1
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
2
|
Agre N, Tawari N, Maitra A, Gupta A, Munshi T, Degani M, Bhakta S. 3-(5-Nitrofuran-2-yl)prop-2-en-1-one Derivatives, with Potent Antituberculosis Activity, Inhibit A Novel Therapeutic Target, Arylamine N-acetyltransferase, in Mycobacteria. Antibiotics (Basel) 2020; 9:E368. [PMID: 32630175 PMCID: PMC7400135 DOI: 10.3390/antibiotics9070368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
In this study, the inhibitory potential of 3-(5-nitrofuran-2-yl)prop-2-en-1-one derivatives was evaluated against a panel of bacteria, as well as mammalian cell lines to determine their therapeutic index. In addition, we investigated the mechanism of antibiotic action of the derivatives to identify their therapeutic target. We discovered compound 2 to be an extremely potent inhibitor of Mycobacterium tuberculosis H37Rv growth (MIC: 0.031 mg/L) in vitro, performing better than the currently used first-line antituberculosis drugs such as isoniazid, rifampicin, ethambutol, and pretomanid in vitro. Furthermore, compound 3 was equipotent to pretomanid against a multidrug-resistant M. tuberculosis clinical isolate. The derivatives were selective and bactericidal towards slow-growing mycobacteria. They showed low cytotoxicity towards murine RAW 264.7 and human THP-1 cell lines, with high selectivity indices. Compound 1 effectively eliminated the intracellular mycobacteria in a mycobacteria-infected macrophage model. The derivatives were assessed for their potential to inhibit mycobacterial arylamine N-acetyltransferase (NAT) and were identified as good inhibitors of recombinant mycobacterial NAT, a novel target essential for the intracellular survival of M. tuberculosis. This study provided hits for designing new potent and selective antituberculosis leads, having mycobacterial NAT inhibition as their possible endogenous mechanisms of action.
Collapse
Affiliation(s)
- Neha Agre
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| | - Nilesh Tawari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
| | - Arundhati Maitra
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| | - Antima Gupta
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Tulika Munshi
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK;
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India; (N.A.); (N.T.)
| | - Sanjib Bhakta
- Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (A.M.); (A.G.)
| |
Collapse
|
3
|
The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 2019; 35:174. [PMID: 31673919 DOI: 10.1007/s11274-019-2755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.
Collapse
|
4
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Guy CS, Tichauer E, Kay GL, Phillips DJ, Bailey TL, Harrison J, Furze CM, Millard AD, Gibson MI, Pallen MJ, Fullam E. Identification of the anti-mycobacterial functional properties of piperidinol derivatives. Br J Pharmacol 2017; 174:2183-2193. [PMID: 28195652 PMCID: PMC5481654 DOI: 10.1111/bph.13744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose Tuberculosis (TB) remains a major global health threat and is now the leading cause of death from a single infectious agent worldwide. The current TB drug regimen is inadequate, and new anti‐tubercular agents are urgently required to be able to successfully combat the increasing prevalence of drug‐resistant TB. The purpose of this study was to investigate a piperidinol compound derivative that is highly active against the Mycobacterium tuberculosis bacillus. Experimental Approach The antibacterial properties of the piperidinol compound and its corresponding bis‐Mannich base analogue were evaluated against M. smegmatis and Gram‐negative organisms. Cytotoxicity studies were undertaken in order to determine the selectivity index for these compounds. Spontaneous resistant mutants of M. smegmatis were generated against the piperidinol and corresponding bis‐Mannich base lead derivatives and whole genome sequencing employed to determine the genetic modifications that lead to selection pressure in the presence of these compounds. Key Results The piperidinol and the bis‐Mannich base analogue were found to be selective for mycobacteria and rapidly kill this organism with a cytotoxicity selectivity index for mycobacteria of >30‐fold. Whole genome sequencing of M. smegmatis strains resistant to the lead compounds led to the identification of a number of single nucleotide polymorphisms indicating multiple targets. Conclusion and Implications Our results indicate that the piperidinol moiety represents an attractive compound class in the pursuit of novel anti‐tubercular agents. Linked Articles This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro‐organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick, Coventry, UK.,Department of Chemistry, University of Warwick, Coventry, UK
| | - Esther Tichauer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gemma L Kay
- Medical School, University of Warwick, Coventry, UK
| | | | - Trisha L Bailey
- Department of Chemistry, University of Warwick, Coventry, UK
| | - James Harrison
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.,Medical School, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
6
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
7
|
Danquah CA, Maitra A, Gibbons S, Faull J, Bhakta S. HT-SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Anti-Infective Drug Discovery. ACTA ACUST UNITED AC 2016; 40:17.8.1-17.8.12. [PMID: 26855282 DOI: 10.1002/9780471729259.mc1708s40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibiotic resistance is one of the major threats to global health and well-being. The past decade has seen an alarming rise in the evolution and spread of drug-resistant strains of pathogenic microbes. The emergence of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis and antimicrobial resistance among the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) as well as fungal pathogens (such as certain species of Candida, Aspergillus, Cryptococcus, and Trichophyton) poses a significant 21st century scientific challenge. With an extremely limited arsenal of efficacious antibiotics, techniques that can (a) identify novel antimicrobials and (b) detect antimicrobial resistance are becoming increasingly important. In this article, we illustrate the HT-SPOTi, an assay that is principally based on the growth of an organism on agar medium containing a range of different concentrations of drugs or inhibitors. The simple methodology makes this assay ideal for evaluating novel antimicrobial compounds as well as profiling an organism's antibiotic resistance profile.
Collapse
Affiliation(s)
- Cynthia A Danquah
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom.,Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom.,These authors contributed equally
| | - Arundhati Maitra
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom.,These authors contributed equally
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
| | - Jane Faull
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
8
|
Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family. Sci Rep 2015; 5:12900. [PMID: 26245863 PMCID: PMC4542470 DOI: 10.1038/srep12900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism.
Collapse
|
9
|
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171:2705-25. [PMID: 24467436 PMCID: PMC4158862 DOI: 10.1111/bph.12598] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide.
Collapse
Affiliation(s)
- E Sim
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, Oxford University, Oxford, UK
| | | | | |
Collapse
|
10
|
Evangelopoulos D, Gupta A, Lack NA, Maitra A, ten Bokum AM, Kendall S, Sim E, Bhakta S. Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:664-71. [PMID: 25443504 PMCID: PMC4266540 DOI: 10.1016/j.tube.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
MSMEG_0307 is annotated as a transcriptional regulator belonging to the AraC protein family and is located adjacent to the arylamine N-acetyltransferase (nat) gene in Mycobacterium smegmatis, in a gene cluster, conserved in most environmental mycobacterial species. In order to elucidate the function of the AraC protein from the nat operon in M. smegmatis, two conserved palindromic DNA motifs were identified using bioinformatics and tested for protein binding using electrophoretic mobility shift assays with a recombinant form of the AraC protein. We identified the formation of a DNA:AraC protein complex with one of the motifs as well as the presence of this motif in 20 loci across the whole genome of M. smegmatis, supporting the existence of an AraC controlled regulon. To characterise the effects of AraC in the regulation of the nat operon genes, as well as to gain further insight into its function, we generated a ΔaraC mutant strain where the araC gene was replaced by a hygromycin resistance marker. The level of expression of the nat and MSMEG_0308 genes was down-regulated in the ΔaraC strain when compared to the wild type strain indicating an activator effect of the AraC protein on the expression of the nat operon genes.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antima Gupta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Nathan A. Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Annemieke M.C. ten Bokum
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Sharon Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
- Corresponding author. Tel.: +44 (0)20 7631 6355 (office), +44 (0)20 7079 0799 (lab); fax: +44 (0)20 7631 6246.
| |
Collapse
|
11
|
Abuhammad A, Fullam E, Bhakta S, Russell AJ, Morris GM, Finn PW, Sim E. Exploration of piperidinols as potential antitubercular agents. Molecules 2014; 19:16274-90. [PMID: 25310152 PMCID: PMC6271891 DOI: 10.3390/molecules191016274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022] Open
Abstract
Novel drugs to treat tuberculosis are required and the identification of potential targets is important. Piperidinols have been identified as potential antimycobacterial agents (MIC < 5 μg/mL), which also inhibit mycobacterial arylamine N-acetyltransferase (NAT), an enzyme essential for mycobacterial survival inside macrophages. The NAT inhibition involves a prodrug-like mechanism in which activation leads to the formation of bioactive phenyl vinyl ketone (PVK). The PVK fragment selectively forms an adduct with the cysteine residue in the active site. Time dependent inhibition of the NAT enzyme from Mycobacterium marinum (M. marinum) demonstrates a covalent binding mechanism for all inhibitory piperidinol analogues. The structure activity relationship highlights the importance of halide substitution on the piperidinol benzene ring. The structures of the NAT enzymes from M. marinum and M. tuberculosis, although 74% identical, have different residues in their active site clefts and allow the effects of amino acid substitutions to be assessed in understanding inhibitory potency. In addition, we have used the piperidinol 3-dimensional shape and electrostatic properties to identify two additional distinct chemical scaffolds as inhibitors of NAT. While one of the scaffolds has anti-tubercular activity, both inhibit NAT but through a non-covalent mechanism.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Angela J Russell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Garrett M Morris
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Paul W Finn
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
12
|
Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Structure of arylamineN-acetyltransferase fromMycobacterium tuberculosisdetermined by cross-seeding with the homologous protein fromM. marinum: triumph over adversity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1433-46. [DOI: 10.1107/s0907444913015126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
|
13
|
Guzman JD, Evangelopoulos D, Gupta A, Birchall K, Mwaigwisya S, Saxty B, McHugh TD, Gibbons S, Malkinson J, Bhakta S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open 2013; 3:e002672. [PMID: 23794563 PMCID: PMC3693423 DOI: 10.1136/bmjopen-2013-002672] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Lead antituberculosis (anti-TB) molecules with novel mechanisms of action are urgently required to fuel the anti-TB drug discovery pipeline. The aim of this study was to validate the use of the high-throughput spot culture growth inhibition (HT-SPOTi) assay for screening libraries of compounds against Mycobacterium tuberculosis and to study the inhibitory effect of ibuprofen (IBP) and the other 2-arylpropanoic acids on the growth inhibition of M tuberculosis and other mycobacterial species. METHODS The HT-SPOTi method was validated not only with known drugs but also with a library of 47 confirmed anti-TB active compounds published in the ChEMBL database. Three over-the-counter non-steroidal anti-inflammatory drugs were also included in the screening. The 2-arylpropanoic acids, including IBP, were comprehensively evaluated against phenotypically and physiologically different strains of mycobacteria, and their cytotoxicity was determined against murine RAW264.7 macrophages. Furthermore, a comparative bioinformatic analysis was employed to propose a potential mycobacterial target. RESULTS IBP showed antitubercular properties while carprofen was the most potent among the 2-arylpropanoic class. A 3,5-dinitro-IBP derivative was found to be more potent than IBP but equally selective. Other synthetic derivatives of IBP were less active, and the free carboxylic acid of IBP seems to be essential for its anti-TB activity. IBP, carprofen and the 3,5-dinitro-IBP derivative exhibited activity against multidrug-resistant isolates and stationary phase bacilli. On the basis of the human targets of the 2-arylpropanoic analgesics, the protein initiation factor infB (Rv2839c) of M tuberculosis was proposed as a potential molecular target. CONCLUSIONS The HT-SPOTi method can be employed reliably and reproducibly to screen the antimicrobial potency of different compounds. IBP demonstrated specific antitubercular activity, while carprofen was the most selective agent among the 2-arylpropanoic class. Activity against stationary phase bacilli and multidrug-resistant isolates permits us to speculate a novel mechanism of antimycobacterial action. Further medicinal chemistry and target elucidation studies could potentially lead to new therapies against TB.
Collapse
Affiliation(s)
- Juan D Guzman
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Dimitrios Evangelopoulos
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Antima Gupta
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | - Solomon Mwaigwisya
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Barbara Saxty
- Centre for Therapeutics Discovery, MRC Technology, London, UK
| | - Timothy D McHugh
- Department of Infection, Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Simon Gibbons
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - John Malkinson
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| |
Collapse
|
14
|
Fullam E, Talbot J, Abuhammed A, Westwood I, Davies SG, Russell AJ, Sim E. Design, synthesis and structure-activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorg Med Chem Lett 2013; 23:2759-64. [PMID: 23518278 DOI: 10.1016/j.bmcl.2013.02.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The synthesis and inhibitory potencies of a novel series of 3,5-diaryl-1H-pyrazoles as specific inhibitors of prokaryotic arylamine N-acetyltransferase enzymes is described. The series is based on hit compound 1 3,5-diaryl-1H-pyrazole identified from a high-throughout screen that has been carried out previously and found to inhibit the growth of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Evangelopoulos D, Cronin N, Daviter T, Sim E, Keep NH, Bhakta S. Characterization of an oxidoreductase from the arylamine N-acetyltransferase operon in Mycobacterium smegmatis. FEBS J 2011; 278:4824-32. [PMID: 21972977 DOI: 10.1111/j.1742-4658.2011.08382.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 Å in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Edwards TE, Begley DW, Abramov A, Thompkins KB, Ferrell M, Guo WJ, Phan I, Olsen C, Napuli A, Sankaran B, Stacy R, Van Voorhis WC, Stewart LJ, Myler PJ. Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1100-5. [PMID: 21904057 PMCID: PMC3169409 DOI: 10.1107/s1744309111012541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Mycobacterium tuberculosis belongs to a large family of soil bacteria which can degrade a remarkably broad range of organic compounds and utilize them as carbon, nitrogen and energy sources. It has been proposed that a variety of mycobacteria can subsist on alternative carbon sources during latency within an infected human host, with the help of enzymes such as nitrilotriacetate monooxygenase (NTA-Mo). NTA-Mo is a member of a class of enzymes which consist of two components: A and B. While component A has monooxygenase activity and is responsible for the oxidation of the substrate, component B consumes cofactor to generate reduced flavin mononucleotide, which is required for component A activity. NTA-MoB from M. thermoresistibile, a rare but infectious close relative of M. tuberculosis which can thrive at elevated temperatures, has been expressed, purified and crystallized. The 1.6 Å resolution crystal structure of component B of NTA-Mo presented here is one of the first crystal structures determined from the organism M. thermoresistibile. The NTA-MoB crystal structure reveals a homodimer with the characteristic split-barrel motif typical of flavin reductases. Surprisingly, NTA-MoB from M. thermoresistibile contains a C-terminal tail that is highly conserved among mycobacterial orthologs and resides in the active site of the other protomer. Based on the structure, the C-terminal tail may modulate NTA-MoB activity in mycobacteria by blocking the binding of flavins and NADH.
Collapse
Affiliation(s)
- Y Zhang
- Seattle Structural Genomics Centre for Infectious Disease (SSGCID), USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abuhammad A, Lack N, Schweichler J, Staunton D, Sim RB, Sim E. Improvement of the expression and purification of Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) a potential target for novel anti-tubercular agents. Protein Expr Purif 2011; 80:246-52. [PMID: 21767648 DOI: 10.1016/j.pep.2011.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Arylamine N-acetyltransferase from Mycobacterium tuberculosis (TBNAT) has been proposed as a drug target for latent tuberculosis treatment. The enzyme is essential for the survival of the mycobacterium in macrophages. However, TBNAT has been very difficult to generate as a soluble protein. In this work we describe production of soluble recombinant TBNAT at a reasonable yield achieved by subcloning the tbnat gene with a purification His-tag into the pVLT31 plasmid, and subsequent optimisation of the induction conditions. The expression system results in soluble protein optimised upon extended (60 h) low level isopropyl β-D-1-thiogalactopyranoside level induction (100 μM) at a temperature of 15 °C. The level of TBNAT expression obtained in E. coli has been significantly improved from ∼2 mg to a final yield of up to 16 mg per litre of culture at a purity level suitable for structural studies. The molecular mass of 31310 Da was confirmed using mass spectroscopy and the oligomerisation state was determined. The stability of TBNAT in different buffer systems was investigated by thermal shift assays and sufficient protein is now available for the screening of chemical libraries for inhibitors.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | | | | | | | | | | |
Collapse
|
19
|
Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site. Protein Cell 2010; 1:384-392. [PMID: 21203950 DOI: 10.1007/s13238-010-0037-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022] Open
Abstract
Treatment of latent tuberculosis infection remains an important goal of global TB eradication. To this end, targets that are essential for intracellular survival of Mycobacterium tuberculosis are particularly attractive. Arylamine N-acetyltransferase (NAT) represents such a target as it is, along with the enzymes encoded by the associated gene cluster, essential for mycobacterial survival inside macrophages and involved in cholesterol degradation. Cholesterol is likely to be the fuel for M. tuberculosis inside macrophages. Deleting the nat gene and inhibiting the NAT enzyme prevents survival of the microorganism in macrophages and induces cell wall alterations, rendering the mycobacterium sensitive to antibiotics to which it is normally resistant. To date, NAT from M. marinum (MMNAT) is considered the best available model for NAT from M. tuberculosis (TBNAT). The enzyme catalyses the acetylation and propionylation of arylamines and hydrazines. Hydralazine is a good acetyl and propionyl acceptor for both MMNAT and TBNAT. The MMNAT structure has been solved to 2.1 Å resolution following crystallisation in the presence of hydralazine and is compared to available NAT structures. From the mode of ligand binding, features of the binding pocket can be identified, which point to a novel mechanism for the acetylation reaction that results in a 3-methyltriazolo[3,4-a]phthalazine ring compound as product.
Collapse
|
20
|
Fullam E, Kawamura A, Wilkinson H, Abuhammad A, Westwood I, Sim E. Comparison of the Arylamine N-acetyltransferase from Mycobacterium marinum and Mycobacterium tuberculosis. Protein J 2010; 28:281-93. [PMID: 19636684 DOI: 10.1007/s10930-009-9193-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Arylamine N-acetyltansferase (NAT) from Mycobacterium tuberculosis (TBNAT) is a potential drug target for anti-tubercular therapy. Recombinant TBNAT is much less soluble and is produced in lower yields than the closely related NAT from Mycobacterium marinum (MMNAT). In order to explore MMNAT as a model for TBNAT in drug discovery, we compare the two mycobacterial NAT enzymes. Two site-directed mutants of MMNAT have been prepared and characterised: MMNAT71, Tyr --> Phe and MMNAT209, Met --> Thr, in which residues within 6 A of the active-site cysteine have been replaced with the corresponding residue from TBNAT. Two chimeric proteins have also been produced in which the third domain of MMNAT has been replaced by the third domain of TBNAT and vice versa. The activity profile of the chimeric proteins suggests a role for the third domain in the evolutionary divergence of NAT between these closely related mycobacterial species.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
21
|
Westwood IM, Bhakta S, Russell AJ, Fullam E, Anderton MC, Kawamura A, Mulvaney AW, Vickers RJ, Bhowruth V, Besra GS, Lalvani A, Davies SG, Sim E. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell 2010; 1:82-95. [PMID: 21204000 PMCID: PMC4875111 DOI: 10.1007/s13238-010-0006-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023] Open
Abstract
New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules-triazoles-in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved.
Collapse
Affiliation(s)
- Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | | | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Andrew W. Mulvaney
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Richard J. Vickers
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Ajit Lalvani
- Tuberculosis Immunology Group, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Stephen G. Davies
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| |
Collapse
|
22
|
Abstract
Considering the increased concerns with controlling infectious epidemics such as tuberculosis, a global concerted effort (WHO) is now dead-lined to tackle the emergence of extensive drug resistance through identifying a novel line of therapeutics which will on the one hand shorten the course of treatment and on the other is also expected to be effective against the emerging resistant strains. Major problems with the preclinical drug screening against the uniquely slow-growing pathogen Mycobacterium tuberculosis are either found expensive, time-consuming, or require a highly complex laboratory setup. A rapid and convenient, although relatively inexpensive, method requiring very little consumption of inhibitors within a simple microbiology setup for antimycobacterial screening is thus timely. The spot-culture growth inhibition assay aims to test the biological activity of a number of newly discovered natural products and thousands of novel chemicals synthesized on the basis of basic structural and molecular biology studies. Many different classes of novel chemical entities are now independently prepared around the world by distinguished chemists on the chemical behavior of the group of molecules. To serve the purpose of antimycobacterials screening, we aim to describe a method in this chapter performed in a six-well plate format. This method can also be extended accurately to a 96-well plate format according to the necessity of the project. In addition to evaluating a range of prospective drug candidates, this method would also contribute to elucidate substrates for many putative endogenous pathways through comparing the chemical inhibition with the corresponding genetic modification.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Faculty of Science/ Institute of Structural and Molecular Biology, Birkbeck College, School of Biological and Chemical Sciences, University of London, London, UK
| | | |
Collapse
|
23
|
Ayers B, Long H, Sim E, Smellie IA, Wilkinson BL, Fairbanks AJ. Stereoselective synthesis of β-arabino glycosyl sulfones as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr Res 2009; 344:739-46. [DOI: 10.1016/j.carres.2009.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/16/2009] [Accepted: 02/03/2009] [Indexed: 11/27/2022]
|
24
|
Lack NA, Kawamura A, Fullam E, Laurieri N, Beard S, Russell AJ, Evangelopoulos D, Westwood I, Sim E. Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem J 2009; 418:369-78. [PMID: 19014350 DOI: 10.1042/bj20082011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Mycobacterium tuberculosis, the genes hsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) and nat (arylamine N-acetyltransferase) are essential for survival inside of host macrophages. These genes act as an operon and have been suggested to be involved in cholesterol metabolism. However, the role of NAT in this catabolic pathway has not been determined. In an effort to better understand the function of these proteins, we have expressed, purified and characterized TBNAT (NAT from M. tuberculosis) and HsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) from M. tuberculosis. Both proteins demonstrated remarkable heat stability with TBNAT and HsaD retaining >95% of their activity after incubation at 60 degrees C for 30 min. The first and second domains of TBNAT were demonstrated to be very important to the heat stability of the protein, as the transfer of these domains caused a dramatic reduction in the heat stability. The specific activity of TBNAT was tested against a broad range of acyl-CoA cofactors using hydralazine as a substrate. TBNAT was found to be able to utilize not just acetyl-CoA, but also n-propionyl-CoA and acetoacetyl-CoA, although at a lower rate. As propionyl-CoA is a product of cholesterol catabolism, we propose that NAT could have a role in the utilization of this important cofactor.
Collapse
Affiliation(s)
- Nathan A Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology 2008; 254:170-83. [DOI: 10.1016/j.tox.2008.08.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
26
|
Wilkinson BL, Long H, Sim E, Fairbanks AJ. Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 2008; 18:6265-7. [DOI: 10.1016/j.bmcl.2008.09.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
|
27
|
Martins M, Pluvinage B, de la Sierra-Gallay IL, Barbault F, Dairou J, Dupret JM, Rodrigues-Lima F. Functional and Structural Characterization of the Arylamine N-Acetyltransferase from the Opportunistic Pathogen Nocardia farcinica. J Mol Biol 2008; 383:549-60. [DOI: 10.1016/j.jmb.2008.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
28
|
Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: From Structure to Function. Drug Metab Rev 2008; 40:479-510. [DOI: 10.1080/03602530802186603] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Sim E, Sandy J, Evangelopoulos D, Fullam E, Bhakta S, Westwood I, Krylova A, Lack N, Noble M. Arylamine N-acetyltransferases in mycobacteria. Curr Drug Metab 2008; 9:510-9. [PMID: 18680471 PMCID: PMC2764864 DOI: 10.2174/138920008784892100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/22/2008] [Accepted: 06/06/2008] [Indexed: 11/22/2022]
Abstract
Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure.
Collapse
Affiliation(s)
- Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lack N, Lowe ED, Liu J, Eltis LD, Noble MEM, Sim E, Westwood IM. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:2-7. [PMID: 18097091 PMCID: PMC2373992 DOI: 10.1107/s1744309107065931] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/06/2007] [Indexed: 05/30/2025]
Abstract
Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon-carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 A resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors' knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.
Collapse
Affiliation(s)
- Nathan Lack
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, England
| | - Edward D. Lowe
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Martin E. M. Noble
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, England
| | - Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, England
| |
Collapse
|
31
|
Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, ten Bokum A, Besra GS, Lott JS, Stoker NG. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 2007; 65:684-99. [PMID: 17635188 PMCID: PMC1995591 DOI: 10.1111/j.1365-2958.2007.05827.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis TetR-type regulator Rv3574 has been implicated in pathogenesis as it is induced in vivo, and genome-wide essentiality studies show it is required for infection. As the gene is highly conserved in the mycobacteria, we deleted the Rv3574 orthologue in Mycobacterium smegmatis (MSMEG_6042) and used real-time quantitative polymerase chain reaction and microarray analyses to show that it represses the transcription both of itself and of a large number of genes involved in lipid metabolism. We identified a conserved motif within its own promoter (TnnAACnnGTTnnA) and showed that it binds as a dimer to 29 bp probes containing the motif. We found 16 and 31 other instances of the motif in intergenic regions of M. tuberculosis and M. smegmatis respectively. Combining the results of the microarray studies with the motif analyses, we predict that Rv3574 directly controls the expression of 83 genes in M. smegmatis, and 74 in M. tuberculosis. Many of these genes are known to be induced by growth on cholesterol in rhodococci, and palmitate in M. tuberculosis. We conclude that this regulator, designated elsewhere as kstR, controls the expression of genes used for utilizing diverse lipids as energy sources, possibly imported through the mce4 system.
Collapse
Affiliation(s)
- Sharon L Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Mike Withers
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Catherine N Soffair
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Nicole J Moreland
- Laboratory of Structural Biology and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of AucklandAuckland, New Zealand.
| | - Sudagar Gurcha
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK.
| | - Ben Sidders
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Rosangela Frita
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Annemieke ten Bokum
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineLondon WC1E 7HT, UK.
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK.
| | - J Shaun Lott
- Laboratory of Structural Biology and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of AucklandAuckland, New Zealand.
| | - Neil G Stoker
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
- For correspondence. E-mail: ; Tel. (+020) 7468 5272; Fax (+020) 7468 5306
| |
Collapse
|
32
|
Abstract
Arylamine N-acetyltransferases (NATs), known as drug- and carcinogen-metabolising enzymes, have had historic roles in cellular metabolism, carcinogenesis and pharmacogenetics, including epidemiological studies of disease susceptibility. NAT research in the past 5 years builds on that history and additionally paves the way for establishing the following new concepts in biology and opportunities in drug discovery: i) NAT polymorphisms can be used as tools in molecular anthropology to study human evolution; ii) tracing NAT protein synthesis and degradation within cells is providing insight into protein folding in cell biology; iii) studies on control of NAT gene expression may help to understand the increase in the human NAT isoenzyme, NAT1, in breast cancer; iv) a NAT homologue in mycobacteria plays an essential role in cell-wall synthesis and mycobacterial survival inside host macrophage, thus identifying a novel biochemical pathway; v) transgenic mice, with genetic modifications of all Nat genes, provide in vivo tools for drug metabolism; and vi) structures of NAT isoenzymes provide essential in silico tools for drug discovery.
Collapse
Affiliation(s)
- Edith Sim
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | |
Collapse
|
33
|
Madikane VE, Bhakta S, Russell AJ, Campbell WE, Claridge TDW, Elisha BG, Davies SG, Smith P, Sim E. Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorg Med Chem 2007; 15:3579-86. [PMID: 17368035 DOI: 10.1016/j.bmc.2007.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/02/2007] [Accepted: 02/08/2007] [Indexed: 01/11/2023]
Abstract
In this study, we show that extracts and a purified compound of Warburgia salutaris exhibit anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG Pasteur. The extracts did not inhibit growth of Escherichia coli and were not toxic to cultured mammalian macrophage cells at the concentrations at which anti-mycobacterial activity was observed. The extract and pure compound inhibited pure recombinant arylamine N-acetyltransferase (NAT), an enzyme involved in mycobacterial cell wall lipid synthesis. Moreover, neither extract nor pure compound inhibited growth of a strain of M. bovis BCG in which nat has been deleted suggesting that NAT may indeed be a target within the mycobacterial cell. The purified compound is a novel drimane sesquiterpenoid lactone, 11alpha-hydroxycinnamosmolide. These studies show that W. salutaris is a useful source of anti-tubercular compounds for further analysis and supports the hypothesis of a link between NAT inhibition and anti-mycobacterial activity.
Collapse
Affiliation(s)
- Vukani Eliya Madikane
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 2007; 104:1947-52. [PMID: 17264217 PMCID: PMC1794314 DOI: 10.1073/pnas.0605728104] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Indexed: 01/21/2023] Open
Abstract
Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacterium tuberculosis, degrades an exceptionally broad range of organic compounds. Transcriptomic analysis of cholesterol-grown RHA1 revealed a catabolic pathway predicted to proceed via 4-androstene-3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and mce4 genes in RHA1 substantiated their roles in cholesterol catabolism. Moreover, the hsaC(-) mutant accumulated 3,4-DHSA, indicating that HsaC(RHA1), formerly annotated as a biphenyl-degrading dioxygenase, catalyzes the oxygenolytic cleavage of steroid ring A. Bioinformatic analyses revealed that 51 rhodococcal genes specifically expressed during growth on cholesterol, including all predicted to specify the catabolism of rings A and B, are conserved within an 82-gene cluster in M. tuberculosis H37Rv and Mycobacterium bovis bacillus Calmette-Guérin. M. bovis bacillus Calmette-Guérin grew on cholesterol, and hsaC and kshA were up-regulated under these conditions. Heterologously produced HsaC(H37Rv) and HsaD(H37Rv) transformed 3,4-DHSA and its ring-cleaved product, respectively, with apparent specificities approximately 40-fold higher than for the corresponding biphenyl metabolites. Overall, we annotated 28 RHA1 genes and proposed physiological roles for a similar number of mycobacterial genes. During survival of M. tuberculosis in the macrophage, these genes are specifically expressed, and many appear to be essential. We have delineated a complete suite of genes necessary for microbial steroid degradation, and pathogenic mycobacteria have been shown to catabolize cholesterol. The results suggest that cholesterol metabolism is central to M. tuberculosis's unusual ability to survive in macrophages and provide insights into potential targets for novel therapeutics.
Collapse
Affiliation(s)
- Robert Van der Geize
- *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands
| | - Katherine Yam
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Thomas Heuser
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Maarten H. Wilbrink
- *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands
| | - Hirofumi Hara
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Matthew C. Anderton
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Lubbert Dijkhuizen
- *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands
| | - Julian E. Davies
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Lindsay D. Eltis
- *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands
| |
Collapse
|
35
|
Smellie IA, Bhakta S, Sim E, Fairbanks AJ. Synthesis of putative chain terminators of mycobacterial arabinan biosynthesis. Org Biomol Chem 2007; 5:2257-66. [PMID: 17609757 DOI: 10.1039/b704788f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of a variety of arabinose derivatives that have been modified at C-5 was achieved from d-arabinose. The 5-fluoro and 5-methoxy compounds were converted into the corresponding farnesyl phosphodiesters as putative chain terminators of mycobacterial arabinan biosynthesis. Biological testing of these materials revealed no effective anti-mycobacterial activity.
Collapse
Affiliation(s)
- Iain A Smellie
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, UK OX1 3TA
| | | | | | | |
Collapse
|
36
|
Ranjan S, Gundu RK, Ranjan A. MycoperonDB: a database of computationally identified operons and transcriptional units in Mycobacteria. BMC Bioinformatics 2006; 7 Suppl 5:S9. [PMID: 17254314 PMCID: PMC1764487 DOI: 10.1186/1471-2105-7-s5-s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background A key post genomics challenge is to identify how genes in an organism come together and perform physiological functions. An important first step in this direction is to identify transcriptional units, operons and regulons in a genome. Here we implement and report a strategy to computationally identify transcriptional units and operons of mycobacteria and construct a database-MycoperonDB. Description We have predicted transcriptional units and operons in mycobacteria and organized these predictions in the form of relational database called MycoperonDB. MycoperonDB database at present consists of 18053 genes organized as 8256 predicted operons and transcriptional units from five closely related species of mycobacteria. The database further provides literature links for experimentally characterized operons. All known promoters and related information is collected, analysed and stored. It provides a user friendly interface to allow a web based navigation of transcription units and operons. The web interface provides search tools to locate transcription factor binding DNA motif upstream to various genes. The reliability of operon prediction has been assessed by comparing the predicted operons with a set of known operons. Conclusion MycoperonDB is a publicly available structured relational database which has information about mycobacterial genes, transcriptional units and operons. We expect this database to assist molecular biologists/microbiologists in general, to hypothesize functional linkages between operonic genes of mycobacteria, their experimental characterization and validation. The database is freely available from our website .
Collapse
Affiliation(s)
- Sarita Ranjan
- Computational & Functional Genomics Group, Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | - Ranjit Kumar Gundu
- Bioinformatics Group, Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | - Akash Ranjan
- Computational & Functional Genomics Group, Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
- Bioinformatics Group, Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| |
Collapse
|
37
|
Suzuki H, Ohnishi Y, Horinouchi S. Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J Bacteriol 2006; 189:2155-9. [PMID: 17158669 PMCID: PMC1855759 DOI: 10.1128/jb.01708-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An arylamine N-acetyltransferase (NAT) responsible for the N acetylation of exogenous 3-amino-4-hydroxybenzoic acid in Streptomyces griseus was identified and characterized. This enzyme was distinct from other eukaryotic and bacterial NATs in that it acetylated various 2-aminophenol derivatives more effectively than it acetylated 5-aminosalicylic acid, and thus it may be involved in the metabolism of xenobiotic compounds.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
38
|
Horsman GP, Ke J, Dai S, Seah SYK, Bolin JT, Eltis LD. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway. Biochemistry 2006; 45:11071-86. [PMID: 16964968 PMCID: PMC2519953 DOI: 10.1021/bi0611098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jiyuan Ke
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Shaodong Dai
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Stephen Y. K. Seah
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Lindsay D. Eltis
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|