1
|
Manikandan R, Rajagunalan S, Malmarugan S, Gupta C. First report on whole genome sequencing and comparative genomics of Salmonella enterica serovar Abortusequi isolated from Donkey in India. Sci Rep 2024; 14:23455. [PMID: 39379477 PMCID: PMC11461527 DOI: 10.1038/s41598-024-73904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi) is a leading cause of abortion in equines that hinders the rapid growth of equine industry. S. Abortusequi infection in equids has re-emerged over last ten years. In the present study, S. Abortusequi was isolated and characterized from donkeys during an abortion storm in the southern peninsular region of India. Further, whole genome sequencing and phylogenomic analysis revealed that the present isolate was clustered among S. Abortusequi clade. The core genome MLST (cgMLST) analysis based on hierarchical clustering and single nucleotide polymorphism (SNP) core-genome dendrogram of the present isolate against 10 S. Abortusequi isolates revealed that the present isolate established a distinct clade compared to all previously reported isolates. A comparison of cgMLST and SNP analyses revealed the same clustering concordance between isolates. In addition, comparative genomics and phylogenetic analysis was carried out with six S. Abortusequi serovars showed a higher number of core genes than accessory genes. Further, comparative analysis of phenotype and genotype antimicrobial resistance revealed a concordance of 32% and discordance of 68% respectively.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
- Department of Veterinary Microbiology, Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
| | - Sithanandam Rajagunalan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Shanmugasamy Malmarugan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Chhavi Gupta
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| |
Collapse
|
2
|
de Almeida OGG, Bertozzi BG, de Oliveira Rocha L, von Hertwig AM, Arroyo DMD, de Martinis ECP, Nascimento MS. Genomic-wide analysis of Salmonella enterica strains isolated from peanuts in Brazil. Int J Food Microbiol 2024; 420:110767. [PMID: 38820989 DOI: 10.1016/j.ijfoodmicro.2024.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, Brazil
| | - Bruno Gerfi Bertozzi
- Departamento de Ciência e Nutrição de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Liliana de Oliveira Rocha
- Departamento de Ciência e Nutrição de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Aline Morgan von Hertwig
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Diana Mara Dias Arroyo
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Elaine Cristina Pereira de Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, Brazil
| | - Maristela Silva Nascimento
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.
| |
Collapse
|
3
|
Aroca Molina KJ, Gutiérrez SJ, Benítez-Campo N, Correa A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024; 12:1116. [PMID: 38930498 PMCID: PMC11205572 DOI: 10.3390/microorganisms12061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.
Collapse
Affiliation(s)
- Kelly J. Aroca Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Sonia Jakeline Gutiérrez
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Neyla Benítez-Campo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Adriana Correa
- Department of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
4
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Bodilis J, Simenel O, Michalet S, Brothier E, Meyer T, Favre-Bonté S, Nazaret S. HME, NFE, and HAE-1 efflux pumps in Gram-negative bacteria: a comprehensive phylogenetic and ecological approach. ISME COMMUNICATIONS 2024; 4:ycad018. [PMID: 38371394 PMCID: PMC10872679 DOI: 10.1093/ismeco/ycad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
The three primary resistance-nodulation-cell division (RND) efflux pump families (heavy metal efflux [HME], nodulation factor exporter [NFE], and hydrophobe/amphiphile efflux-1 [HAE-1]) are almost exclusively found in Gram-negative bacteria and play a major role in resistance against metals and bacterial biocides, including antibiotics. Despite their significant societal interest, their evolutionary history and environmental functions are poorly understood. Here, we conducted a comprehensive phylogenetic and ecological study of the RND permease, the subunit responsible for the substrate specificity of these efflux pumps. From 920 representative genomes of Gram-negative bacteria, we identified 6205 genes encoding RND permeases with an average of 6.7 genes per genome. The HME family, which is involved in metal resistance, corresponds to a single clade (21.8% of all RND pumps), but the HAE-1 and NFE families had overlapping distributions among clades. We propose to restrict the HAE-1 family to two phylogenetic sister clades, representing 41.8% of all RND pumps and grouping most of the RND pumps involved in multidrug resistance. Metadata associated with genomes, analyses of previously published metagenomes, and quantitative Polymerase Chain Reaction (qPCR) analyses confirmed a significant increase in genes encoding HME permeases in metal-contaminated environments. Interestingly, and possibly related to their role in root colonization, genes encoding HAE-1 permeases were particularly abundant in the rhizosphere. In addition, we found that the genes encoding these HAE-1 permeases are significantly less abundant in marine environments, whereas permeases of a new proposed HAE-4 family are predominant in the genomes of marine strains. These findings emphasize the critical role of the RND pumps in bacterial resistance and adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Josselin Bodilis
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Olwen Simenel
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
- Université Rouen Normandie, LMSM EA4312, Evreux F-27000, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Elisabeth Brothier
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Thibault Meyer
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sabine Favre-Bonté
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sylvie Nazaret
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| |
Collapse
|
6
|
Abdelhamid AG, Yousef AE. Egg-associated Salmonella enterica serovar Enteritidis: comparative genomics unveils phylogenetic links, virulence potential, and antimicrobial resistance traits. Front Microbiol 2023; 14:1278821. [PMID: 38029128 PMCID: PMC10667436 DOI: 10.3389/fmicb.2023.1278821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) remains a frequent cause of foodborne illnesses associated with the consumption of contaminated hen eggs. Such a food-pathogen association has been demonstrated epidemiologically, but the molecular basis for this association has not been explored. Comparative genomic analysis was implemented to decipher the phylogenomic characteristics, antimicrobial resistance, and virulence potential of eggs-associated SE. Analyzing 1,002 genomes belonging to 841 sequence types of food-isolated SE strains suggests a high genomic similarity within the egg-related lineage, which is phylogenetically close to SE strains isolated from poultry but is different from those isolated from beef. Core genome- and single nucleotide polymorphism (SNP)-based phylogeny of 74 SE strains of egg origin showcased two distinct sublineages. Time-scaled phylogeny supported the possibility of a common ancestor of egg-related SE lineages. Additionally, genome mining revealed frequent antibiotic resistance due to the presence of aac(6')-Iaa and mdsAB encoded on the genomes of egg-associated SE strains. For virulence gene profiling, 103-113 virulence determinants were identified in the egg-associated SE, which were comparable to 112 determinants found in human-associated SE, emphasizing the capacity of egg-associated strains to infect humans and cause diseases. The findings of this study proved the genomic similarity of egg-associated SE strains, and these were closely related to poultry strains. The egg-associated strains also harbor virulence genes equivalent to those found in human-associated SE strains. The analysis provided critical insights into the genetic structure, phylogenomics, dynamics of virulence, and antibiotic resistance of Salmonella Enteritidis, circulating in eggs and emphasizing the necessity of implementing anti-Salmonella intervention strategies, starting at the production stage of the poultry supply chain.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
8
|
Sanyal SK, Pukala T, Mittal P, Reith F, Brugger J, Etschmann B, Shuster J. From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. CHEMOSPHERE 2023; 339:139657. [PMID: 37543229 DOI: 10.1016/j.chemosphere.2023.139657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this 'inert' precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 μM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tara Pukala
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia; School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | | | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
9
|
Pedrosa-Silva F, Venancio TM. Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Genes (Basel) 2023; 14:1783. [PMID: 37761923 PMCID: PMC10530903 DOI: 10.3390/genes14091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.
Collapse
Affiliation(s)
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil;
| |
Collapse
|
10
|
Alshehri WA, Abulfaraj AA, Alqahtani MD, Alomran MM, Alotaibi NM, Alwutayd K, Aloufi AS, Alshehrei FM, Alabbosh KF, Alshareef SA, Ashy RA, Refai MY, Jalal RS. Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum. AMB Express 2023; 13:92. [PMID: 37646836 PMCID: PMC10469157 DOI: 10.1186/s13568-023-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.
Collapse
Affiliation(s)
- Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, 21955, Makkah, Saudi Arabia
| | - Khulood F Alabbosh
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, 21921, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Mohammed Y Refai
- Department of Biochemistry, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Osman D, Robinson NJ. Protein metalation in a nutshell. FEBS Lett 2023; 597:141-150. [PMID: 36124565 PMCID: PMC10087151 DOI: 10.1002/1873-3468.14500] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Metalation, the acquisition of metals by proteins, must avoid mis-metalation with tighter binding metals. This is illustrated by four selected proteins that require different metals: all show similar ranked orders of affinity for bioavailable metals, as described in a universal affinity series (the Irving-Williams series). Crucially, cellular protein metalation occurs in competition with other metal binding sites. The strength of this competition defines the intracellular availability of each metal: its magnitude has been estimated by calibrating a cells' set of DNA-binding, metal-sensing, transcriptional regulators. This has established that metal availabilities (as free energies for forming metal complexes) are maintained to the inverse of the universal series. The tightest binding metals are least available. With these availabilities, correct metalation is achieved.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| |
Collapse
|
14
|
Souza SSR, Turcotte MR, Li J, Zhang X, Wolfe KL, Gao F, Benton CS, Andam CP. Population analysis of heavy metal and biocide resistance genes in Salmonella enterica from human clinical cases in New Hampshire, United States. Front Microbiol 2022; 13:983083. [PMID: 36338064 PMCID: PMC9626534 DOI: 10.3389/fmicb.2022.983083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes frequently encounter heavy metals and other toxic compounds generated from natural biogeochemical processes and anthropogenic activities. Here, we analyzed the prevalence and association of genes conferring resistance to heavy metals, biocides, and antimicrobial compounds in 394 genome sequences of clinical human-derived S. enterica from New Hampshire, USA. The most prevalent was the gold operon (gesABC-golTSB), which was present in 99.2% of the genomes. In contrast, the other five heavy metal operons (arsenic, copper, mercury, silver, tellurite) were present in 0.76% (3/394)-5.58% (22/394) of the total population. The heavy metal operons and three biocide resistance genes were differentially distributed across 15 sequence types (STs) and 16 serotypes. The number of heavy metal operons and biocide resistance genes per genome was significantly associated with high number of antimicrobial resistance (AMR) genes per genome. Notable is the mercury operon which exhibited significant association with genes conferring resistance to aminoglycosides, cephalosporins, diaminopyrimidine, sulfonamide, and fosfomycin. The mercury operon was co-located with the AMR genes aac(3)-IV, ant(3")-IIa, aph(3')-Ia, and aph(4)-Ia, CTX-M-65, dfrA14, sul1, and fosA3 genes within the same plasmid types. Lastly, we found evidence for negative selection of individual genes of each heavy metal operon and the biocide resistance genes (dN/dS < 1). Our study highlights the need for continued surveillance of S. enterica serotypes that carry those genes that confer resistance to heavy metals and biocides that are often associated with mobile AMR genes. The selective pressures imposed by heavy metals and biocides on S. enterica may contribute to the co-selection and spread of AMR in human infections.
Collapse
Affiliation(s)
- Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Madison R. Turcotte
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Jinfeng Li
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Xinglu Zhang
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Kristin L. Wolfe
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Fengxiang Gao
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | | | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
15
|
Shami AY, Abulfaraj AA, Refai MY, Barqawi AA, Binothman N, Tashkandi MA, Baeissa HM, Baz L, Abuauf HW, Ashy RA, Jalal RS. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Front Microbiol 2022; 13:990169. [PMID: 36187977 PMCID: PMC9524394 DOI: 10.3389/fmicb.2022.990169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
Collapse
Affiliation(s)
- Ashwag Y. Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aminah A. Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science—King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- *Correspondence: Rewaa S. Jalal,
| |
Collapse
|
16
|
Metagenomic Characterization of Resistance Genes in Deception Island and Their Association with Mobile Genetic Elements. Microorganisms 2022; 10:microorganisms10071432. [PMID: 35889151 PMCID: PMC9320737 DOI: 10.3390/microorganisms10071432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are undergoing a remarkably rapid geographic expansion in various ecosystems, including pristine environments such as Antarctica. The study of ARGs and environmental resistance genes (ERGs) mechanisms could provide a better understanding of their origin, evolution, and dissemination in these pristine environments. Here, we describe the diversity of ARGs and ERGs and the importance of mobile genetic elements as a possible mechanism for the dissemination of resistance genes in Antarctica. We analyzed five soil metagenomes from Deception Island in Antarctica. Results showed that detected ARGs are associated with mechanisms such as antibiotic efflux, antibiotic inactivation, and target alteration. On the other hand, resistance to metals, surfactants, and aromatic hydrocarbons were the dominant ERGs. The taxonomy of ARGs showed that Pseudomonas, Psychrobacter, and Staphylococcus could be key taxa for studying antibiotic resistance and environmental resistance to stress in Deception Island. In addition, results showed that ARGs are mainly associated with phage-type mobile elements suggesting a potential role in their dissemination and prevalence. Finally, these results provide valuable information regarding the ARGs and ERGs in Deception Island including the potential contribution of mobile genetic elements to the spread of ARGs and ERGs in one of the least studied Antarctic ecosystems to date.
Collapse
|
17
|
Wang L, Yan L, Ye L, Chen J, Li Y, Zhang Q, Jing C. Identification and Characterization of a Au(III) Reductase from Erwinia sp. IMH. JACS AU 2022; 2:1435-1442. [PMID: 35783184 PMCID: PMC9241155 DOI: 10.1021/jacsau.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms contribute to the formation of secondary gold (Au) deposits through enzymatic reduction of Au(III) to Au(0). However, the enzyme that catalyzes the reduction of Au(III) remains enigmatic. Here, we identified and characterized a previously unknown Au reductase (GolR) in the cytoplasm of Erwinia sp. IMH. The expression of golR was strongly up-regulated in response to increasing Au(III) concentrations and exposure time. Mutant with in-frame deletion of golR was incapable of reducing Au(III), and the capability was rescued by reintroducing wild-type golR into the mutant strain. The Au(III) reduction was determined to occur in the cytoplasmic space by comparing the TEM images of the wild-type, mutant, and complemented strains. In vitro assays of the purified GolR protein confirmed its ability to reduce Au(III) to Au nanoparticles. Molecular dynamic simulations demonstrated that the hydrophobic cavity of GolR may selectively bind AuCl2(OH)2 -, the predominant auric chloride species at neutral pH. Density functional theory calculations revealed that AuCl2(OH)2 - may be coordinated at the Fe-containing active site of GolR and is probably reduced via three consecutive proton-coupled electron transfer processes. The new class of reductase, GolR, opens the chapter for the mechanistic understanding of Au(III) bioreduction.
Collapse
Affiliation(s)
- Liying Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Li Yan
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Li Ye
- School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jinfeng Chen
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Yanwei Li
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Qingzhu Zhang
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Sun S, Zhang K, Wu Y, Zhu N, Wang Y, Chen J, Leng F. Transporter drives the biosorption of heavy metals by Stenotrophomonas rhizophila JC1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45380-45395. [PMID: 35143001 DOI: 10.1007/s11356-022-18900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
To better understand the function of transporter in heavy metal detoxification of bacteria, the transporters associated with heavy metal detoxification in S. rhizophila JC1 were analyzed, among which four members were verified by RT-qPCR. In addition, the removal rates of four single metal ions (Cr6+, Cu2+, Zn2+, Pb2+) and polymetallic ions by strain JC1 were studied, respectively. We also researched the physiological response of strain JC1 to different metal stress via morphological observation, elemental composition, functional group and membrane permeability analysis. The results showed that in the single metal ion solution, removal capacities of Cu2+ (120 mg/L) and Cr6+ (80 mg/L) of S. rhizophila JC1 reached to 79.9% and 89.3%, respectively, while in polymetallic ions solution, the removal capacity of each metal ion all decreased, and in detail, the adsorption capacity was determined Cr6+>Cu2+>Zn2+>Pb2+ under the same condition. The physiological response analyses results showed that extracellular adsorption phenomena occurred, and the change of membrane permeability hindered the uptake of metal ions by bacteria. The analysis of transporters in strain JC1 genome illustrated that a total of 323 transporters were predicted. Among them, two, six and five proteins of the cation diffusion facilitator, resistance-nodulation-division efflux and P-type ATPase families were, respectively, predicted. The expression of corresponding genes showed that the synergistic action of correlative transporters played important roles in the process of adsorption. The comparative genomics analysis revealed that S. rhizophila JC1 has long-distance evolutionary relationships with other strains, but the efflux system of S. rhizophila JC1 contained the same types of metal transporters as other metal-resistant bacteria.
Collapse
Affiliation(s)
- Shangchen Sun
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yamiao Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China.
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| |
Collapse
|
19
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. Genomic characterization and antimicrobial resistance profiles of Salmonella enterica serovar Infantis isolated from food, humans and veterinary-related sources in Brazil. J Appl Microbiol 2021; 132:3327-3342. [PMID: 34958707 DOI: 10.1111/jam.15430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023]
Abstract
AIMS To characterize the genetic relatedness, phenotypic and genotypic antimicrobial resistance and plasmid content of 80 Salmonella Infantis strains isolated from food, humans and veterinary sources from 2013 to 2018 in Brazil. METHODS AND RESULTS Pulsed-field gel electrophoresis and single-nucleotide polymorphism analysis showed major clusters containing 50% and 38.8% of the strains studied respectively. Multilocus sequence typing assigned all strains to ST32. Disk-diffusion revealed that 90% of the strains presented resistant or intermediate resistant profiles and 38.8% displayed multidrug resistance. Resistance genes for aminoglycosides (aac(6')-Iaa; aadA12; aph(3″-Ib; aph(6)-Id), β-lactams (blaTEM-1 ; blaCTX-M-8 ; blaCMY-2 ), trimethoprim (dfrA8), tetracycline (tet(A)), amphenicols (floR), sulfonamide (sul2), efflux pumps (mdsA; mdsB), chromosomal point mutations in gyrB, parC, acrB and pmrA were detected. Strains harboured IncI, IncF, IncX, IncQ, IncN and IncR plasmids. CONCLUSIONS The presence of a prevalent S. Infantis subtype in Brazil and the high antimicrobial resistance rates reinforced the potential hazard of this serovar for the public health and food safety fields. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study characterizing a large set of S. Infantis from Brazil by whole-genome sequencing, which provided a better local and global comprehension about the distribution and characteristics of this serovar of importance in the food, human and veterinary fields.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
Tsai ST, Cheng WJ, Zhang QX, Yeh YC. Gold-Specific Biosensor for Monitoring Wastewater Using Genetically Engineered Cupriavidus metallidurans CH34. ACS Synth Biol 2021; 10:3576-3582. [PMID: 34860511 DOI: 10.1021/acssynbio.1c00520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transcription factor-based whole-cell biosensors have recently become promising alternatives to conventional analytical methods due to their advantage of simplicity, cost-effectiveness, and environmental friendliness. In this study, we used genetic engineering to develop a whole-cell biosensor based on the activation of promoters by CupR via interactions with gold ions, leading to the expression of reporter genes that yield output signals. Altering the promoter sequences was shown to significantly improve the performance of the biosensor strain in terms of gold-specificity. The detection sensitivity of our engineered strains was 42-fold higher than that of wild-type strains. The linear range of the purposed sensor was 125-1000 nM with a limit of detection at 46.5 nM. The effectiveness of the sensor strain was verified in wastewater samples.
Collapse
Affiliation(s)
- Ssu-Tzu Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Wen-Jui Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Qian-Xian Zhang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
21
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
22
|
Fu Y, M'ikanatha NM, Whitehouse CA, Tate H, Ottesen A, Lorch JM, Blehert DS, Berlowski-Zier B, Dudley EG. Low occurrence of multi-antimicrobial and heavy metal resistance in Salmonella enterica from wild birds in the United States. Environ Microbiol 2021; 24:1380-1394. [PMID: 34897945 DOI: 10.1111/1462-2920.15865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
Wild birds are common reservoirs of Salmonella enterica. Wild birds carrying resistant S. enterica may pose a risk to public health as they can spread the resistant bacteria across large spatial scales within a short time. Here, we whole-genome sequenced 375 S. enterica strains from wild birds collected in 41 U.S. states during 1978-2019 to examine bacterial resistance to antibiotics and heavy metals. We found that Typhimurium was the dominant S. enterica serovar, accounting for 68.3% (256/375) of the bird isolates. Furthermore, the proportions of the isolates identified as multi-antimicrobial resistant (multi-AMR: resistant to at least three antimicrobial classes) or multi-heavy metal resistant (multi-HMR: resistant to at least three heavy metals) were both 1.87% (7/375). Interestingly, all the multi-resistant S. enterica (n = 12) were isolated from water birds or raptors; none of them was isolated from songbirds. Plasmid profiling demonstrated that 75% (9/12) of the multi-resistant strains carried resistance plasmids. Our study indicates that wild birds do not serve as important reservoirs of multi-resistant S. enterica strains. Nonetheless, continuous surveillance for bacterial resistance in wild birds is necessary because the multi-resistant isolates identified in this study also showed close genetic relatedness with those from humans and domestic animals.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Chris A Whitehouse
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Andrea Ottesen
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Jeffrey M Lorch
- U.S. Geological Survey - National Wildlife Health Center, Madison, WI, 53711, USA
| | - David S Blehert
- U.S. Geological Survey - National Wildlife Health Center, Madison, WI, 53711, USA
| | | | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.,E. coli Reference Center, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
24
|
Investigation of Stress Response Genes in Antimicrobial Resistant Pathogens Sampled from Five Countries. Processes (Basel) 2021. [DOI: 10.3390/pr9060927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogens, which survive from stressed environmental conditions and evolve with antimicrobial resistance, cause millions of human diseases every year in the world. Fortunately, the NCBI Pathogen Detection Isolates Browser (NPDIB) collects the detected stress response genes and antimicrobial resistance genes in pathogen isolates sampled around the world. While several studies have been conducted to identify important antimicrobial resistance genes, little work has been done to analyze the stress response genes in the NPDIB database. In order to address this, this work conducted the first comprehensive statistical analysis of the stress response genes from five countries of the major residential continents, including the US, the UK, China, Australia, and South Africa. Principal component analysis was first conducted to project the stress response genes onto a two-dimensional space, and hierarchical clustering was then implemented to identify the outlier (i.e., important) genes that show high occurrences in the historical data from 2010 to 2020. Stress response genes and AMR genes were finally analyzed together to investigate the co-occurring relationship between these two types of genes. It turned out that seven genes were commonly found in all five countries (i.e., arsR, asr, merC, merP, merR, merT, and qacdelta1). Pathogens E. coli and Shigella, Salmonella enterica, and Klebsiella pneumoniae were the major pathogens carrying the stress response genes. The hierarchical clustering result showed that certain stress response genes and AMR genes were grouped together, including golT~golS and mdsB~mdsC, ymgB and mdtM, and qacEdelta1 and sul1. The occurrence analysis showed that the samples containing three stress response genes and three AMR genes had the highest detection frequency in the historical data. The findings of this work on the important stress response genes, along with their connection with AMR genes, could inform future drug development that targets stress response genes to weaken antimicrobial resistance pathogens.
Collapse
|
25
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
26
|
Gualdi S, Agnoli K, Vitale A, Higgins S, Eberl L. Identification of genes required for gold and silver tolerance in Burkholderia cenocepacia H111 by transposon sequencing. Environ Microbiol 2021; 24:737-751. [PMID: 33734565 DOI: 10.1111/1462-2920.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.
Collapse
Affiliation(s)
- Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| |
Collapse
|
27
|
Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Arch Microbiol 2021; 203:2699-2709. [PMID: 33715030 DOI: 10.1007/s00203-021-02271-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
In this study, a higher metal ions-resistant bacterium, Stenotrophomonas rhizophila JC1 was isolated from contaminated soil in Jinchang city, Gansu Province, China. The Pb2+ (120 mg/L) and Cu2+ (80 mg/L) removal rate of the strain reached at 76.9% and 83.4%, respectively. The genome comprises 4268161 bp in a circular chromosome with 67.52% G + C content and encodes 3719 proteins. The genome function analysis showed czc operon, mer operon, cop operon, arsenic detoxification system in strain JC1 were contributed to the removal of heavy metals. Three efflux systems (i.e., RND, CDF, and P-ATPase) on strain JC1 genome could trigger the removal of divalent cations from cells. cAMP pathway and ABC transporter pathway might be involved in the transport and metabolism of heavy metals. The homology analysis exhibited multi-gene families such as ABC transporters, heavy metal-associated domain, copper resistance protein, carbohydrate-binding domain were distributed across 410 orthologous groups. In addition, heavy metal-responsive transcription regulator, thioredoxin, heavy metal transport/detoxification protein, divalent-cation resistance protein CutA, arsenate reductase also played important roles in the heavy metals adsorption and detoxification process. The complete genome data provides insight into the exploration of the interaction mechanism between microorganisms and heavy metals.
Collapse
|
28
|
Baya G, Muhindi S, Ngendahimana V, Caguiat J. Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02. MICROMACHINES 2021; 12:mi12020142. [PMID: 33572806 PMCID: PMC7911910 DOI: 10.3390/mi12020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023]
Abstract
Cell-based biosensors harness a cell's ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multimetal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which appear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. In previous studies, genetic engineering replaced metal resistance genes with the reporter genes for β-galactosidase, luciferase or the green fluorescence protein (GFP). These produce a color change of a reagent, produce light, or fluoresce in the presence of ultraviolet (UV) light, respectively. Coupling these discovered operons with reporter genes has the potential to create whole-cell biosensors for HgCl2, ZnCl2, CuSO4 and HAuCl4·3H2O.
Collapse
Affiliation(s)
- Georgina Baya
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
| | - Stephen Muhindi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Valentine Ngendahimana
- Biology Department, Lone Star College-CyFair, 9191 Barker Cypress Rd, Cypress, TX 77433, USA;
| | - Jonathan Caguiat
- Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA;
- Correspondence: ; Tel.: +1-330-941-2063
| |
Collapse
|
29
|
Sanyal SK, Brugger J, Etschmann B, Pederson SM, Delport PWJ, Dixon R, Tearle R, Ludington A, Reith F, Shuster J. Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138698. [PMID: 32330727 DOI: 10.1016/j.scitotenv.2020.138698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Joël Brugger
- Monash University, Clayton, Victoria 3800, Australia
| | | | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Roger Dixon
- University of Pretoria, Pretoria 0001, South Africa
| | - Rick Tearle
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Davies Research Centre, School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
30
|
Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. mSystems 2019; 4:4/4/e00211-19. [PMID: 31387929 PMCID: PMC6687941 DOI: 10.1128/msystems.00211-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) is a leading global cause of bacterial foodborne morbidity and mortality. Our ability to treat severe NTS infections has been impaired by increasing antimicrobial resistance (AMR). To understand and mitigate the global health crisis AMR represents, we need to link the observed resistance phenotypes with their underlying genomic mechanisms. Broiler chickens represent a key reservoir and vector for NTS infections, but isolates from this setting have been characterized in only very low numbers relative to clinical isolates. In this study, we sequenced and assembled 97 genomes encompassing 7 serotypes isolated from broiler chicken in farms in British Columbia between 2005 and 2008. Through application of machine learning (ML) models to predict the observed AMR phenotype from this genomic data, we were able to generate highly (0.92 to 0.99) precise logistic regression models using known AMR gene annotations as features for 7 antibiotics (amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline). Similarly, we also trained "reference-free" k-mer-based set-covering machine phenotypic prediction models (0.91 to 1.0 precision) for these antibiotics. By combining the inferred k-mers and logistic regression weights, we identified the primary drivers of AMR for the 7 studied antibiotics in these isolates. With our research representing one of the largest studies of a diverse set of NTS isolates from broiler chicken, we can thus confirm that the AmpC-like CMY-2 β-lactamase is a primary driver of β-lactam resistance and that the phosphotransferases APH(6)-Id and APH(3″-Ib) are the principal drivers of streptomycin resistance in this important ecosystem.IMPORTANCE Antimicrobial resistance (AMR) represents an existential threat to the function of modern medicine. Genomics and machine learning methods are being increasingly used to analyze and predict AMR. This type of surveillance is very important to try to reduce the impact of AMR. Machine learning models are typically trained using genomic data, but the aspects of the genomes that they use to make predictions are rarely analyzed. In this work, we showed how, by using different types of machine learning models and performing this analysis, it is possible to identify the key genes underlying AMR in nontyphoidal Salmonella (NTS). NTS is among the leading cause of foodborne illness globally; however, AMR in NTS has not been heavily studied within the food chain itself. Therefore, in this work we performed a broad-scale analysis of the AMR in NTS isolates from commercial chicken farms and identified some priority AMR genes for surveillance.
Collapse
|
31
|
Tolbatov I, Re N, Coletti C, Marrone A. An Insight on the Gold(I) Affinity of golB Protein via Multilevel Computational Approaches. Inorg Chem 2019; 58:11091-11099. [DOI: 10.1021/acs.inorgchem.9b01604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, Chieti, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, Chieti, Italy
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, Chieti, Italy
| |
Collapse
|
32
|
|
33
|
Mastrorilli E, Pietrucci D, Barco L, Ammendola S, Petrin S, Longo A, Mantovani C, Battistoni A, Ricci A, Desideri A, Losasso C. A Comparative Genomic Analysis Provides Novel Insights Into the Ecological Success of the Monophasic Salmonella Serovar 4,[5],12:i:. Front Microbiol 2018; 9:715. [PMID: 29719530 PMCID: PMC5913373 DOI: 10.3389/fmicb.2018.00715] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Over the past decades, Salmonella 4,[5],12:i:- has rapidly emerged and it is isolated with high frequency in the swine food chain. Although many studies have documented the epidemiological success of this serovar, few investigations have tried to explain this phenomenon from a genetic perspective. Here a comparative whole-genome analysis of 50 epidemiologically unrelated S. 4,[5],12:i:-, isolated in Italy from 2010 to 2016 was performed, characterizing them in terms of genetic elements potentially conferring resistance, tolerance and persistence characteristics. Phylogenetic analyses indicated interesting distinctions among the investigated isolates. The most striking genetic trait characterizing the analyzed isolates is the widespread presence of heavy metals tolerance gene cassettes: most of the strains possess genes expected to confer resistance to copper and silver, whereas about half of the isolates also contain the mercury tolerance gene merA. A functional assay showed that these genes might be useful for preventing the toxic effects of metals, thus supporting the hypothesis that they can contribute to the success of S. 4,[5],12:i:- in farming environments. In addition, the analysis of the distribution of type II toxin-antitoxin families indicated that these elements are abundant in this serovar, suggesting that this is another factor that might favor its successful spread.
Collapse
Affiliation(s)
- Eleonora Mastrorilli
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Lisa Barco
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sara Petrin
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alessandra Longo
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudio Mantovani
- Science Communication Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Antonia Ricci
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Carmen Losasso
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
34
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
35
|
Bütof L, Wiesemann N, Herzberg M, Altzschner M, Holleitner A, Reith F, Nies DH. Synergistic gold–copper detoxification at the core of gold biomineralisation inCupriavidus metallidurans. Metallomics 2018; 10:278-286. [DOI: 10.1039/c7mt00312a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cupriavidus metalliduransescapes synergistic Cu/Au toxicity by re-oxidation of Au(i) back to Au(iii) using the periplasmic oxidase CopA.
Collapse
Affiliation(s)
- L. Bütof
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - N. Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Altzschner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - A. Holleitner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - F. Reith
- The University of Adelaide
- School of Biological Sciences
- Adelaide
- Australia
| | - D. H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| |
Collapse
|
36
|
Thomas M, Fenske GJ, Antony L, Ghimire S, Welsh R, Ramachandran A, Scaria J. Whole genome sequencing-based detection of antimicrobial resistance and virulence in non-typhoidal Salmonella enterica isolated from wildlife. Gut Pathog 2017; 9:66. [PMID: 29201148 PMCID: PMC5697165 DOI: 10.1186/s13099-017-0213-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to generate a reference set of Salmonella enterica genomes isolated from wildlife from the United States and to determine the antimicrobial resistance and virulence gene profile of the isolates from the genome sequence data. We sequenced the whole genomes of 103 Salmonella isolates sampled between 1988 and 2003 from wildlife and exotic pet cases that were submitted to the Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, Oklahoma. Among 103 isolates, 50.48% were from wild birds, 0.9% was from fish, 24.27% each were from reptiles and mammals. 50.48% isolates showed resistance to at least one antibiotic. Resistance against the aminoglycoside streptomycin was most common while 9 isolates were found to be multi-drug resistant having resistance against more than three antibiotics. Determination of virulence gene profile revealed that the genes belonging to csg operons, the fim genes that encode for type 1 fimbriae and the genes belonging to type III secretion system were predominant among the isolates. The universal presence of fimbrial genes and the genes encoded by pathogenicity islands 1-2 among the isolates we report here indicates that these isolates could potentially cause disease in humans. Therefore, the genomes we report here could be a valuable reference point for future traceback investigations when wildlife is considered to be the potential source of human Salmonellosis.
Collapse
Affiliation(s)
- Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007 USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007 USA
| | - Gavin John Fenske
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007 USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007 USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007 USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007 USA
| | - Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007 USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007 USA
| | - Ronald Welsh
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, OK 74078 USA
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, OK 74078 USA
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007 USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007 USA
| |
Collapse
|
37
|
Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Appl Environ Microbiol 2017; 83:AEM.01679-17. [PMID: 28939602 DOI: 10.1128/aem.01679-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCE C. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.
Collapse
|
38
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
39
|
Cerminati S, Giri GF, Mendoza JI, Soncini FC, Checa SK. The CpxR/CpxA system contributes to Salmonella gold-resistance by controlling the GolS-dependent gesABC transcription. Environ Microbiol 2017. [PMID: 28631419 DOI: 10.1111/1462-2920.13837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several regulatory systems contribute to bacterial resistance to heavy metals controlling the expression of factors required to eliminate the intoxicant and/or to repair the damage caused by it. In Salmonella, the response to Au ions is mediated by the specific metalloregulator GolS that, among other genes, controls the expression of the RND-efflux pump GesABC. In this work, we demonstrate that CpxR/CpxA, a main cell-envelope stress-responding system, promotes gesABC transcription in the presence of Au ions at neutral pH. Deletion of either cpxA or cpxR, or mutation of the CpxR-binding site identified upstream of the GolS-operator in the gesABC promoter region reduces but does not abrogate the GolS- and Au-dependent activation of gesABC. Au also triggers the activation of the CpxR/CpxA system and deletion of the cpxRA operon severely reduces survival in the presence of the toxic metal. Our results indicate that the coordinated action of GolS and CpxR/CpxA contribute to protecting the cell from severe Au damage.
Collapse
Affiliation(s)
- Sebastián Cerminati
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Germán F Giri
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Julián I Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
40
|
Gui Q, Lawson T, Shan S, Yan L, Liu Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. SENSORS 2017; 17:s17071623. [PMID: 28703749 PMCID: PMC5539819 DOI: 10.3390/s17071623] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/11/2023]
Abstract
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
Collapse
Affiliation(s)
- Qingyuan Gui
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
41
|
Kang F, Qu X, Alvarez PJJ, Zhu D. Extracellular Saccharide-Mediated Reduction of Au 3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2776-2785. [PMID: 28151654 DOI: 10.1021/acs.est.6b05930] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au3+) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au3+was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au3+ reduction, reflecting the predominance of the extracellular matrix in Au3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.
Collapse
Affiliation(s)
- Fuxing Kang
- College of Resources and Environmental Sciences, Nanjing Agricultural University , Jiangsu 210095, China
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University , Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University , Jiangsu 210046, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University , Houston Texas 77005, United States
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
42
|
Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis. Proc Natl Acad Sci U S A 2016; 113:11573-11578. [PMID: 27679850 DOI: 10.1073/pnas.1603192113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper homeostasis is essential for bacterial pathogen fitness and infection, and has been the focus of a number of recent studies. In Salmonella, envelope protection against copper overload and macrophage survival depends on CueP, a major copper-binding protein in the periplasm. This protein is also required to deliver the metal ion to the Cu/Zn superoxide dismutase SodCII. The Salmonella-specific CueP-coding gene was originally identified as part of the Cue regulon under the transcriptional control of the cytoplasmic copper sensor CueR, but its expression differs from the rest of CueR-regulated genes. Here we show that cueP expression is controlled by the concerted action of CueR, which detects the presence of copper in the cytoplasm, and by CpxR/CpxA, which monitors envelope stress. Copper-activated CueR is necessary for the appropriate spatial arrangement of the -10 and -35 elements of the cueP promoter, and CpxR is essential to recruit the RNA polymerase. The integration of two ancestral sensory systems-CueR, which provides signal specificity, and CpxR/CpxA, which detects stress in the bacterial envelope-restricts the expression of this periplasmic copper resistance protein solely to cells encountering surplus copper that disturbs envelope homeostasis, emulating the role of the CusR/CusS regulatory system present in other enteric bacteria.
Collapse
|
43
|
Argüello JM, Patel SJ, Quintana J. Bacterial Cu(+)-ATPases: models for molecular structure-function studies. Metallomics 2016; 8:906-14. [PMID: 27465346 PMCID: PMC5025381 DOI: 10.1039/c6mt00089d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The early discovery of the human Cu(+)-ATPases and their link to Menkes and Wilson's diseases brought attention to the unique role of these transporters in copper homeostasis. The characterization of bacterial Cu(+)-ATPases has significantly furthered our understanding of the structure, selectivity and transport mechanism of these enzymes, as well as their interplay with other elements of Cu(+) distribution networks. This review focuses on the structural-functional insights that have emerged from studies of bacterial Cu(+)-ATPases at the molecular level and how these observations have contributed to drawing up a comprehensive picture of cellular copper homeostasis.
Collapse
Affiliation(s)
- José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | |
Collapse
|
44
|
Jones-Dias D, Clemente L, Egas C, Froufe H, Sampaio DA, Vieira L, Fookes M, Thomson NR, Manageiro V, Caniça M. Salmonella Enteritidis Isolate Harboring Multiple Efflux Pumps and Pathogenicity Factors, Shows Absence of O Antigen Polymerase Gene. Front Microbiol 2016; 7:1130. [PMID: 27536269 PMCID: PMC4971094 DOI: 10.3389/fmicb.2016.01130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of PortoPorto, Portugal
| | - Lurdes Clemente
- Microbiology and Mycology Laboratory, Instituto Nacional de Investigação Agrária e VeterináriaLisbon, Portugal
| | - Conceição Egas
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Hugo Froufe
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Daniel A. Sampaio
- Innovation and Technology Unit, Human Genetics Department, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Human Genetics Department, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, UK
| | | | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of PortoPorto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| |
Collapse
|
45
|
Abstract
Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host.
Collapse
Affiliation(s)
- Erik Ladomersky
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
46
|
Zammit CM, Weiland F, Brugger J, Wade B, Winderbaum LJ, Nies DH, Southam G, Hoffmann P, Reith F. Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics 2016; 8:1204-1216. [DOI: 10.1039/c6mt00142d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Wei W, Sun Y, Zhu M, Liu X, Sun P, Wang F, Gui Q, Meng W, Cao Y, Zhao J. Structural Insights and the Surprisingly Low Mechanical Stability of the Au–S Bond in the Gold-Specific Protein GolB. J Am Chem Soc 2015; 137:15358-61. [DOI: 10.1021/jacs.5b09895] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Feng Wang
- Elias
James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin, 214437, China
| | | | - Wuyi Meng
- Elias
James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin, 214437, China
| | | | | |
Collapse
|
48
|
Song S, Lee B, Yeom JH, Hwang S, Kang I, Cho JC, Ha NC, Bae J, Lee K, Kim YH. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium. Infect Immun 2015; 83:4266-76. [PMID: 26283336 PMCID: PMC4598412 DOI: 10.1128/iai.00653-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.
Collapse
Affiliation(s)
- Saemee Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Soonhye Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
49
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
50
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|