1
|
Lablaine A, Chamot S, Serrano M, Billaudeau C, Bornard I, Carballido-López R, Carlin F, Henriques AO, Broussolle V. A new fluorescence-based approach for direct visualization of coat formation during sporulation in Bacillus cereus. Sci Rep 2023; 13:15136. [PMID: 37704668 PMCID: PMC10499802 DOI: 10.1038/s41598-023-42143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The human pathogenic bacteria Bacillus cereus, Bacillus anthracis and the entomopathogenic Bacillus thuringiensis form spores encased in a protein coat surrounded by a balloon-like exosporium. These structures mediate spore interactions with its environment, including the host immune system, control the transit of molecules that trigger germination and thus are essential for the spore life cycle. Formation of the coat and exosporium has been traditionally visualized by transmission electronic microscopy on fixed cells. Recently, we showed that assembly of the exosporium can be directly observed in live B. cereus cells by super resolution-structured illumination microscopy (SR-SIM) using the membrane MitoTrackerGreen (MTG) dye. Here, we demonstrate that the different steps of coat formation can also be visualized by SR-SIM using MTG and SNAP-cell TMR-star dyes during B. cereus sporulation. We used these markers to characterize a subpopulation of engulfment-defective B. cereus cells that develops at a suboptimal sporulation temperature. Importantly, we predicted and confirmed that synthesis and accumulation of coat material, as well as synthesis of the σK-dependent protein BxpB, occur in cells arrested during engulfment. These results suggest that, unlike the well-studied model organism Bacillus subtilis, the activity of σK is not strictly linked to the state of forespore development in B. cereus.
Collapse
Affiliation(s)
- Armand Lablaine
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Cyrille Billaudeau
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | |
Collapse
|
2
|
Abstract
Proteins and glycoproteins that form the surface layers of the Bacillus spore assemble into semipermeable arrays that surround and protect the spore cytoplasm. Such layers, acting like molecular sieves, exclude large molecules but allow small nutrients (germinants) to penetrate. We report that CotG, a modular and abundant component of the Bacillus subtilis spore coat, controls spore permeability through its central region, formed by positively charged tandem repeats. These repeats act as spacers between the N and C termini of the protein, which are responsible for the interaction of CotG with at least one other coat protein. The deletion but not the replacement of the central repeats with differently charged repeats affects the spore resistance to lysozyme and the efficiency of germination-probably by reducing the coat permeability to external molecules. The presence of central repeats is a common feature of the CotG-like proteins present in most Bacillus species, and such a wide distribution of this protein family is suggestive of a relevant role for the structure and function of the Bacillus spore. IMPORTANCE Bacterial spores are quiescent cells extremely resistant to a variety of unphysiological conditions, including the presence of lytic enzymes. Such resistance is also due to the limited permeability of the spore surface, which does not allow lytic enzymes to reach the spore interior. This article proposes that the spore permeability in B. subtilis is mediated by CotG, a modular protein formed by a central region of repeats of positively charged amino acid acting as a "spacer" between the N and C termini. These, in turn, interact with other coat proteins, generating a protein layer whose permeability to external molecules is controlled by the distance between the N and C termini of CotG. This working model is most likely expandable to most sporeformers of the Bacillus genus, since they all have CotG-like proteins, not homologous to CotG of B. subtilis but similarly characterized by central repeats.
Collapse
|
3
|
Lee J, Dalton RA, Dennison C. Copper delivery to an endospore coat protein of Bacillus subtilis. Front Cell Dev Biol 2022; 10:916114. [PMID: 36133923 PMCID: PMC9484137 DOI: 10.3389/fcell.2022.916114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
A family of cytosolic copper (Cu) storage proteins (the Csps) bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). The presence of Csp3s in many bacteria appears inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 binds Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis. In the strain lacking BsCsp3 lower BsCotA activity is observed and is unaffected by Cu levels. BsCsp3 loaded with Cu(I) readily activates apo-BsCotA in vitro. Experiments with a high affinity Cu(I) chelator demonstrate that Cu(I) transfer from Cu(I)-BsCsp3 must occur via an associative mechanism. BsCsp3 and BsCotA are both upregulated during late sporulation. We hypothesise that BsCsp3 acquires cuprous ions in the cytosol of B. subtilis for BsCotA.
Collapse
|
4
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
5
|
Zeng J, Wang H, Dong M, Tian GB. Clostridioides difficile spore: coat assembly and formation. Emerg Microbes Infect 2022; 11:2340-2349. [PMID: 36032037 PMCID: PMC9542656 DOI: 10.1080/22221751.2022.2119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clostridioides difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing, obligate anaerobic bacterium. C. difficile infection (CDI) is the leading cause of healthcare-associated infective diarrhoea. The infection is mediated by the spore, a metabolically inactive form of C. difficile. The spore coat acts as a physical barrier to defend against chemical insults from hosts and natural environments. The composition of spore coat has already been revealed; therefore, the interactive networks of spore coat proteins and the dynamic process of coat assembly are the keys to design strategies to control and cure CDI. This review gives a brief discussion of the signal processing and transcriptional regulation of C. difficile sporulation initiation. Following the discussion, the spore formation is also introduced. Finally, this review mainly focuses on the spore coat assembly, a poorly understood process in C. difficile, and important proteins that have been studied.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
6
|
Tu Z, Dekker HL, Roseboom W, Swarge BN, Setlow P, Brul S, Kramer G. High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation. Int J Mol Sci 2021; 22:ijms22179345. [PMID: 34502250 PMCID: PMC8431406 DOI: 10.3390/ijms22179345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules (termed blue, brown, green, and yellow). Modules brown and green are upregulated during sporulation and contain proteins associated with sporulation. Module blue is negatively correlated with modules brown and green, containing ribosomal and metabolic proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green, and might also play roles during sporulation. Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Henk L. Dekker
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Bhagyashree N. Swarge
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3305, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| |
Collapse
|
7
|
Li H, Zhao L, Zhang M. Gut Microbial SNPs Induced by High-Fiber Diet Dominate Nutrition Metabolism and Environmental Adaption of Faecalibacterium prausnitzii in Obese Children. Front Microbiol 2021; 12:683714. [PMID: 34135881 PMCID: PMC8200495 DOI: 10.3389/fmicb.2021.683714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dietary intervention is effective in human health promotion through modulation of gut microbiota. Diet can cause single-nucleotide polymorphisms (SNPs) to occur in the gut microbiota, and some of these variations may lead to functional changes in human health. In this study, we performed a systematic SNP analysis based on metagenomic data collected from children with Prader–Willi syndrome (PWS, n = 17) and simple obese (SO) children (n = 19), who had better healthy conditions after receiving high-fiber diet intervention. We found that the intervention increased the SNP proportions of Faecalibacterium, Bifidobacterium, and Clostridium and decreased those of Bacteroides in all children. Besides, the PWS children had Collinsella increased and Ruminococcus decreased, whereas the SO had Blautia and Escherichia decreased. There were much more BiasSNPs in PWS than in SO (4,465 vs 303), and only 81 of them appeared in both groups, of which 78 were from Faecalibacterium prausnitzii, and 51 were nonsynonymous mutations. These nonsynonymous variations were mainly related to pathways of environmental adaptation and nutrition metabolism, particularly to carbohydrate and nucleotide metabolism. In addition, dominant strains carrying BiasSNPs in all children shifted from F. prausnitzii AF32-8AC and F. prausnitzii 942/30-2 to F. prausnitzii SSTS Bg7063 and F. prausnitzii JG BgPS064 after the dietary intervention. Furthermore, although the abundance of Bifidobacterium increased significantly by the intervention and became dominant strains responsible for nutrition metabolism, they had less BiasSNPs between the pre- and post-intervention group in comparison with Faecalibacterium. The finding of F. prausnitzii as important functional strains influenced by the intervention highlights the superiority of applying SNP analysis in studies of gut microbiota. This study provided evidence and support for the effect of dietary intervention on gut microbial SNPs, and gave some enlightenments for disease treatment.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
9
|
Freitas C, Plannic J, Isticato R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L, Ricca E, Elsholz AKW, Losick R, O. Henriques A. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol Microbiol 2020; 114:934-951. [PMID: 32592201 PMCID: PMC7821199 DOI: 10.1111/mmi.14562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.
Collapse
Affiliation(s)
- Carolina Freitas
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Present address:
Department of EcophysiologyMax‐Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch‐Str. 10MarburgD‐35043Germany
| | - Jarnaja Plannic
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- University of LjubljanaLjubljanaSlovenia
| | | | | | - Rita Zilhão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Departamento de Biologia VegetalUniversidade de LisboaLisboaPortugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | | | - Ezio Ricca
- Department of BiologyUniversity Federico IINaplesItaly
| | - Alexander K. W. Elsholz
- Biological LaboratoriesHarvard UniversityCambridgeMAUSA
- Present address:
Max Planck Unit for the Science of PathogensCharitèplatz 1Berlin10117Germany
| | | | - Adriano O. Henriques
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
10
|
Ugwuodo CJ, Nwagu TN. Stabilizing enzymes by immobilization on bacterial spores: A review of literature. Int J Biol Macromol 2020; 166:238-250. [PMID: 33115650 DOI: 10.1016/j.ijbiomac.2020.10.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The ever-increasing applications of enzymes are limited by the relatively poor performance in harsh processing conditions. As a result, there are constant innovations in immobilization protocols for improving biocatalyst activity and stability. Bacterial spores are cheap to generate and highly resistant to environmental stress. The spore core is sheathed by an inner membrane, the germ cell wall, the cortex, outer membrane, spore coat and in some species the exosporium. The spore surface is anion-rich, hydrophobic and contains several reactive groups capable of interacting and stabilizing enzyme molecules through electrostatic forces, hydrophobic interactions and covalent bonding. The probiotic nature of spores obtained from non-toxic bacterial species makes them suitable carriers for the enzyme immobilization, especially food-grade enzymes or those intended for therapeutic use. Immobilization on spores is by direct adsorption, covalent attachment or surface display during the sporulation phase. Hindrances to the immobilization on spore matrix include the production rates, operational instability, and reduced catalytic properties due to conformational changes in enzyme. This paper reviews bacterial spore as a heterofunctional support matrix gives reasons why probiotic bacillus spores are better options and the diverse technologies adopted for spore-enzyme immobilization. It further suggests directions for future use and discusses the commercialization prospects.
Collapse
|
11
|
Chen Y, Yang Y, Ji X, Zhao R, Li G, Gu Y, Shi A, Jiang W, Zhang Q. The SCIFF-Derived Ranthipeptides Participate in Quorum Sensing in Solventogenic Clostridia. Biotechnol J 2020; 15:e2000136. [PMID: 32713052 DOI: 10.1002/biot.202000136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/25/2020] [Indexed: 12/29/2022]
Abstract
Ranthipeptides, defined as radical non-α thioether-containing peptides, are a newly emerging class of natural products belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. Ranthipeptides are shown to be widespread in the bacterial kingdom, whereas heretofore their biological functions remain completely elusive. In this work, putative ranthipeptides are investigated from two solventogenic clostridia, Clostridium beijerinckii and Clostridium ljungdahlii, which are derived from the so-called six Cys in forty-five residues (SCIFF) family of precursor peptides. A series of analysis show that these two ranthipeptides participate in quorum sensing and controlling cellular metabolism. These results highlight the diverse biological functions of the ever-increasing family of RiPP natural products and showcase the potential to engineer industrially interesting organisms by manipulating their RiPP biosynthetic pathways.
Collapse
Affiliation(s)
- Yunliang Chen
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunpeng Yang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institute of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai Institutes for Biological Sciences, Shanghai, 200031, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ran Zhao
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Guoquan Li
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Gu
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Aiping Shi
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weihong Jiang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Amon JD, Yadav AK, Ramirez-Guadiana FH, Meeske AJ, Cava F, Rudner DZ. SwsB and SafA Are Required for CwlJ-Dependent Spore Germination in Bacillus subtilis. J Bacteriol 2020; 202:e00668-19. [PMID: 31871031 PMCID: PMC7043669 DOI: 10.1128/jb.00668-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
When Bacillus subtilis spores detect nutrients, they exit dormancy through the processes of germination and outgrowth. A key step in germination is the activation of two functionally redundant cell wall hydrolases (SleB and CwlJ) that degrade the specialized cortex peptidoglycan that surrounds the spore. How these enzymes are regulated remains poorly understood. To identify additional factors that affect their activity, we used transposon sequencing to screen for synthetic germination defects in spores lacking SleB or CwlJ. Other than the previously characterized protein YpeB, no additional factors were found to be specifically required for SleB activity. In contrast, our screen identified SafA and YlxY (renamed SwsB) in addition to the known factors GerQ and CotE as proteins required for CwlJ function. SafA is a member of the spore's proteinaceous coat and we show that, like GerQ and CotE, it is required for accumulation and retention of CwlJ in the dormant spore. SwsB is broadly conserved among spore formers, and we show that it is required for CwlJ to efficiently degrade the cortex during germination. Intriguingly, SwsB resembles polysaccharide deacetylases, and its putative catalytic residues are required for its role in germination. However, we find no chemical signature of its activity on the spore cortex or in vitro While the precise, mechanistic role of SwsB remains unknown, we explore and discuss potential activities.IMPORTANCE Spore formation in Bacillus subtilis has been studied for over half a century, and virtually every step in this developmental process has been characterized in molecular detail. In contrast, how spores exit dormancy remains less well understood. A key step in germination is the degradation of the specialized cell wall surrounding the spore called the cortex. Two enzymes (SleB and CwlJ) specifically target this protective layer, but how they are regulated and whether additional factors promote their activity are unknown. Here, we identified the coat protein SafA and a conserved but uncharacterized protein YlxY as additional factors required for CwlJ-dependent degradation of the cortex. Our analysis provides a more complete picture of this essential step in the exit from dormancy.
Collapse
Affiliation(s)
- Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | | - Alexander J Meeske
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol 2020; 104:2319-2331. [PMID: 31989224 PMCID: PMC7223921 DOI: 10.1007/s00253-020-10348-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis is a widely distributed aerobic Gram-positive species of bacteria. As a tool in the lab, it has the advantages of nonpathogenicity and limited likelihood of becoming drug resistant. It is a probiotic strain that can be directly used in humans and animals. It can be induced to produce spores under nutrient deficiency or other adverse conditions. B. subtilis spores have unique physical, chemical, and biochemical characteristics. Expression of heterologous antigens or proteins on the surface of B. subtilis spores has been successfully performed for over a decade. As an update and supplement to previously published research, this paper reviews the latest research on spore surface display technology using B. subtilis. We have mainly focused on the regulation of spore coat protein expression, display and application of exogenous proteins, and identification of developing research areas of spore surface display technology.
Collapse
|
14
|
Isticato R, Lanzilli M, Petrillo C, Donadio G, Baccigalupi L, Ricca E. Bacillus subtilisbuilds structurally and functionally different spores in response to the temperature of growth. Environ Microbiol 2019; 22:170-182. [DOI: 10.1111/1462-2920.14835] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Rachele Isticato
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Mariamichela Lanzilli
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Claudia Petrillo
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Giuliana Donadio
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical BiotechnologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| | - Ezio Ricca
- Department of BiologyFederico II University of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 80126 Naples Italy
| |
Collapse
|
15
|
Aronson A. Regulation of expression of a select group of Bacillus anthracis spore coat proteins. FEMS Microbiol Lett 2019; 365:4942285. [PMID: 29562329 DOI: 10.1093/femsle/fny063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
The spore coat of Bacilli is a relatively complex structure comprised of about 70 species of proteins in 2 or 3 layers. While some are involved in assembly or protection, the regulation of many are not well defined so lacZ transcriptional fusions were constructed to six Bacillus anthracis spore coat genes in order to gain insight into their possible functions. The genes were selected on the basis of the location of the encoded proteins within the coat and distribution among spore forming species. Conditions tested were temperature and media either as solid or liquid. The most extensive differences were for the relatively well expressed fusions to the cotH and cotM genes, which were greatest at 30°C on plates of a nutrient rich medium. The cotJ operon was moderately expressed under all conditions although somewhat higher on enriched plates at 30°C. Cot S was low under all conditions except for a substantial increase in biofilm medium. Cot∝ and cotF were essentially invariant with a somewhat greater expression in the more enriched medium. The capacity of a subset of coat genes to respond to various conditions reflects a flexibility in spore coat structure that may be necessary for adaptation to environmental challenges. This could account, at least in part, for the complexity of this structure.
Collapse
Affiliation(s)
- Arthur Aronson
- Department of Biological Sciences, Purdue University, 915 W. State St, West Lafayette 47907, USA
| |
Collapse
|
16
|
Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol Microbiol 2019; 111:825-843. [PMID: 30582883 DOI: 10.1111/mmi.14194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.
Collapse
Affiliation(s)
- Bentley Shuster
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Xiaoyu Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Nina Maryn
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Sally Buttar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adriana N Gonzalez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Tsutomu Sato
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
17
|
Nunes F, Fernandes C, Freitas C, Marini E, Serrano M, Moran CP, Eichenberger P, Henriques AO. SpoVID functions as a non-competitive hub that connects the modules for assembly of the inner and outer spore coat layers in Bacillus subtilis. Mol Microbiol 2018; 110:576-595. [PMID: 30168214 PMCID: PMC6282716 DOI: 10.1111/mmi.14116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/20/2023]
Abstract
During sporulation in Bacillus subtilis, a group of mother cell‐specific proteins guides the assembly of the coat, a multiprotein structure that protects the spore and influences many of its environmental interactions. SafA and CotE behave as party hubs, governing assembly of the inner and outer coat layers. Targeting of coat proteins to the developing spore is followed by encasement. Encasement by SafA and CotE requires E, a region of 11 amino acids in the encasement protein SpoVID, with which CotE interacts directly. Here, we identified two single alanine substitutions in E that prevent binding of SafA, but not of CotE, to SpoVID, and block encasement. The substitutions result in the accumulation of SafA, CotE and their dependent proteins at the mother cell proximal spore pole, phenocopying a spoVID null mutant and suggesting that mislocalized SafA acts as an attractor for the rest of the coat. The requirement for E in SafA binding is bypassed by a peptide with the sequence of E provided in trans. We suggest that E allows binding of SafA to a second region in SpoVID, enabling CotE to interact with E and SpoVID to function as a non‐competitive hub during spore encasement.
Collapse
Affiliation(s)
- Filipa Nunes
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Fernandes
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carolina Freitas
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Eleonora Marini
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mónica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Charles P Moran
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Adriano O Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Zhou P, Chen Y, Lu Q, Qin H, Ou H, He B, Ye J. Cellular metabolism network of Bacillus thuringiensis related to erythromycin stress and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:328-341. [PMID: 29857237 DOI: 10.1016/j.ecoenv.2018.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.
Collapse
Affiliation(s)
- Pulin Zhou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ya Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qiying Lu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, Guangdong, China
| | - Huaming Qin
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huase Ou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoyan He
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
19
|
Autoregulation of SafA Assembly through Recruitment of a Protein Cross-Linking Enzyme. J Bacteriol 2018; 200:JB.00066-18. [PMID: 29712873 DOI: 10.1128/jb.00066-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
The coat of Bacillus subtilis spores is a multiprotein protective structure that also arbitrates many of the environmental interactions of the spore. The coat assembles around the cortex peptidoglycan layer and is differentiated into an inner and an outer layer and a crust. SafA governs assembly of the inner coat, whereas CotE drives outer coat assembly. SafA localizes to the cortex-coat interface. Both SafA and its short form C30 are substrates for Tgl, a coat-associated transglutaminase that cross-links proteins through ε-(γ-glutamyl)lysyl isopeptide bonds. We show that SafA and C30 are distributed between the coat and cortex layers. The deletion of tgl increases the extractability of SafA, mainly from the cortex. Tgl itself is mostly located in the inner coat and cortex. The localization of Tgl-cyan fluorescent protein (Tgl-CFP) is strongly, but not exclusively, dependent on safA However, the association of Tgl with the cortex requires safA Together, our results suggest an assembly pathway in which Tgl is first recruited to the forming spore in a manner that is only partially dependent on SafA and then is drafted to the cortex by SafA. Tgl, in turn, promotes the conversion of coat- and cortex-associated SafA into forms that resist extraction, possibly by catalyzing the cross-linking of SafA to other coat proteins, to the cortex, and/or to cortex-associated proteins. Therefore, the final assembly state of SafA relies on an autoregulatory pathway that requires the subcellular localization of a protein cross-linking enzyme. Tgl most likely exerts a "spotwelding" activity, cross-linking preformed complexes in the cortex and inner coat layers of spores.IMPORTANCE In this work, we show how two proteins work together to determine their subcellular location within the coat of bacterial endospores. Bacillus subtilis endospores are surrounded by a multilayer protein coat composed of over 80 proteins, which surrounds an underlying peptidoglycan layer (the spore cortex) protecting it from lytic enzymes. How specific coat proteins are targeted to specific layers of the coat is not well understood. We found that the protein SafA recruits a protein-cross-linking enzyme (a transglutaminase) to the cortex and inner layers of the coat, where both are cemented, by cross-linking, into macromolecular complexes.
Collapse
|
20
|
Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins. Microbiol Res 2017; 204:72-80. [PMID: 28870294 DOI: 10.1016/j.micres.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis.
Collapse
|
21
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
22
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
23
|
Abhyankar WR, Kamphorst K, Swarge BN, van Veen H, van der Wel NN, Brul S, de Koster CG, de Koning LJ. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores. Front Microbiol 2016; 7:1636. [PMID: 27790212 PMCID: PMC5061772 DOI: 10.3389/fmicb.2016.01636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/20/2022] Open
Abstract
Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and assembly. Corroborating the proteomic analyses, electron microscopy analyses show a significantly thinner outer coat layer of the spores cultured on the solid agar medium.
Collapse
Affiliation(s)
- Wishwas R Abhyankar
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Kiki Kamphorst
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Bhagyashree N Swarge
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Henk van Veen
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center Amsterdam, Netherlands
| | - Nicole N van der Wel
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Chris G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Leo J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
24
|
Donadio G, Lanzilli M, Sirec T, Ricca E, Isticato R. Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2016; 15:153. [PMID: 27609116 PMCID: PMC5016992 DOI: 10.1186/s12934-016-0551-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. RESULTS We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. CONCLUSIONS Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | | | - Teja Sirec
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL UK
| | - Ezio Ricca
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| |
Collapse
|
25
|
Abstract
In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.
Collapse
|
26
|
Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy. J Struct Biol 2016; 195:245-251. [DOI: 10.1016/j.jsb.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
|
27
|
CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli. J Bacteriol 2016; 198:1513-20. [PMID: 26953338 DOI: 10.1128/jb.00023-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central "modular" region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis.
Collapse
|
28
|
Headd B, Bradford SA. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. WATER RESEARCH 2016; 90:185-202. [PMID: 26734779 DOI: 10.1016/j.watres.2015.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 05/06/2023]
Abstract
Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA
| | - Scott A Bradford
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA.
| |
Collapse
|
29
|
Liu H, Krajcikova D, Wang N, Zhang Z, Wang H, Barak I, Tang J. Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy. J Phys Chem B 2016; 120:1041-7. [DOI: 10.1021/acs.jpcb.5b11344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huiqing Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daniela Krajcikova
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, Bratislava 845 51, Slovakia
| | - Nan Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhe Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongda Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Imrich Barak
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, Bratislava 845 51, Slovakia
| | - Jilin Tang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
30
|
Chen H, Zhang T, Jia J, Vastermark A, Tian R, Ni Z, Chen Z, Chen K, Yang S. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. ACTA ACUST UNITED AC 2015; 42:1439-48. [DOI: 10.1007/s10295-015-1676-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Esterases expressed in microbial hosts are commercially valuable, but their applications are limited due to high costs of production and harsh industrial processes involved. In this study, the esterase-DSM (from Clostridium thermocellum) was expressed and successfully displayed on the spore surface, and the spore-associated esterase was confirmed by western blot analysis and activity measurements. The optimal temperature and pH of spore surface-displayed DSM was 60 and 8.5 °C, respectively. It also demonstrates a broad temperature and pH optimum in the range of 50–70, 7–9.5 °C. The spore surface-displayed esterase-DSM retained 78, 68 % of its original activity after 5 h incubation at 60 and 70 °C, respectively, which was twofold greater activity than that of the purified DSM. The recombinant spores has high activity and stability in DMSO, which was 49 % higher than the retained activity of the purified DSM in DMSO (20 % v/v), and retained 65.2 % of activity after 7 h of incubation in DMSO (20 % v/v). However, the recombinant spores could retain 77 % activity after 3 rounds of recycling. These results suggest that enzyme displayed on the surface of the Bacillus subtilis spore could serve as an effective approach for enzyme immobilization.
Collapse
Affiliation(s)
- Huayou Chen
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
- grid.9227.e 0000000119573309 National Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 10090 Beijing China
- grid.266100.3 0000000121074242 Division of Biological Sciences University of California at San Diego 92093-0116 La Jolla CA USA
| | - Tianxi Zhang
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Jinru Jia
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Ake Vastermark
- grid.266100.3 0000000121074242 Division of Biological Sciences University of California at San Diego 92093-0116 La Jolla CA USA
| | - Rui Tian
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Zhong Ni
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Zhi Chen
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Keping Chen
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| | - Shengli Yang
- grid.440785.a 000000010743511X Institute of Life Sciences Jiangsu University 212013 Zhenjiang Jiangsu Province China
| |
Collapse
|
31
|
The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat. J Bacteriol 2015; 198:276-82. [PMID: 26503850 DOI: 10.1128/jb.00447-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/15/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid. The present study reveals that a B. cereus spore coat protein, CotB1, which carried a C-terminal zwitterionic sequence, is essential for biosilicification. Our results provide the first insight into mechanisms required for biosilicification in prokaryotes.
Collapse
|
32
|
Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Appl Environ Microbiol 2015; 82:232-43. [PMID: 26497467 DOI: 10.1128/aem.02626-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.
Collapse
|
33
|
Isticato R, Sirec T, Vecchione S, Crispino A, Saggese A, Baccigalupi L, Notomista E, Driks A, Ricca E. The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis. PLoS One 2015; 10:e0141040. [PMID: 26484546 PMCID: PMC4618286 DOI: 10.1371/journal.pone.0141040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction.
Collapse
Affiliation(s)
| | - Teja Sirec
- Department of Biology, Federico II University, Naples, Italy
| | | | - Anna Crispino
- Department of Biology, Federico II University, Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University, Naples, Italy
| | | | | | - Adam Driks
- Department of Microbiology and Immunology, Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, IL, United States of America
| | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
- * E-mail:
| |
Collapse
|
34
|
Liu H, Krajcikova D, Zhang Z, Wang H, Barak I, Tang J. Investigating interactions of the Bacillus subtilis spore coat proteins CotY and CotZ using single molecule force spectroscopy. J Struct Biol 2015; 192:14-20. [DOI: 10.1016/j.jsb.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/30/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
35
|
Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 2015; 19:799-808. [DOI: 10.1007/s00792-015-0755-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
|
36
|
Jiang S, Wan Q, Krajcikova D, Tang J, Tzokov SB, Barak I, Bullough PA. Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat. Mol Microbiol 2015; 97:347-59. [PMID: 25872412 PMCID: PMC4950064 DOI: 10.1111/mmi.13030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 01/03/2023]
Abstract
Bacterial spores (endospores), such as those of the pathogens Clostridium difficile and Bacillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. Bacillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B. subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in Escherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes.
Collapse
Affiliation(s)
- Shuo Jiang
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Qiang Wan
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Daniela Krajcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Svetomir B Tzokov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Imrich Barak
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Per A Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
37
|
Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis. PLoS Genet 2015; 11:e1005104. [PMID: 25835496 PMCID: PMC4383634 DOI: 10.1371/journal.pgen.1005104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. Precise temporal and cell-type specific regulation of gene expression is required for development of differentiated cells even in simple organisms. Endospore development by the bacterium Bacillus subtilis involves only two types of differentiated cells, a forespore that develops into the endospore, and a mother cell that nurtures the developing endospore. During development temporal and cell-type specific regulation of gene expression is controlled by transcription factors called sigma factors (σ). An anti-sigma factor known as CsfB binds to σG to prevent its premature activity in the forespore. We found that CsfB is also expressed in the mother cell where it blocks ectopic activity of σG, and blocks the activity σE to allow σK to take over control of gene expression during the final stages of development. Our finding that CsfB directly blocks σE activity also explains how CsfB plays a role in preventing ectopic activity of σE in the forespore. Remarkably, each of the major roles of CsfB, (i.e., control of ectopic σG and σE activities, and the temporal limitation of σE activity) is also accomplished by redundant regulatory processes. This redundancy reinforces control of key regulatory steps to insure reliability and stability of the developmental process.
Collapse
|
38
|
Plomp M, Carroll AM, Setlow P, Malkin AJ. Architecture and assembly of the Bacillus subtilis spore coat. PLoS One 2014; 9:e108560. [PMID: 25259857 PMCID: PMC4178626 DOI: 10.1371/journal.pone.0108560] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.
Collapse
Affiliation(s)
- Marco Plomp
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Alicia Monroe Carroll
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (PS); (AJM)
| | - Alexander J. Malkin
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail: (PS); (AJM)
| |
Collapse
|
39
|
Saggese A, Scamardella V, Sirec T, Cangiano G, Isticato R, Pane F, Amoresano A, Ricca E, Baccigalupi L. Antagonistic role of CotG and CotH on spore germination and coat formation in Bacillus subtilis. PLoS One 2014; 9:e104900. [PMID: 25115591 PMCID: PMC4130616 DOI: 10.1371/journal.pone.0104900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 11/26/2022] Open
Abstract
Spore formers are bacteria able to survive harsh environmental conditions by differentiating a specialized, highly resistant spore. In Bacillus subtilis, the model system for spore formers, the recently discovered crust and the proteinaceous coat are the external layers that surround the spore and contribute to its survival. The coat is formed by about seventy different proteins assembled and organized into three layers by the action of a subset of regulatory proteins, referred to as morphogenetic factors. CotH is a morphogenetic factor needed for the development of spores able to germinate efficiently and involved in the assembly of nine outer coat proteins, including CotG. Here we report that CotG has negative effects on spore germination and on the assembly of at least three outer coat proteins. Such negative action is exerted only in mutants lacking CotH, thus suggesting an antagonistic effect of the two proteins, with CotH counteracting the negative role of CotG.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, Naples, Italy
| | | | - Teja Sirec
- Department of Biology, Federico II University of Naples, Naples, Italy
| | | | - Rachele Isticato
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Francesca Pane
- Department of Chemistry, Federico II University of Naples, Naples, Italy
| | - Angela Amoresano
- Department of Chemistry, Federico II University of Naples, Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Naples, Italy
| | | |
Collapse
|
40
|
Manetsberger J, Hall EAH, Christie G. BMQ_0737 encodes a novel protein crucial to the integrity of the outermost layers of Bacillus megaterium QM B1551 spores. FEMS Microbiol Lett 2014; 358:162-9. [PMID: 24974944 DOI: 10.1111/1574-6968.12520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022] Open
Abstract
Bioinformatic and electron microscopy analyses indicate that the composition of the B. megaterium QM B1551 spore coat is likely to differ substantially from other Bacillus species. We report here on the identification and characterisation of novel B. megaterium proteins that appear to be abundant in the spore coat. All three proteins, encoded by loci BMQ_0737, BMQ_3035 and BMQ_4051, were identified by proteomic analysis of alkaline detergent extracts from mature spores. Putative spore coat proteins were characterised by transcriptional, reporter-fusion and mutagenesis analyses supported by fluorescence and transmission electron microscopy. These analyses revealed that BMQ_0737 is a novel morphogenetic protein that is required for the correct assembly of the B. megaterium outer spore coat and exosporium, both of which are structurally compromised or missing in BMQ_0737 null mutant spores.
Collapse
Affiliation(s)
- Julia Manetsberger
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
41
|
Establishment of an efficient transformation protocol and its application in marine-derived Bacillus strain. SCIENCE CHINA-LIFE SCIENCES 2014; 57:627-35. [PMID: 24771061 DOI: 10.1007/s11427-014-4632-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 12/31/2022]
Abstract
Marine-derived Bacillus strains have been proved to be a very promising source for natural product leads. However, transformation of environmental strains is much more difficult than that of domesticated strains. Here, we report the development of an efficient and robust electroporation-based transformation system for marine-derived Bacillus marinus B-9987, which is a macrolactin antibiotics producer and a very promising biological control agent against fungal plant diseases. The transformation efficiency was greatly enhanced 10(3)-fold by using unmethylated plasmid to bypass modification-restriction barrier, and using glycine betaine to protect cells from electrical damages during electroporation. Addition of HEPES and 2 mmol L(-1) MgCl2 further improved the efficiency by additional 2-fold, with a maximum value of 7.1×10(4) cfu/μg pHT3101. To demonstrate the feasibility and efficiency of the protocol, a green fluorescent protein reporter system was constructed; furthermore, phosphopantetheinyl transferase gene sfp, which is essential to the biosynthesis of polyketides and nonribosomal peptides, was overexpressed in B-9987, leading to increased production of macrolactin A by about 1.6-fold. In addition, this protocol is also applicable to marine-derived Bacillus licheniforms EI-34-6, indicating it could be a reference for other undomesticated Bacillus strains. To our knowledge, this is the first report regarding the transformation of marine-derived Bacillus strain.
Collapse
|
42
|
Abhyankar W, Pandey R, Ter Beek A, Brul S, de Koning LJ, de Koster CG. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol 2014; 45:54-62. [PMID: 25481062 DOI: 10.1016/j.fm.2014.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rachna Pandey
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Ter Beek
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Li Y, Jin K, Ghosh S, Devarakonda P, Carlson K, Davis A, Stewart KAV, Cammett E, Pelczar Rossi P, Setlow B, Lu M, Setlow P, Hao B. Structural and functional analysis of the GerD spore germination protein of Bacillus species. J Mol Biol 2014; 426:1995-2008. [PMID: 24530795 DOI: 10.1016/j.jmb.2014.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022]
Abstract
Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activation of downstream germination events. The 121-residue core polypeptide of GerD (GerD⁶⁰⁻¹⁸⁰) from Geobacillus stearothermophilus forms a stable α-helical trimer in aqueous solution. The 2.3-Å-resolution crystal structure of the trimer reveals a neatly twisted superhelical rope, with unusual supercoiling induced by parallel triple-helix interactions. The overall geometry comprises three interleaved hydrophobic screws of interacting helices linked by short turns that have not been seen before. Using complementation analysis in a series of Bacillus subtilis gerD mutants, we demonstrated that alterations in the GerD trimer structure have profound effects on nutrient germination. This important structure-function relationship of trimeric GerD is supported by our identification of a dominant negative gerD mutation in B. subtilis. These results and those of others lead us to propose that GerD mediates clustering of germination proteins in the inner membrane of dormant spores and thus promotes the rapid and cooperative germination response to nutrients.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Kai Jin
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Sonali Ghosh
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Parvathimadhavi Devarakonda
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Kristina Carlson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Andrew Davis
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Kerry-Ann V Stewart
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Elizabeth Cammett
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Patricia Pelczar Rossi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Barbara Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305, USA.
| |
Collapse
|
44
|
Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium. Arch Microbiol 2013; 196:79-85. [PMID: 24346000 DOI: 10.1007/s00203-013-0946-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.
Collapse
|
45
|
Nguyen QA, Schumann W. Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expr Purif 2013; 95:67-76. [PMID: 24326192 DOI: 10.1016/j.pep.2013.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023]
Abstract
The method of surface display allows the fusion of passenger proteins to a carrier protein displayed on the outside of bioparticles such as spores. Here, we used spores of Bacillus subtilis, the outer surface proteins CotB, CotC, and CotG as carrier and the amyQ-encoded α-amylase and GFPuv as passenger proteins. The different translational fusions were fused to two different IPTG-inducible promoters, and the regulated expression level of both passenger proteins were measured in relation to the inducer concentration added to sporulating cells. It turned out that the amount of fusion protein on the outside of spores was dependent on the amount of IPTG added, but the optimal amount of inducer varied depending on the carrier and the passenger proteins. These experiments demonstrate that a regulatable expression of passenger proteins on the surface of spores is possible. This will help to adjust the amount of any passenger protein to that needed for specific purposes.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology, University of Science, Vietnam National University, HCMC, Viet Nam
| | - Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
46
|
Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, Chen K. Surface Display of Human Growth Hormone on Bacillus subtilis Spores for Oral Administration. Curr Microbiol 2013; 68:463-71. [DOI: 10.1007/s00284-013-0500-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
47
|
Qin H, Driks A. Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure. BMC Evol Biol 2013; 13:261. [PMID: 24283940 PMCID: PMC4219348 DOI: 10.1186/1471-2148-13-261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacillus subtilis-group and the Bacillus cereus-group are two well-studied groups of species in the genus Bacillus. Bacteria in this genus can produce a highly resistant cell type, the spore, which is encased in a complex protective protein shell called the coat. Spores in the B. cereus-group contain an additional outer layer, the exosporium, which encircles the coat. The coat in B. subtilis spores possesses inner and outer layers. The aim of this study is to investigate whether differences in the spore structures influenced the divergence of the coat protein genes during the evolution of these two Bacillus species groups. RESULTS We designed and implemented a computational framework to compare the evolutionary histories of coat proteins. We curated a list of B. subtilis coat proteins and identified their orthologs in 11 Bacillus species based on phylogenetic congruence. Phylogenetic profiles of these coat proteins show that they can be divided into conserved and labile ones. Coat proteins comprising the B. subtilis inner coat are significantly more conserved than those comprising the outer coat. We then performed genome-wide comparisons of the nonsynonymous/synonymous substitution rate ratio, dN/dS, and found contrasting patterns: Coat proteins have significantly higher dN/dS in the B. subtilis-group genomes, but not in the B. cereus-group genomes. We further corroborated this contrast by examining changes of dN/dS within gene trees, and found that some coat protein gene trees have significantly different dN/dS between the B subtilis-clade and the B. cereus-clade. CONCLUSIONS Coat proteins in the B. subtilis- and B. cereus-group species are under contrasting selective pressures. We speculate that the absence of the exosporium in the B. subtilis spore coat effectively lifted a structural constraint that has led to relaxed negative selection pressure on the outer coat.
Collapse
Affiliation(s)
- Hong Qin
- Department of Biology, Spelman College, Atlanta, GA 30314, USA.
| | | |
Collapse
|
48
|
Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2013; 12:98. [PMID: 24168229 PMCID: PMC3816304 DOI: 10.1186/1475-2859-12-98] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal infections are a major global health problem and it is generally accepted that mucosal vaccination strategies, able to block infection at their entry site, would be preferable with respect to other prevention approaches. However, there are still relatively few mucosal vaccines available, mainly because of the lack of efficient delivery systems and of mucosal adjuvants. Recombinant bacterial spores displaying a heterologous antigen have been shown to induce protective immune responses and, therefore, proposed as a mucosal delivery system. A non-recombinant approach has been recently developed and tested to display antigens and enzymes. RESULTS We report that the binding subunit of the heat-labile toxin (LTB) of Escherichia coli efficiently adsorbed on the surface of Bacillus subtilis spores. When nasally administered to groups of mice, spore-adsorbed LTB was able to induce a specific immune response with the production of serum IgG, fecal sIgA and of IFN-γ in spleen and mesenteric lymph nodes (MLN) of the immunized animals. Dot blotting experiments showed that the non-recombinant approach was more efficient than the recombinant system in displaying LTB and that the efficiency of display could be further increased by using mutant spores with an altered surface. In addition, immunofluorescence microscopy experiments showed that only when displayed on the spore surface by the non-recombinant approach LTB was found in its native, pentameric form. CONCLUSION Our results indicate that non-recombinant spores displaying LTB pentamers can be administered by the nasal route to induce a Th1-biased, specific immune response. Mutant spores with an altered coat are more efficient than wild type spores in adsorbing the antigen, allowing the use of a reduced number of spores in immunization procedures. Efficiency of display, ability to display the native form of the antigen and to induce a specific immune response propose this non-recombinant delivery system as a powerful mucosal vaccine delivery approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy.
| |
Collapse
|
49
|
Isticato R, Sirec T, Giglio R, Baccigalupi L, Rusciano G, Pesce G, Zito G, Sasso A, De Felice M, Ricca E. Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH. PLoS One 2013; 8:e74949. [PMID: 24086406 PMCID: PMC3785510 DOI: 10.1371/journal.pone.0074949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial spores are surrounded by the coat, a multilayered shell that contributes in protecting the genome during stress conditions. In Bacillus subtilis, the model organism for spore formers, the coat is composed by about seventy different proteins, organized into four layers by the action of several regulatory proteins. A major component of this regulatory network, CotE, is needed to assemble the outer coat and develop spores fully resistant to lysozyme and able to germinate efficiently. Another regulator, CotH, is controlled by CotE and is present in low amounts both during sporulation and in mature spores. In spite of this CotH controls the assembly of at least nine outer coat proteins and cooperates with CotE in producing fully resistant and efficiently germinating spores. In order to improve our understanding of CotH role in spore formation, we over-produced CotH by placing its coding region under the control of a promoter stronger than its own promoter but with a similar timing of activity during sporulation. Over-production of CotH in an otherwise wild type strain did not cause any major effect, whereas in a cotE null background a partial recovery of the phenotypes associated to the cotE null mutation was observed. Western blot, fluorescence microscopy and Surface-Enhanced Raman Scattering spectroscopy data indicate that, in the absence of CotE, over-production of CotH allowed the formation of spores overall resembling wild type spores and carrying in their coat some CotE-/CotH-dependant proteins. Our results suggest that the B. subtilis spore differentiation programme is flexible, and that an increase in the amount of a regulatory protein can replace a missing partner and partially substitute its function in the assembly of the spore coat.
Collapse
Affiliation(s)
| | - Teja Sirec
- Department of Biology, Federico II University, Naples, Italy
| | - Rosa Giglio
- Department of Biology, Federico II University, Naples, Italy
| | | | - Giulia Rusciano
- Department of Physics, Federico II University, Naples, Italy
| | - Giuseppe Pesce
- Department of Physics, Federico II University, Naples, Italy
| | - Gianluigi Zito
- Department of Physics, Federico II University, Naples, Italy
| | - Antonio Sasso
- Department of Physics, Federico II University, Naples, Italy
| | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
- * E-mail:
| |
Collapse
|
50
|
Upadhyayula S, Lam S, Ha A, Malik-Chaudhry HK, Vullev VI. Dynamic staining of Bacillus endospores with Thioflavin T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:499-502. [PMID: 23365938 DOI: 10.1109/embc.2012.6345977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rapid detection and identification of endospores presents a range of complex challenges. Dynamic staining approach, developed in our lab, utilizes the time-course fluorescence enhancement of an amyloid-staining dye, Thioflavin T (ThT), after mixing with intact endospores. We examined the kinetics of staining Bacillus atrophaeus and Bacillus thuringiensis endospores, and the rates of staining were different for the two bacilli when intact endospores were treated with ThT. This finding demonstrates an avenue for attaining information about the sporulated bacterial species without lysing, germinating or other pretreatment steps.
Collapse
Affiliation(s)
- Srigokul Upadhyayula
- Department of Biochemistry, Department of Bioengineering and Center for Bioengineering Research, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|