions between NEAr Transporter Domains of Staphylococcus aureus: A Theoretical Study Using QM/MM and MD Simulations. PLoS One 2015; 10:e0145125. [PMID: 26658942 PMCID: PMC4684392 DOI: 10.1371/journal.pone.0145125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, most iron is present as heme or is chelated by proteins. Thus, Gram-positive pathogens such as Staphylococcus aureus have evolved an iron-regulated surface determinant (Isd) system that transports heme across thick cell walls into the cytoplasm. Recent studies have demonstrated that heme is rapidly transferred between the NEAr Transporter (NEAT) domains of the Isd system, despite its high affinity toward each domain, suggesting the presence of an intermediate NEAT•heme•NEAT complex. In the present study, we performed short restrained molecular dynamics (MD) simulations to dock the acceptor NEAT domain to the donor NEAT•heme complex and obtained models where the two NEAT domains were arranged with two-fold pseudo symmetry around the heme molecule. After turning off the restraints, complex structures were stably maintained during subsequent unrestrained MD simulations, except for the hydrogen bond between the propionate group of the heme molecule and the donor NEAT domain, potentially facilitating the transition of heme from the donor to the acceptor. Subsequent structural optimization using the quantum mechanics/molecular mechanics (QM/MM) method showed that two tyrosine residues, one from each NEAT domain, were simultaneously coordinated to the ferric heme iron in the intermediate complex only if they were deprotonated. Based on these results, we propose a reaction scheme for heme transfer between NEAT domains.
Collapse
|
17
|
Rychli K, Grunert T, Ciolacu L, Zaiser A, Razzazi-Fazeli E, Schmitz-Esser S, Ehling-Schulz M, Wagner M. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. Int J Food Microbiol 2015; 218:17-26. [PMID: 26594790 DOI: 10.1016/j.ijfoodmicro.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/24/2023]
Abstract
The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; "Dunarea de Jos" University of Galaţi, 47 Domneasca St., 800008 Galaţi, Romania.
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Ebrahim Razzazi-Fazeli
- VetCORE facility for research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
18
|
Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR. Molecular features of the sortase enzyme family. FEBS J 2015; 282:2097-114. [PMID: 25845800 DOI: 10.1111/febs.13288] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/31/2023]
Abstract
Bacteria possess complex and varying cell walls with many surface exposed proteins. Sortases are responsible for the covalent attachment of specific proteins to the peptidoglycan of the cell wall of Gram-positive bacteria. Sortase A of Staphylococcus aureus, which is seen as the archetypal sortase, has been shown to be essential for pathogenesis and has therefore received much attention as a potential target for novel therapeutics. Being widely present in Gram-positive bacteria, it is likely that other Gram-positive pathogens also require sortases for their pathogenesis. Sortases have also been shown to be of significant use in a range of industrial applications. We review current knowledge of the sortase family in terms of their structures, functions and mechanisms and summarize work towards their use as antibacterial targets and microbiological tools.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | - Christopher J Chambers
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
19
|
Lechowicz J, Krawczyk-Balska A. An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. Biometals 2015; 28:587-603. [PMID: 25820385 PMCID: PMC4481299 DOI: 10.1007/s10534-015-9849-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes a rare but severe human disease with high mortality rate. The microorganism is widespread in the natural environment where it shows a saprophytic lifestyle. In the human body it infects many different cell types, where it lives intracellularly, however it may also temporarily live extracellularly. The ability to survive and grow in such diverse niches suggests that this bacterium has a wide range of mechanisms for both the acquisition of various sources of iron and effective management of this microelement. In this review, data about the mechanisms of transport, metabolism and regulation of iron, including recent findings in these areas, are summarized with focus on the importance of these mechanisms for the virulence of L. monocytogenes. These data indicate the key role of haem transport and maintenance of intracellular iron homeostasis for the pathogenesis of L. monocytogenes. Furthermore, some of the proteins involved in iron homeostasis like Fri and FrvA seem to deserve special attention due to their potential use in the development of new therapeutic antilisterial strategies.
Collapse
Affiliation(s)
- Justyna Lechowicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | |
Collapse
|
20
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
21
|
Schneewind O, Missiakas D. Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1687-97. [PMID: 24269844 PMCID: PMC4031296 DOI: 10.1016/j.bbamcr.2013.11.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023]
Abstract
Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
22
|
Riboldi GP, Bierhals CG, de Mattos EP, Frazzon APG, d‘Azevedo PA, Frazzon J. Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation. Mem Inst Oswaldo Cruz 2014; 109:408-13. [PMID: 24936909 PMCID: PMC4155840 DOI: 10.1590/0074-0276140006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022] Open
Abstract
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Collapse
Affiliation(s)
- Gustavo Pelicioli Riboldi
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | | | | | | | - Pedro Alves d‘Azevedo
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Jeverson Frazzon
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
23
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
24
|
Duong T, Park K, Kim T, Kang SW, Hahn MJ, Hwang HY, Kim KK. Structural and functional characterization of an Isd-type haem-degradation enzyme fromListeria monocytogenes. ACTA ACUST UNITED AC 2014; 70:615-26. [DOI: 10.1107/s1399004713030794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022]
Abstract
Bacterial pathogens have evolved diverse types of efficient machinery to acquire haem, the most abundant source of iron in the human body, and degrade it for the utilization of iron. Gram-positive bacteria commonly encode IsdG-family proteins as haem-degrading monooxygenases.Listeria monocytogenesis predicted to possess an IsdG-type protein (Lmo2213), but the residues involved in haem monooxygenase activity are not well conserved and there is an extra N-terminal domain in Lmo2213. Therefore, its function and mechanism of action cannot be predicted. In this study, the crystal structure of Lmo2213 was determined at 1.75 Å resolution and its haem-binding and haem-degradation activities were confirmed. Structure-based mutational and functional assays of this protein, designated as an Isd-typeL. monocytogeneshaem-degrading enzyme (Isd-LmHde), identified that Glu71, Tyr87 and Trp129 play important roles in haem degradation and that the N-terminal domain is also critical for its haem-degrading activity. The haem-degradation product of Isd-LmHde is verified to be biliverdin, which is also known to be the degradation product of other bacterial haem oxygenases. This study, the first structural and functional report of the haem-degradation system inL. monocytogenes, sheds light on the concealed haem-utilization system in this life-threatening human pathogen.
Collapse
|
25
|
Moriwaki Y, Terada T, Caaveiro JMM, Takaoka Y, Hamachi I, Tsumoto K, Shimizu K. Heme binding mechanism of structurally similar iron-regulated surface determinant near transporter domains of Staphylococcus aureus exhibiting different affinities for heme. Biochemistry 2013; 52:8866-77. [PMID: 24245481 DOI: 10.1021/bi4008325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near transporter (NEAT) domains of the iron-regulated surface determinant (Isd) proteins are essential for the import of nutritional heme from host animals to Gram-positive pathogens such as Staphylococcus aureus. The order of transfer of heme between NEAT domains occurs from IsdH to IsdA to IsdC, without any energy input despite the similarity of their three-dimensional structures. We measured the free energy of binding of heme and various metalloporphyrins to each NEAT domain and found that the affinity of heme and non-iron porphyrins for NEAT domains increased gradually in the same order as that for heme transfer. To gain insight into the atomistic mechanism for the differential affinities, we performed in silico molecular dynamics simulation and in vitro site-directed mutagenesis. The simulations revealed that the negatively charged residues that are abundant in the loop between strand β1b and the 310 helix of IsdH-NEAT3 destabilize the interaction with the propionate group of heme. The higher affinity of IsdC was in part attributed to the formation of a salt bridge between its unique residue, Glu88, and the conserved Arg100 upon binding to heme. In addition, we found that Phe130 of IsdC makes the β7-β8 hairpin less flexible in the ligand-free form, which serves to reduce the magnitude of the entropy loss on binding to heme. We confirmed that substitution of these key residues of IsdC decreased its affinity for heme. Furthermore, IsdC mutants, whose affinities for heme were lower than those of IsdA, transferred heme back to IsdA. Thus, NEAT domains have evolved the characteristic residues on the common structural scaffold such that they exhibit different affinities for heme, thus promoting the efficient transfer of heme.
Collapse
Affiliation(s)
- Yoshitaka Moriwaki
- Department of Biotechnology and ‡Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Krawczyk-Balska A, Lipiak M. Critical role of a ferritin-like protein in the control of Listeria monocytogenes cell envelope structure and stability under β-lactam pressure. PLoS One 2013; 8:e77808. [PMID: 24204978 PMCID: PMC3812014 DOI: 10.1371/journal.pone.0077808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/05/2013] [Indexed: 02/08/2023] Open
Abstract
The human pathogen Listeria monocytogenes is susceptible to the β-lactam antibiotics penicillin G and ampicillin, and these are the drugs of choice for the treatment of listerial infections. However, these antibiotics exert only a bacteriostatic effect on this bacterium and consequently, L. monocytogenes is regarded as β-lactam tolerant. It is widely accepted that the phenomenon of bacterial tolerance to β-lactams is due to the lack of adequate autolysin activity, but the mechanisms of L. monocytogenes tolerance to this class of antibiotics are poorly characterized. A ferritin-like protein (Fri) was recently identified as a mediator of β-lactam tolerance in L. monocytogenes, but its function in this process remains unknown. The present study was undertaken to improve our understanding of L. monocytogenes tolerance to β-lactams and to characterize the role of Fri in this phenomenon. A comparative physiological analysis of wild-type L. monocytogenes and a fri deletion mutant provided evidence of a multilevel mechanism controlling autolysin activity in cells grown under β-lactam pressure, which leads to a reduction in the level and/or activity of cell wall-associated autolysins. This is accompanied by increases in the amount of teichoic acids, cell wall thickness and cell envelope integrity of L. monocytogenes grown in the presence of penicillin G, and provides the basis for the innate β-lactam tolerance of this bacterium. Furthermore, this study revealed the inability of the L. monocytogenes Δ fri mutant to deplete autolysins from the cell wall, to adjust the content of teichoic acids and to maintain their D-alanylation at the correct level when treated with penicillin G, thus providing further evidence that Fri is involved in the control of L. monocytogenes cell envelope structure and stability under β-lactam pressure.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Lipiak
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Biogenesis of [Fe–S] cluster in Firmicutes: an unexploited field of investigation. Antonie Van Leeuwenhoek 2013; 104:283-300. [DOI: 10.1007/s10482-013-9966-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
28
|
Spirig T, Malmirchegini GR, Zhang J, Robson SA, Sjodt M, Liu M, Krishna Kumar K, Dickson CF, Gell DA, Lei B, Loo JA, Clubb RT. Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 2012; 288:1065-78. [PMID: 23132864 DOI: 10.1074/jbc.m112.419119] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S. aureus using two closely related receptors, IsdH and IsdB. Here we demonstrate that each receptor captures heme using two conserved near iron transporter (NEAT) domains that function synergistically. NMR studies of the 39-kDa conserved unit from IsdH (IsdH(N2N3), Ala(326)-Asp(660)) reveals that it adopts an elongated dumbbell-shaped structure in which its NEAT domains are properly positioned by a helical linker domain, whose three-dimensional structure is determined here in detail. Electrospray ionization mass spectrometry and heme transfer measurements indicate that IsdH(N2N3) extracts heme from Hb via an ordered process in which the receptor promotes heme release by inducing steric strain that dissociates the Hb tetramer. Other clinically significant Gram-positive pathogens capture Hb using receptors that contain multiple NEAT domains, suggesting that they use a conserved mechanism.
Collapse
Affiliation(s)
- Thomas Spirig
- Department of Chemistry and Biochemistry and the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Klebba PE, Charbit A, Xiao Q, Jiang X, Newton SM. Mechanisms of iron and haem transport byListeria monocytogenes. Mol Membr Biol 2012; 29:69-86. [DOI: 10.3109/09687688.2012.694485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, Darby T, Charbit A, Sleator RD, Joyce SA, Cowart RE, Hill C, Klebba PE, Gahan CGM. A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes. PLoS One 2012; 7:e30928. [PMID: 22363518 PMCID: PMC3283593 DOI: 10.1371/journal.pone.0030928] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/26/2011] [Indexed: 11/18/2022] Open
Abstract
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Rosemarie B. Rea
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Hualiang Pi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Trevor Darby
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Alain Charbit
- Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Roy D. Sleator
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Susan A. Joyce
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Richard E. Cowart
- Division of Biological Science, Department of Natural and Applied Sciences, University of Dubuque, Dubuque, Iowa, United States of America
| | - Colin Hill
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| | - Phillip E. Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Cormac G. M. Gahan
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Pinto E, Marques N, W. Andrew P, Leonor Faleiro M. Over-Production of P60 Family Proteins, Glycolytic and Stress Response Proteins Characterizes the Autolytic Profile of <i>Listeria monocytogenes</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.22023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Abstract
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function.
Collapse
Affiliation(s)
- Thomas Spirig
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Bruck S, Personnic N, Prevost MC, Cossart P, Bierne H. Regulated shift from helical to polar localization of Listeria monocytogenes cell wall-anchored proteins. J Bacteriol 2011; 193:4425-37. [PMID: 21725001 PMCID: PMC3165528 DOI: 10.1128/jb.01154-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 06/23/2011] [Indexed: 01/18/2023] Open
Abstract
Many virulence factors of Gram-positive bacterial pathogens are covalently anchored to the peptidoglycan (PG) by sortase enzymes. However, for rod-shaped bacteria little is known about the spatiotemporal organization of these surface proteins in the cell wall. Here we report the three-dimensional (3D) localization of the PG-bound virulence factors InlA, InlH, InlJ, and SvpA in the envelope of Listeria monocytogenes under different growth conditions. We found that all PG-anchored proteins are positioned along the lateral cell wall in nonoverlapping helices. However, these surface proteins can also become localized at the pole and asymmetrically distributed when specific regulatory pathways are activated. InlA and InlJ are enriched at poles when expressed at high levels in exponential-phase bacteria. InlA and InlH, which are σ(B)dependent, specifically relocalize to the septal cell wall and subsequently to the new pole in cells entering stationary phase. The accumulation of InlA and InlH in the septal region also occurs when oxidative stress impairs bacterial growth. In contrast, the iron-dependent protein SvpA is present at the old pole and is excluded from the septum and new pole of bacteria grown under low-iron conditions. We conclude that L. monocytogenes rapidly reorganizes the spatial localization of its PG proteins in response to changes in environmental conditions such as nutrient deprivation or other stresses. This dynamic control would distribute virulence factors at specific sites during the infectious process.
Collapse
Affiliation(s)
- Serawit Bruck
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | - Nicolas Personnic
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | | | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | - Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| |
Collapse
|
34
|
Nobles CL, Maresso AW. The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 2011; 3:788-96. [PMID: 21725569 DOI: 10.1039/c1mt00047k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The element iron is essential for bacteria and plays a key role in the virulence and pathology of bacterial diseases. The largest reservoir of iron within the human body is in protoporphyrin IX, the compound commonly referred to as heme and bound by hemoglobin. For many years, the study of heme uptake in bacteria was restricted to Gram-negative organisms. However, recent studies have shed light on how bacteria containing a thick peptidoglycan, such as Gram-positive bacteria, acquire and transport heme. This review summarizes old and new research covering the acquisition, transport, and utilization of heme in Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Christopher L Nobles
- Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza - BCM280, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Xiao Q, Jiang X, Moore KJ, Shao Y, Pi H, Dubail I, Charbit A, Newton SM, Klebba PE. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 2011; 80:1581-97. [PMID: 21545655 PMCID: PMC3115469 DOI: 10.1111/j.1365-2958.2011.07667.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59) Fe]-Hn transport, and purified Lmo2185 bound [(59) Fe]-Hn (K(D) = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a haemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [(59) Fe]-Hn transport at external concentrations less than 50 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (K(D) = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (K(D) = 123 nM). Deletions of Hup permease components hupD, hupG or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC(+) and hupG(+) alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [(59) Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall K(M) of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (V(max) = 23 pmol 10(9) cells(-1) min(-1)) to those of ferric siderophore transporters. In the ΔhupDGC strain uptake occurred at a threefold lower rate (V(max) = 7 pmol 10(9) cells(-1) min(-1)). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g. Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD(50) of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence.
Collapse
Affiliation(s)
- Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiaoxu Jiang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kyle J. Moore
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yi Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Hualiang Pi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Iharilalao Dubail
- Université Paris Descartes, Faculté de Médecine, Necker-Enfants Malades, Paris, FRANCE
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, FRANCE
| | - Alain Charbit
- Université Paris Descartes, Faculté de Médecine, Necker-Enfants Malades, Paris, FRANCE
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, FRANCE
| | - Salete M. Newton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Phillip E. Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
36
|
Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation. Appl Environ Microbiol 2009; 76:406-16. [PMID: 19933349 DOI: 10.1128/aem.01389-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Iron is required by almost all bacteria, but concentrations above physiological levels are toxic. In bacteria, intracellular iron is regulated mostly by the ferric uptake regulator, Fur, or a similar functional protein. Iron limitation results in the regulation of a number of genes, especially those involved in iron uptake. A subset of these genes is the Fur regulon under the control of Fur. In the present study, we have identified Fur- and iron-regulated genes in Listeria monocytogenes by DNA microarray analysis using a fur mutant and its isogenic parent. To identify genes regulated exclusively in response to iron limitation, the whole-genome transcriptional responses to the iron limitation of a fur mutant and its isogenic parent were compared. Fur-regulated genes were identified by comparing the transcriptional profile of the parent with the transcriptional profile of the isogenic fur mutant. Our studies have identified genes regulated exclusively in response to iron and those that are negatively regulated by Fur. We have identified at least 14 genes that were negatively regulated directly by Fur. Under iron-limited conditions, these genes were upregulated, while the expression of fur was found to be downregulated. To further investigate the regulation of fur in response to iron, an ectopic fur promoter-lacZ transcriptional fusion strain was constructed, and its isogenic fur and perR mutant derivatives were generated in L. monocytogenes 10403S. Analysis of the iron limitation of the perR mutant indicated that the regulation of genes under the negative control of Fur was significantly inhibited. Our results indicate that Fur and PerR proteins negatively regulate fur and that under iron-limited conditions, PerR is required for the negative regulation of genes controlled by Fur.
Collapse
|
37
|
Carpenter BM, Whitmire JM, Merrell DS. This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun 2009; 77:2590-601. [PMID: 19364842 PMCID: PMC2708581 DOI: 10.1128/iai.00116-09] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Heath Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
38
|
Mariscotti JF, Portillo FGD, Pucciarelli M. The Listeria monocytogenes Sortase-B Recognizes Varied Amino Acids at Position 2 of the Sorting Motif. J Biol Chem 2009; 284:6140-6. [DOI: 10.1074/jbc.m807989200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Gat O, Zaide G, Inbar I, Grosfeld H, Chitlaru T, Levy H, Shafferman A. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol 2008; 70:983-99. [PMID: 18826411 DOI: 10.1111/j.1365-2958.2008.06460.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three iron-regulated surface determinant (Isd) proteins, containing NEAr Transporter (NEAT) domains (GBAA4789-7), constitute part of an eight-member Bacillus anthracis operon. GBAA4789 (IsdC), previously characterized by others as a haem-binding protein, and two novel Isd proteins characterized in this study, GBAA4788 (IsdJ) and GBAA4787 (IsdK) proteins, can be translated from two alternative overlapping transcriptional units. The three NEAT-containing Isd proteins are shown to be expressed in vivo during B. anthracis infection. Expression in vitro is regulated by iron ions independent of the virulence plasmids pXO1 and pXO2, yet their presence affects the range of response to iron ion concentration. The expression of IsdC, J and K is strongly repressed under high CO(2) tension, conditions that are optimal for B. anthracis toxin and capsule expression, suggesting that these Isd proteins are elements of a B. anthracis'air-regulon'. Deletion mutants of isdC, isdK or the entire isdCJK locus are as virulent and pathogenic to guinea pigs as the fully virulent wild-type Vollum strain. The isdC-deleted mutant is defective in sequestration of haemin, consistent with previous biochemical observations, while the DeltaisdK mutant is defective in haemoglobin uptake. Studies with recombinant IsdK demonstrate specific binding to haemoglobin.
Collapse
Affiliation(s)
- Orit Gat
- Department of Biochemistry and Molecular Genetics, Israel Institute for biological Research, Ness Ziona, Israel.
| | | | | | | | | | | | | |
Collapse
|
40
|
Shr is a broad-spectrum surface receptor that contributes to adherence and virulence in group A streptococcus. Infect Immun 2008; 76:5006-15. [PMID: 18710861 DOI: 10.1128/iai.00300-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a common hemolytic pathogen that produces a range of suppurative infections and autoimmune sequelae in humans. Shr is an exported protein in GAS, which binds in vitro to hemoglobin, myoglobin, and the hemoglobin-haptoglobin complex. We previously reported that Shr is found in association with whole GAS cells and in culture supernatant. Here, we demonstrate that cell-associated Shr could not be released from the bacteria by the muralytic enzyme mutanolysin and was instead localized to the membrane. Shr was available, however, on the exterior of GAS, exposed to the extracellular environment. In vitro binding and competition assays demonstrated that in addition to hemoprotein binding, purified Shr specifically interacts with immobilized fibronectin and laminin. The absence of typical fibronectin-binding motifs indicates that a new protein pattern is involved in the binding of Shr to the extracellular matrix. Recombinant Lactococcus lactis cells expressing Shr on the bacterial surface gained the ability to bind to immobilized fibronectin, suggesting that Shr can function as an adhesin. The inactivation of shr resulted in a 40% reduction in the attachment to human epithelial cells in comparison to the parent strain. GAS infection elicited a high titer of Shr antibodies in sera from convalescent mice, demonstrating that Shr is expressed in vivo. The shr mutant was attenuated for virulence in an intramuscular zebrafish model system. In summary, this study identifies Shr as being a new microbial surface component recognizing adhesive matrix molecules in GAS that mediates attachment to epithelial cells and contributes to the infection process.
Collapse
|
41
|
Dramsi S, Magnet S, Davison S, Arthur M. Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 2008; 32:307-20. [PMID: 18266854 DOI: 10.1111/j.1574-6976.2008.00102.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial surface proteins are key players in host-symbiont or host-pathogen interactions. How these proteins are targeted and displayed at the cell surface are challenging issues of both fundamental and clinical relevance. While surface proteins of Gram-negative bacteria are assembled in the outer membrane, Gram-positive bacteria predominantly utilize their thick cell wall as a platform to anchor their surface proteins. This surface display involves both covalent and noncovalent interactions with either the peptidoglycan or secondary wall polymers such as teichoic acid or lipoteichoic acid. This review focuses on the role of enzymes that covalently link surface proteins to the peptidoglycan, the well-known sortases in Gram-positive bacteria, and the recently characterized l,d-transpeptidases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
42
|
Dussurget O. Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:1-38. [DOI: 10.1016/s1937-6448(08)01401-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007; 71:377-97. [PMID: 17554049 PMCID: PMC1899877 DOI: 10.1128/mmbr.00039-06] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genome of the human food-borne pathogen Listeria monocytogenes is predicted to encode a high number of surface proteins. This abundance likely reflects the ability of this bacterium to survive in diverse environments, including soil, food, and the human host. This review focuses on the various mechanisms by which listerial proteins are attached at the bacterial surface and their many functions, including peptidoglycan metabolism, protein processing, adhesion to host cells, and invasion of host tissues. Extensive in silico analysis of the domains or motifs present in these mosaic proteins reveals that diverse structural features allow the surface proteome to interact with diverse bacterial or host components. This diversity offers new clues about the molecular bases of Listeria pathogenesis.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.
| | | |
Collapse
|
44
|
Ledala N, Pearson SL, Wilkinson BJ, Jayaswal RK. Molecular characterization of the Fur protein of Listeria monocytogenes. Microbiology (Reading) 2007; 153:1103-1111. [PMID: 17379719 DOI: 10.1099/mic.0.2006/000620-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the survival of almost all organisms, although excess iron can result in the generation of free radicals which are toxic to cells. To avoid the toxic effects of free radicals, the concentration of intracellular iron is generally regulated by the ferric uptake regulator Fur in bacteria. The 150 aa fur ORF from Listeria monocytogenes was cloned into pRSETa, and the His-tagged fusion protein was purified by nickel affinity column chromatography. DNA binding activity of this protein was studied by an electrophoretic mobility shift assay using the end-labelled promoters P(fhuDC) and P(fur). The results showed a decrease in migration for both promoter DNAs in the presence of the Fur protein, and the change in migration was competitively inhibited with an excess of the same unlabelled promoters. No shift in migration was observed when a similar assay was performed using non-specific end-labelled DNA. The assay showed that binding of Fur to P(fur) or P(fhuDC) was independent of iron or manganese ions, and was not inhibited in the presence of 2 mM EDTA. Inductively coupled plasma MS of the Fur protein showed no iron or manganese, but 0.48 mole zinc per mole protein was detected. A DNase I protection assay revealed that Fur specifically bound to and protected a 19 bp consensus Fur box sequence located in the promoters of fur and fhuDC. There was no requirement for iron or manganese in this assay also. However, Northern blot analysis showed an increase in fur transcription under iron-restricted compared to high-level conditions. Thus, the study suggests that under in vitro conditions, the affinity of the Fur protein for the 19 bp Fur box sequence does not require iron, but iron availability regulates fur transcription in vivo. Thus, the regulation by Fur in this intracellular pathogen may be dependent on either the structure of the DNA binding domain or other intracellular factors yet to be identified.
Collapse
Affiliation(s)
- Nagender Ledala
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Stacy L Pearson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Brian J Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - R K Jayaswal
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
45
|
Dubail I, Bigot A, Lazarevic V, Soldo B, Euphrasie D, Dupuis M, Charbit A. Identification of an essential gene of Listeria monocytogenes involved in teichoic acid biogenesis. J Bacteriol 2006; 188:6580-91. [PMID: 16952950 PMCID: PMC1595501 DOI: 10.1128/jb.00771-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular gram-positive bacterium responsible for severe opportunistic infections in humans and animals. We had previously identified a gene encoding a putative UDP-N-acetylglucosamine 2-epimerase, a precursor of the teichoic acid linkage unit, in the genome of L monocytogenes strain EGD-e. This gene, now designated lmo2537, encodes a protein that shares 62% identity with the cognate epimerase MnaA of Bacillus subtilis and 55% identity with Cap5P of Staphylococcus aureus. Here, we addressed the role of lmo2537 in L. monocytogenes pathogenesis by constructing a conditional knockout mutant. The data presented here demonstrate that lmo2537 is an essential gene of L. monocytogenes that is involved in teichoic acid biogenesis. In vivo, the conditional mutant is very rapidly eliminated from the target organs of infected mice and thus is totally avirulent.
Collapse
Affiliation(s)
- Iharilalao Dubail
- Faculté de Médecine Necker, 156, Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Maresso AW, Chapa TJ, Schneewind O. Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis. J Bacteriol 2006; 188:8145-52. [PMID: 17012401 PMCID: PMC1698196 DOI: 10.1128/jb.01011-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the spore-forming agent of anthrax, requires iron for growth and is capable of scavenging heme-iron during infection. We show here that the B. anthracis iron-regulated surface determinants (isd) locus encompasses isdC, specifying a heme-iron binding surface protein. Anchoring of IsdC to the cell wall envelopes of vegetative bacilli requires srtB, which encodes sortase B. Purified sortase B cleaves IsdC between the threonine and the glycine of its NPKTG motif sorting signal. B. anthracis variants lacking either isdC or srtB display defects in heme-iron scavenging, suggesting that IsdC binding to heme-iron in the cell wall envelope contributes to bacterial uptake of heme.
Collapse
Affiliation(s)
- Anthony W Maresso
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
47
|
Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, Gaudu P. Roles of environmental heme, and menaquinone, in streptococcus agalactiae. Biometals 2006; 19:205-10. [PMID: 16718605 DOI: 10.1007/s10534-005-5419-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/23/2005] [Indexed: 12/01/2022]
Abstract
Most bacteria require iron for growth. However, as it may not be directly available under aerobic conditions, bacteria may use iron-sequestering molecules, such as bacterially encoded siderophores, or heme, which is the major iron source in the animal host. Bacteria may also assimilate heme for purposes other than as an iron source. Once internalised, heme can activate, for example, a heme-dependent catalase and a cytochrome oxidase. In bacterial pathogen Streptococcus agalactiae, heme, in association with exogenous menaquinone, activates a respiratory chain. Respiration has radical effects on carbon metabolism. GBS respiration-grown cells display improved survival in an aerobic environment and greater virulence in a murine septicemia model. GBS might benefit from its ecological niches to capture heme and menaquinone, i.e., from other bacteria when it colonizes host mucosa, or from blood-containing organs during septicemia.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Bâtiment 222, 78352, Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
48
|
Pilpa RM, Fadeev EA, Villareal VA, Wong ML, Phillips M, Clubb RT. Solution structure of the NEAT (NEAr Transporter) domain from IsdH/HarA: the human hemoglobin receptor in Staphylococcus aureus. J Mol Biol 2006; 360:435-47. [PMID: 16762363 DOI: 10.1016/j.jmb.2006.05.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 11/25/2022]
Abstract
During infections the pathogen Staphylococcus aureus procures the essential nutrient iron from its host using iron-regulated surface determinant (Isd) proteins, which scavenge heme bound iron from host hemoproteins. Four Isd proteins are displayed in the cell wall, where they function as receptors for host proteins and heme. Each of the receptors contains one or more copies of a recently discovered domain called NEAT (NEAr Transporter) that has been shown to mediate protein binding. Here we report the three-dimensional solution structure of the NEAT domain from the IsdH/HarA protein, which is the hemoglobin receptor in the Isd system. This is the first structure of a NEAT domain and reveals that they adopt a beta sandwich fold that consists of two five-stranded antiparallel beta sheets. Although unrelated at the primary sequence level, our results indicate that NEAT domains belong to the immunoglobulin superfamily. Binding studies indicate that two IsdH/HarA NEAT domains bind a single molecule of methemoglobin, while the distantly related NEAT domain from the S. aureus IsdC protein binds only heme. A comparison of their primary sequences in light of the new structure is used to predict the hemoglobin and heme binding surfaces on NEAT domains.
Collapse
Affiliation(s)
- Rosemarie M Pilpa
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, and the Molecular Biology Institute, University of California-Los Angeles, 611 Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
49
|
LeMieux J, Hava DL, Basset A, Camilli A. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. Infect Immun 2006; 74:2453-6. [PMID: 16552078 PMCID: PMC1418942 DOI: 10.1128/iai.74.4.2453-2456.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rlrA pathogenicity islet in Streptococcus pneumoniae TIGR4 encodes three surface proteins, RrgA, RrgB, and RrgC, and three sortase enzymes. Using transmission electron microscopy, cell fractionation, cell wall sorting signal domain swapping, and Western blotting, we show that RrgA and RrgB are incorporated into a multisubunit pilus in S. pneumoniae.
Collapse
Affiliation(s)
- Julianna LeMieux
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
50
|
Maresso AW, Schneewind O. Iron Acquisition and Transport in Staphylococcus aureus. Biometals 2006; 19:193-203. [PMID: 16718604 DOI: 10.1007/s10534-005-4863-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 11/07/2005] [Indexed: 02/06/2023]
Abstract
Pathogenic Gram-positive bacteria encounter many obstacles in route to successful invasion and subversion of a mammalian host. As such, bacterial species have evolved clever ways to prevent the host from clearing an infection, including the production of specialized virulence systems aimed at counteracting host defenses or providing protection from host immune mechanisms. Positioned at the interface of bacteria/host interactions is the bacterial cell wall, a dynamic surface organelle that serves a multitude of functions, ranging from physiologic processes such as structural scaffold and barrier to osmotic lysis to pathogenic properties, for example the deposition of surface molecules and the secretion of cytotoxins. In order to succeed in a battle with host defenses, invading bacteria need to acquire the nutrient iron, which is sequestered within host tissues. A cell-wall based iron acquisition and import pathway was uncovered in Staphylococcus aureus. This pathway, termed the isd or iron-responsive surface determinant locus, consists of a membrane transporter, cell wall anchored heme-binding proteins, heme/haptoglobin receptors, two heme oxygenases, and sortase B, a transpeptidase that anchors substrate proteins to the cell wall. Identification of the isd pathway provides an additional function to the already bountiful roles the cell wall plays in bacterial pathogenesis and provides new avenues for therapeutics to combat the rise of antimicrobial resistance in S. aureus. This review focuses on the molecular attributes of this locus, with emphasis placed on the mechanism of iron transport and the role of such a system during infection.
Collapse
Affiliation(s)
- A W Maresso
- Department of Microbiology, University of Chicago, CLSC Room 601, 920 E 58th Street, Chicago, IL, 60637, USA
| | | |
Collapse
|