1
|
Vaňková Hausnerová V, Shoman M, Kumar D, Schwarz M, Modrák M, Jirát Matějčková J, Mikesková E, Neva S, Herrmannová A, Šiková M, Halada P, Novotná I, Pajer P, Valášek LS, Převorovský M, Krásný L, Hnilicová J. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res 2024; 52:4604-4626. [PMID: 38348908 PMCID: PMC11077062 DOI: 10.1093/nar/gkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/09/2024] Open
Abstract
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Department of Bioinformatics, Second Faculty of Medicine, Charles University, Prague150 06, Czech Republic
| | - Jitka Jirát Matějčková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Eliška Mikesková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Silvia Neva
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec252 50, Czech Republic
| | - Iva Novotná
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague128 00, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| |
Collapse
|
2
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
4
|
Vaňková Hausnerová V, Marvalová O, Šiková M, Shoman M, Havelková J, Kambová M, Janoušková M, Kumar D, Halada P, Schwarz M, Krásný L, Hnilicová J, Pánek J. Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search. Front Microbiol 2022; 13:848536. [PMID: 35633709 PMCID: PMC9130861 DOI: 10.3389/fmicb.2022.848536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Marvalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Havelková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czechia
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Abstract
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Collapse
|
6
|
Involvement of E. coli 6S RNA in Oxidative Stress Response. Int J Mol Sci 2022; 23:ijms23073653. [PMID: 35409013 PMCID: PMC8998176 DOI: 10.3390/ijms23073653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in E. coli, however, lack of 6S RNA (ΔssrS) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the ΔssrS strain in the presence of high concentrations of H2O2. This phenotype was rescued by complementation of the ssrS gene on a plasmid. We performed comparative qRT-PCR analyses on an enlarged set of mRNAs of genes associated with the oxidative stress response, allowing us to identify four genes known to be involved in this pathway (soxS, ahpC, sodA and tpx) that had decreased mRNA levels in the ΔssrS strain. Finally, we performed comparative proteomic analyses of the wild-type and ΔssrS strains, confirming that ΔssrS bacteria have reduced levels of the proteins AhpC and Tpx involved in H2O2 reduction. Our findings substantiate the crucial role of the riboregulator 6S RNA for bacterial coping with extreme stresses.
Collapse
|
7
|
Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase. Noncoding RNA 2022; 8:ncrna8010020. [PMID: 35202093 PMCID: PMC8876501 DOI: 10.3390/ncrna8010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Here we investigated the refolding of Bacillus subtilis 6S-1 RNA and its release from σA-RNA polymerase (σA-RNAP) in vitro using truncated and mutated 6S-1 RNA variants. Truncated 6S-1 RNAs, only consisting of the central bubble (CB) flanked by two short helical arms, can still traverse the mechanistic 6S RNA cycle in vitro despite ~10-fold reduced σA-RNAP affinity. This indicates that the RNA’s extended helical arms including the ‘−35′-like region are not required for basic 6S-1 RNA functionality. The role of the ‘central bubble collapse helix’ (CBCH) in pRNA-induced refolding and release of 6S-1 RNA from σA-RNAP was studied by stabilizing mutations. This also revealed base identities in the 5’-part of the CB (5’-CB), upstream of the pRNA transcription start site (nt 40), that impact ground state binding of 6S-1 RNA to σA-RNAP. Stabilization of the CBCH by the C44/45 double mutation shifted the pRNA length pattern to shorter pRNAs and, combined with a weakened P2 helix, resulted in more effective release from RNAP. We conclude that formation of the CBCH supports pRNA-induced 6S-1 RNA refolding and release. Our mutational analysis also unveiled that formation of a second short hairpin in the 3′-CB is detrimental to 6S-1 RNA release. Furthermore, an LNA mimic of a pRNA as short as 6 nt, when annealed to 6S-1 RNA, retarded the RNA’s gel mobility and interfered with σA-RNAP binding. This effect incrementally increased with pLNA 7- and 8-mers, suggesting that restricted conformational flexibility introduced into the 5’-CB by base pairing with pRNAs prevents 6S-1 RNA from adopting an elongated shape. Accordingly, atomic force microscopy of free 6S-1 RNA versus 6S-1:pLNA 8- and 14-mer complexes revealed that 6S-1:pRNA hybrid structures, on average, adopt a more compact structure than 6S-1 RNA alone. Overall, our findings also illustrate that the wild-type 6S-1 RNA sequence and structure ensures an optimal balance of the different functional aspects involved in the mechanistic cycle of 6S-1 RNA.
Collapse
|
8
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
9
|
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor. Microorganisms 2021; 9:microorganisms9102004. [PMID: 34683325 PMCID: PMC8539372 DOI: 10.3390/microorganisms9102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
Collapse
|
10
|
Cataldo PG, Klemm P, Thüring M, Saavedra L, Hebert EM, Hartmann RK, Lechner M. Insights into 6S RNA in lactic acid bacteria (LAB). BMC Genom Data 2021; 22:29. [PMID: 34479493 PMCID: PMC8414754 DOI: 10.1186/s12863-021-00983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. RESULTS We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs. CONCLUSIONS Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple families. It yields universal insights into this regulator and complements the findings derived from other bacterial model organisms.
Collapse
Affiliation(s)
- Pablo Gabriel Cataldo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán, 4000, Argentina
| | - Paul Klemm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, Marburg, 35032, Germany
| | - Marietta Thüring
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, Marburg, 35032, Germany
| | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán, 4000, Argentina
| | - Elvira Maria Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán, 4000, Argentina
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, Marburg, 35032, Germany
| | - Marcus Lechner
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, Marburg, 35032, Germany. .,Philipps-Universität Marburg, Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Straße 6, Marburg, 35043, Germany.
| |
Collapse
|
11
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
13
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
14
|
Drecktrah D, Hall LS, Brinkworth AJ, Comstock JR, Wassarman KM, Samuels DS. Characterization of 6S RNA in the Lyme disease spirochete. Mol Microbiol 2020; 113:399-417. [PMID: 31742773 PMCID: PMC7047579 DOI: 10.1111/mmi.14427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
15
|
Šiková M, Janoušková M, Ramaniuk O, Páleníková P, Pospíšil J, Bartl P, Suder A, Pajer P, Kubičková P, Pavliš O, Hradilová M, Vítovská D, Šanderová H, Převorovský M, Hnilicová J, Krásný L. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol Microbiol 2018; 111:354-372. [PMID: 30427073 DOI: 10.1111/mmi.14159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
Abstract
Ms1 is a sRNA recently found in mycobacteria and several other actinobacterial species. Ms1 interacts with the RNA polymerase (RNAP) core devoid of sigma factors, which differs from 6S RNA that binds to RNAP holoenzymes containing the primary sigma factor. Here we show that Ms1 is the most abundant non-rRNA transcript in stationary phase in Mycobacterium smegmatis. The accumulation of Ms1 stems from its high-level synthesis combined with decreased degradation. We identify the Ms1 promoter, PMs1 , and cis-acting elements important for its activity. Furthermore, we demonstrate that PNPase (an RNase) contributes to the differential accumulation of Ms1 during growth. Then, by comparing the transcriptomes of wt and ΔMs1 strains from stationary phase, we reveal that Ms1 affects the intracellular level of RNAP. The absence of Ms1 results in decreased levels of the mRNAs encoding β and β' subunits of RNAP, which is also reflected at the protein level. Thus, the ΔMs1 strain has a smaller pool of RNAPs available when the transcriptional demand increases. This contributes to the inability of the ΔMs1 strain to rapidly react to environmental changes during outgrowth from stationary phase.
Collapse
Affiliation(s)
- Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague, Czech Republic
| | - Olga Ramaniuk
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Páleníková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Bartl
- Faculty of Nuclear Science and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
| | - Agnieszka Suder
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Pavla Kubičková
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ota Pavliš
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Miluše Hradilová
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Převorovský
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Prasse D, Schmitz RA. Small RNAs Involved in Regulation of Nitrogen Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0018-2018. [PMID: 30027888 PMCID: PMC11633612 DOI: 10.1128/microbiolspec.rwr-0018-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
Affiliation(s)
- Daniela Prasse
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| | - Ruth A Schmitz
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| |
Collapse
|
17
|
Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA. G3-GENES GENOMES GENETICS 2018; 8:2079-2089. [PMID: 29686109 PMCID: PMC5982834 DOI: 10.1534/g3.118.200265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Escherichia coli, the sigma factor σ70 directs RNA polymerase to transcribe growth-related genes, while σ38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ70, and the non-coding 6S RNA which binds to the RNA polymerase-σ70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression.
Collapse
|
18
|
Wassarman KM. 6S RNA, a Global Regulator of Transcription. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0019-2018. [PMID: 29916345 PMCID: PMC6013841 DOI: 10.1128/microbiolspec.rwr-0019-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
6S RNA is a small RNA regulator of RNA polymerase (RNAP) that is present broadly throughout the bacterial kingdom. Initial functional studies in Escherichia coli revealed that 6S RNA forms a complex with RNAP resulting in regulation of transcription, and cells lacking 6S RNA have altered survival phenotypes. The last decade has focused on deepening the understanding of several aspects of 6S RNA activity, including (i) addressing questions of how broadly conserved 6S RNAs are in diverse organisms through continued identification and initial characterization of divergent 6S RNAs; (ii) the nature of the 6S RNA-RNAP interaction through examination of variant proteins and mutant RNAs, cross-linking approaches, and ultimately a cryo-electron microscopic structure; (iii) the physiological consequences of 6S RNA function through identification of the 6S RNA regulon and promoter features that determine 6S RNA sensitivity; and (iv) the mechanism and cellular impact of 6S RNA-directed synthesis of product RNAs (i.e., pRNA synthesis). Much has been learned about this unusual RNA, its mechanism of action, and how it is regulated; yet much still remains to be investigated, especially regarding potential differences in behavior of 6S RNAs in diverse bacteria.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53562
| |
Collapse
|
19
|
6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiol 2017; 17:229. [PMID: 29216826 PMCID: PMC5721685 DOI: 10.1186/s12866-017-1137-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022] Open
Abstract
Background The 6S RNA is a global transcriptional riboregulator, which is exceptionally widespread among most bacterial phyla. While its role is well-characterized in some heterotrophic bacteria, we subjected a cyanobacterial homolog to functional analysis, thereby extending the scope of 6S RNA action to the special challenges of photoautotrophic lifestyles. Results Physiological characterization of a 6S RNA deletion strain (ΔssaA) demonstrates a delay in the recovery from nitrogen starvation. Significantly decelerated phycobilisome reassembly and glycogen degradation are accompanied with reduced photosynthetic activity compared to the wild type. Transcriptome profiling further revealed that predominantly genes encoding photosystem components, ATP synthase, phycobilisomes and ribosomal proteins were negatively affected in ΔssaA. In vivo pull-down studies of the RNA polymerase complex indicated that the presence of 6S RNA promotes the recruitment of the cyanobacterial housekeeping σ factor SigA, concurrently supporting dissociation of group 2 σ factors during recovery from nitrogen starvation. Conclusions The combination of genetic, physiological and biochemical studies reveals the homologue of 6S RNA as an integral part of the cellular response of Synechocystis sp. PCC 6803 to changing nitrogen availability. According to these results, 6S RNA supports a rapid acclimation to changing nitrogen supply by accelerating the switch from group 2 σ factors SigB, SigC and SigE to SigA-dependent transcription. We therefore introduce the cyanobacterial 6S RNA as a novel candidate regulator of RNA polymerase sigma factor recruitment in Synechocystis sp. PCC 6803. Further studies on mechanistic features of the postulated interaction should shed additional light on the complexity of transcriptional regulation in cyanobacteria. Electronic supplementary material The online version of this article (10.1186/s12866-017-1137-9) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Ghosh S, Dureja C, Khatri I, Subramanian S, Raychaudhuri S, Ghosh S. Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions. MICROBIOLOGY-SGM 2017; 163:1924-1936. [PMID: 29099689 DOI: 10.1099/mic.0.000566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small RNA (sRNA)-mediated regulation of gene expression is a major tool to understand bacterial responses to environmental changes. In particular, pathogenic bacteria employ sRNAs to adapt to the host environment and establish infection. Members of the Burkholderia cepacia complex, normally present in soil microbiota, cause nosocomial lung infection especially in hospitalized cystic fibrosis patients. We sequenced the draft genome of Burkholderia cenocepacia KC-01, isolated from the coastal saline soil, and identified several potential sRNAs in silico. Expression of seven small RNAs (Bc_KC_sr1-7) was subsequently confirmed. Two sRNAs (Bc_KC_sr1 and Bc_KC_sr2) were upregulated in response to iron depletion by 2,2'-bipyridyl and another two (Bc_KC_sr3 and Bc_KC_sr4) responded to the presence of 60 µM H2O2 in the culture media. Bc_Kc_sr5, 6 and 7 remained unchanged under these conditions. Expression of Bc_KC_sr2, 3 and 4 also altered with a change in temperature and incubation time. A search in the Rfam and BSRD databases identified Bc_Kc_sr4 as candidate738 in B. pseudomallei D286 and assigned Bc_Kc_sr5 and 6 as tmRNA and 6S RNA, respectively. The novel sRNAs were conserved in Burkholderiaceae but did not have any homologue in other genera. Bc_KC_sr1 and 4 were transcribed independently while the rest were part of the 3' UTR of their upstream genes. TargetRNA2 predicted that these sRNAs could target a host of cellular messages with very high stringency. Intriguingly, regions surrounding the translation initiation site for several enzymes involved in Fe-S cluster and siderophore biosynthesis, ROS homeostasis, porins, transcription and translation regulators, were among the suggested putative binding sites for these sRNAs.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Indu Khatri
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | | | | | - Sagarmoy Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| |
Collapse
|
21
|
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. 6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Mol Cell 2017; 68:388-397.e6. [PMID: 28988932 DOI: 10.1016/j.molcel.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 01/25/2023]
Abstract
Noncoding RNAs (ncRNAs) regulate gene expression in all organisms. Bacterial 6S RNAs globally regulate transcription by binding RNA polymerase (RNAP) holoenzyme and competing with promoter DNA. Escherichia coli (Eco) 6S RNA interacts specifically with the housekeeping σ70-holoenzyme (Eσ70) and plays a key role in the transcriptional reprogramming upon shifts between exponential and stationary phase. Inhibition is relieved upon 6S RNA-templated RNA synthesis. We report here the 3.8 Å resolution structure of a complex between 6S RNA and Eσ70 determined by single-particle cryo-electron microscopy and validation of the structure using footprinting and crosslinking approaches. Duplex RNA segments have A-form C3' endo sugar puckers but widened major groove widths, giving the RNA an overall architecture that mimics B-form promoter DNA. Our results help explain the specificity of Eco 6S RNA for Eσ70 and show how an ncRNA can mimic B-form DNA to directly regulate transcription by the DNA-dependent RNAP.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shili Feng
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zongli Li
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Elkina D, Weber L, Lechner M, Burenina O, Weisert A, Kubareva E, Hartmann RK, Klug G. 6S RNA in Rhodobacter sphaeroides: 6S RNA and pRNA transcript levels peak in late exponential phase and gene deletion causes a high salt stress phenotype. RNA Biol 2017; 14:1627-1637. [PMID: 28692405 DOI: 10.1080/15476286.2017.1342933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The function of 6S RNA, a global regulator of transcription, was studied in the photosynthetic α-proteobacterium Rhodobacter sphaeroides. The cellular levels of R. sphaeroides 6S RNA peak toward the transition to stationary phase and strongly decrease during extended stationary phase. The synthesis of so-called product RNA transcripts (mainly 12-16-mers) on 6S RNA as template by RNA polymerase was found to be highest in late exponential phase. Product RNA ≥ 13-mers are expected to trigger the dissociation of 6S RNA:RNA polymerase complexes. A 6S RNA deletion in R. sphaeroides had no impact on growth under various metabolic and oxidative stress conditions (with the possible exception of tert-butyl hydroperoxide stress). However, the 6S RNA knockout resulted in a robust growth defect under high salt stress (0.25 M NaCl). Remarkably, the sspA gene encoding the putative salt stress-induced membrane protein SspA and located immediately downstream of the 6S RNA (ssrS) gene on the antisense strand was expressed at elevated levels in the ΔssrS strain when grown in the presence of 250 mM NaCl.
Collapse
Affiliation(s)
- Daria Elkina
- a Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Leninskie Gory 1, Moscow , Russia
| | - Lennart Weber
- b Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-University-Gießen, Heinrich-Buff-Ring 26-32 , Gießen , Germany
| | - Marcus Lechner
- c Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6 , Marburg , Germany ; Skolkovo Institute for Science and Technology , Skoltech, Moscow
| | - Olga Burenina
- a Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Leninskie Gory 1, Moscow , Russia
| | - Andrea Weisert
- b Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-University-Gießen, Heinrich-Buff-Ring 26-32 , Gießen , Germany
| | - Elena Kubareva
- a Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Leninskie Gory 1, Moscow , Russia
| | - Roland K Hartmann
- c Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6 , Marburg , Germany ; Skolkovo Institute for Science and Technology , Skoltech, Moscow
| | - Gabriele Klug
- b Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-University-Gießen, Heinrich-Buff-Ring 26-32 , Gießen , Germany
| |
Collapse
|
23
|
Ren J, Sang Y, Qin R, Cui Z, Yao YF. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol 2017; 12:1045-1057. [PMID: 28796533 DOI: 10.2217/fmb-2017-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Acid is an important environmental condition encountered frequently by Salmonella enterica serovar Typhimurium during its pathogenesis, but the role of small-noncoding RNAs (sRNAs) in response to acid stress is poorly understood. METHODS We used RNA sequencing to explore acid-responsive sRNAs in S. Typhimurium. RESULTS It identified that 6S RNA encoded by the ssrS was significantly upregulated at pH 3.0. The 6S RNA knockout strain showed a reduced ability to survive at pH 3.0. Additionally, genes in Salmonella pathogenicity island-1 were downregulated in the 6S RNA knockout strain. The loss of 6S RNA significantly reduced S. Typhimurium invasion ability in HeLa cells and virulence in a mouse model. CONCLUSION These findings demonstrate that 6S RNA plays an important role in S. Typhimurium survival under extremely acid conditions and for invasion of epithelial cells.
Collapse
Affiliation(s)
- Jie Ren
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Feng Yao
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
24
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
25
|
Fadouloglou VE, Lin HTV, Tria G, Hernández H, Robinson CV, Svergun DI, Luisi BF. Maturation of 6S regulatory RNA to a highly elongated structure. FEBS J 2015; 282:4548-64. [PMID: 26367381 PMCID: PMC7610929 DOI: 10.1111/febs.13516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
Abstract
As bacterial populations leave the exponential growth phase and enter the stationary phase, their patterns of gene expression undergo marked changes. A key effector of this change is 6S RNA, which is a highly conserved regulatory RNA that impedes the transcription of genes associated with exponential growth by forming an inactivating ternary complex with RNA polymerase and sigma factor σ(70) (σ(70)-RNAP). In Escherichia coli, the endoribonuclease RNase E generates 6S RNA by specific cleavage of a precursor that is nearly twice the size of the 58 kDa mature form. We have explored recognition of the precursor by RNase E, and observed that processing is inhibited under conditions of excess substrate. This finding supports a largely distributive mechanism, meaning that each round of catalysis results in enzyme dissociation and re-binding to the substrate. We show that the precursor molecule and the mature 6S share a structural core dominated by an A-type helix, indicating that processing is not accompanied by extensive refolding. Both precursor and mature forms of 6S have a highly stable secondary structure, adopt an elongated shape, and show the potential to form dimers under specific conditions; nonetheless, 6S has a high structural plasticity that probably enables it to be structurally adapted upon binding to its cognate protein partners. Analysis of the 6S-σ(70)-RNAP complex by native mass spectrometry reveals a stable association with a stoichiometry of 1:1:1. A theoretical 3D model of mature 6S is presented, which is consistent with the experimental data and supports a previously proposed structure with a small stem-loop inside the central bubble.
Collapse
Affiliation(s)
- Vasiliki E Fadouloglou
- Department of Biochemistry, University of Cambridge, UK
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation, European Molecular Biology Laboratory/Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | | | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, European Molecular Biology Laboratory/Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
26
|
Burenina OY, Elkina DA, Hartmann RK, Oretskaya TS, Kubareva EA. Small noncoding 6S RNAs of bacteria. BIOCHEMISTRY (MOSCOW) 2015; 80:1429-46. [DOI: 10.1134/s0006297915110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
28
|
Abstract
6S RNA is a highly abundant small non-coding RNA widely spread among diverse bacterial groups. By competing with DNA promoters for binding to RNA polymerase (RNAP), the RNA regulates transcription on a global scale. RNAP produces small product RNAs derived from 6S RNA as template, which rearranges the 6S RNA structure leading to dissociation of 6S RNA:RNAP complexes. Although 6S RNA has been experimentally analysed in detail for some species, such as Escherichia coli and Bacillus subtilis, and was computationally predicted in many diverse bacteria, a complete and up-to-date overview of the distribution among all bacteria is missing. In this study we searched with new methods for 6S RNA genes in all currently available bacterial genomes. We ended up with a set of 1,750 6S RNA genes, of which 1,367 are novel and bona fide, distributed among 1,610 bacteria, and had a few tentative candidates among the remaining 510 assembled bacterial genomes accessible. We were able to confirm two tentative candidates by Northern blot analysis. We extended 6S RNA genes of the Flavobacteriia significantly in length compared to the present Rfam entry. We describe multiple homologs of 6S RNAs (including split 6S RNA genes) and performed a detailed synteny analysis.
Collapse
Affiliation(s)
- Stefanie Wehner
- a Department for Bioinformatics; Faculty of Mathematics and Computer Science ; Friedrich-Schiller-University of Jena , Jena , Germany
| | | | | | | |
Collapse
|
29
|
Möbius P, Hölzer M, Felder M, Nordsiek G, Groth M, Köhler H, Reichwald K, Platzer M, Marz M. Comprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany. Genome Biol Evol 2015; 7:2585-2601. [PMID: 26384038 PMCID: PMC4607514 DOI: 10.1093/gbe/evv154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare.
Collapse
Affiliation(s)
- Petra Möbius
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Marius Felder
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Gabriele Nordsiek
- Department of Genome Analysis, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Heike Köhler
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Kathrin Reichwald
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
30
|
Köhler K, Duchardt-Ferner E, Lechner M, Damm K, Hoch PG, Salas M, Hartmann RK. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus. Biochimie 2015; 117:72-86. [PMID: 25771336 DOI: 10.1016/j.biochi.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/03/2015] [Indexed: 01/26/2023]
Abstract
Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Base Sequence
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Gene Expression Regulation, Bacterial
- Hot Temperature
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Sequence Analysis, RNA
- Substrate Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Karen Köhler
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Elke Duchardt-Ferner
- Goethe-Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften, Max-von-Laue-Straße 9, D-60438 Frankfurt am Main, Germany; Zentrum für biomagnetische Resonanzspektroskopie (BMRZ), Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Marcus Lechner
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Katrin Damm
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Philipp G Hoch
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Roland K Hartmann
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| |
Collapse
|
31
|
Hoch PG, Burenina OY, Weber MHW, Elkina DA, Nesterchuk MV, Sergiev PV, Hartmann RK, Kubareva EA. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants. Biochimie 2015; 117:87-99. [PMID: 25576829 DOI: 10.1016/j.biochi.2014.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
6S RNA, a global regulator of transcription in bacteria, binds to housekeeping RNA polymerase (RNAP) holoenzymes to competitively inhibit transcription from DNA promoters. Bacillus subtilis encodes two 6S RNA homologs whose differential functions are as yet unclear. We constructed derivative strains of B. subtilis PY79 lacking 6S-1 RNA (ΔbsrA), 6S-2 RNA (ΔbsrB) or both (ΔbsrAB) to study the physiological role of the two 6S RNAs. We observed two growth phenotypes of mutant strains: (i) accelerated decrease of optical density toward extended stationary phase and (ii) faster outgrowth from stationary phase under alkaline stress conditions (pH 9.8). The first phenotype was observed for bacteria lacking bsrA, and even more pronounced for ΔbsrAB bacteria, but not for those lacking bsrB. The magnitude of the second phenotype was relatively weak for ΔbsrB, moderate for ΔbsrA and again strongest for ΔbsrAB bacteria. Whereas ΔbsrAB bacteria complemented with bsrB or bsrA (strains ΔbsrAB + B and ΔbsrAB + A) mimicked the phenotypes of the ΔbsrA and ΔbsrB strains, respectively, complementation with the gene ssrS encoding Escherichia coli 6S RNA failed to cure the "low stationary optical density" phenotype of the double mutant, despite ssrS expression, in line with previous findings. Finally, proteomics (two-dimensional differential gel electrophoresis, 2D-DIGE) of B. subtilis 6S RNA deletion strains unveiled a set of proteins that were expressed at higher levels particularly during exponential growth and preferentially in mutant strains lacking 6S-2 RNA. Several of these proteins are involved in metabolism and stress responses.
Collapse
Affiliation(s)
- Philipp G Hoch
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Olga Y Burenina
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Michael H W Weber
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Daria A Elkina
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Mikhail V Nesterchuk
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Petr V Sergiev
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Roland K Hartmann
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| | - Elena A Kubareva
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| |
Collapse
|
32
|
Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151. [PMID: 25389522 PMCID: PMC4211561 DOI: 10.3389/fcimb.2014.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD Regional College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine Athens, OH, USA
| |
Collapse
|
33
|
Cavanagh AT, Wassarman KM. 6S RNA, a Global Regulator of Transcription inEscherichia coli,Bacillus subtilis, and Beyond. Annu Rev Microbiol 2014; 68:45-60. [DOI: 10.1146/annurev-micro-092611-150135] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy T. Cavanagh
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
34
|
Mikulík K, Bobek J, Zídková J, Felsberg J. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2014; 98:7185-97. [DOI: 10.1007/s00253-014-5806-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
35
|
Oviedo Ovando M, Shephard L, Unrau PJ. In vitro characterization of 6S RNA release-defective mutants uncovers features of pRNA-dependent release from RNA polymerase in E. coli. RNA (NEW YORK, N.Y.) 2014; 20:670-80. [PMID: 24681966 PMCID: PMC3988568 DOI: 10.1261/rna.036343.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
6S RNA is a noncoding RNA that inhibits bacterial transcription by sequestering RNA polymerase holoenzyme (Eσ(70)) in low-nutrient conditions. This transcriptional block can be relieved by the synthesis of a short product RNA (pRNA) using the 6S RNA as a template. Here, we selected a range of 6S RNA release-defective mutants from a high diversity in vitro pool. Studying the release-defective variant R9-33 uncovered complex interactions between three regions of the 6S RNA. As expected, mutating the transcriptional start site (TSS) slowed and partially inhibited release. Surprisingly, additional mutations near the TSS were found that rescued this effect. Likewise, three mutations in the top strand of the large open bubble (LOB) could considerably slow release but were rescued by the addition of upstream mutations found between a highly conserved "-35" motif and the LOB. Combining the three top strand LOB mutations with mutations near the TSS, however, was particularly effective at preventing release, and this effect could be further enhanced by inclusion of the upstream mutations. Overexpressing R9-33 and a series of milder release-defective mutants in Escherichia coli resulted in a delayed entry into exponential phase together with a decrease in cell survival that correlated well with the severity of the in vitro phenotypes. The complex crosstalk observed between distinct regions of the 6S RNA supports a scrunching type model of 6S RNA release, where at least three regions of the 6S RNA must interact with Eσ(70) in a cooperative manner so as to ensure effective pRNA-dependent release.
Collapse
|
36
|
Steuten B, Hoch PG, Damm K, Schneider S, Köhler K, Wagner R, Hartmann RK. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol 2014; 11:508-21. [PMID: 24786589 DOI: 10.4161/rna.28827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whereas, the majority of bacterial non-coding RNAs and functional RNA elements regulate post-transcriptional processes, either by interacting with other RNAs via base-pairing or through binding of small ligands (riboswitches), 6S RNAs affect transcription itself by binding to the housekeeping holoenzyme of RNA polymerase (RNAP). Remarkably, 6S RNAs serve as RNA templates for bacterial RNAP, giving rise to the de novo synthesis of short transcripts, termed pRNAs (product RNAs). Hence, 6S RNAs prompt the enzyme to act as an RNA-dependent RNA polymerase (RdRP). Synthesis of pRNAs exceeding a certain length limit (~13 nt) persistently rearrange the 6S RNA structure, which in turn, disrupts the 6S RNA:RNAP complex. This pRNA synthesis-mediated "reanimation" of sequestered RNAP molecules represents the conceivably fastest mechanism for resuming transcription in cells that enter a new exponential growth phase. The many different 6S RNAs found in a wide variety of bacteria do not share strong sequence homology but have in common a conserved rod-shaped structure with a large internal loop, termed the central bulge; this architecture mediates specific binding to the active site of RNAP. In this article, we summarize the overall state of knowledge as well as very recent findings on the structure, function, and physiological effects of 6S RNA examples from the two model organisms, Escherichia coli and Bacillus subtilis. Comparison of the presently known properties of 6S RNAs in the two organisms highlights common principles as well as diverse features.
Collapse
Affiliation(s)
- Benedikt Steuten
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Katrin Damm
- Philipps-Universität Marburg; Marburg, Germany
| | - Sabine Schneider
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Rolf Wagner
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | |
Collapse
|
37
|
Nitzan M, Wassarman KM, Biham O, Margalit H. Global regulation of transcription by a small RNA: a quantitative view. Biophys J 2014; 106:1205-14. [PMID: 24606944 DOI: 10.1016/j.bpj.2014.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are integral regulators of bacterial gene expression, the majority of which act posttranscriptionally by basepairing with target mRNAs, altering translation or mRNA stability. 6S RNA, however, is a small RNA that is a transcriptional regulator, acting by binding directly to σ(70)-RNA polymerase (σ(70)-RNAP) and preventing its binding to gene promoters. At the transition from exponential to stationary phase, 6S RNA accumulates and globally downregulates the transcription of hundreds of genes. At the transition from stationary to exponential phase (outgrowth), 6S RNA is released from σ(70)-RNAP, resulting in a fast increase in free σ(70)-RNAP and transcription of many genes. The transition from stationary to exponential phase is sharp, and is thus accessible for experimental study. However, the transition from exponential to stationary phase is gradual and complicated by changes in other factors, making it more difficult to isolate 6S RNA effects experimentally at this transition. Here, we use mathematical modeling and simulation to study the dynamics of 6S RNA-dependent regulation, focusing on transitions in growth mediated by altered nutrient availability. We first show that our model reproduces the sharp increase in σ(70)-RNAP at outgrowth, as well as the behavior of two experimentally tested mutants, thus justifying its use for characterizing the less accessible dynamics of the transition from exponential to stationary phase. We characterize the dynamics of the two transitions for Escherichia coli wild-type, as well as for mutants with various 6S RNA-RNAP affinities, demonstrating that the 6S RNA regulation mechanism is generally robust to a wide range of such mutations, although the level of regulation at single promoters and their resulting expression fold change will be altered with changes in affinity. Our results provide insight into the potential advantage of transcription regulation by 6S RNA, as it enables storage and efficient release of σ(70)-RNAP during transitions in nutrient availability, which is likely to give a competitive advantage to cells encountering diverse environmental conditions.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel; Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Ofer Biham
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| | - Hanah Margalit
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
38
|
Burenina OY, Hoch PG, Damm K, Salas M, Zatsepin TS, Lechner M, Oretskaya TS, Kubareva EA, Hartmann RK. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences. RNA (NEW YORK, N.Y.) 2014; 20:348-359. [PMID: 24464747 PMCID: PMC3923129 DOI: 10.1261/rna.042077.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Bacterial 6S RNAs bind to the housekeeping RNA polymerase (σ(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to σ(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA:pRNA hybrid structures that (5) abolish binding to σ(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A,U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (∼ 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.
Collapse
Affiliation(s)
- Olga Y. Burenina
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Philipp G. Hoch
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Katrin Damm
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Timofei S. Zatsepin
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Tatiana S. Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A. Kubareva
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
39
|
Steuten B, Schneider S, Wagner R. 6S RNA: recent answers--future questions. Mol Microbiol 2014; 91:641-8. [PMID: 24308327 DOI: 10.1111/mmi.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
6S RNA is a non-coding RNA, found in almost all phylogenetic branches of bacteria. Through its conserved secondary structure, resembling open DNA promoters, it binds to RNA polymerase and interferes with transcription at many promoters. That way, it functions as transcriptional regulator facilitating adaptation to stationary phase conditions. Strikingly, 6S RNA acts as template for the synthesis of small RNAs (pRNA), which trigger the disintegration of the inhibitory RNA polymerase-6S RNA complex releasing 6S RNA-dependent repression. The regulatory implications of 6S RNAs vary among different bacterial species depending on the lifestyle and specific growth conditions that they have to face. The influence of 6S RNA can be seen on many different processes including stationary growth, sporulation, light adaptation or intracellular growth of pathogenic bacteria. Recent structural and functional studies have yielded details of the interaction between E. coli 6S RNA and RNA polymerase. Genome-wide transcriptome analyses provided insight into the functional diversity of 6S RNAs. Moreover, the mechanism and physiological consequences of pRNA synthesis have been explored in several systems. A major function of 6S RNA as a guardian regulating the economic use of cellular resources under limiting conditions and stress emerges as a common perception from numerous recent studies.
Collapse
Affiliation(s)
- Benedikt Steuten
- Molecular Biology of Bacteria, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
40
|
Mapping the Spatial Neighborhood of the Regulatory 6S RNA Bound to Escherichia coli RNA Polymerase Holoenzyme. J Mol Biol 2013; 425:3649-61. [DOI: 10.1016/j.jmb.2013.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 11/15/2022]
|
41
|
Lee JY, Park H, Bak G, Kim KS, Lee Y. Regulation of transcription from two ssrS promoters in 6S RNA biogenesis. Mol Cells 2013; 36:227-34. [PMID: 23864284 PMCID: PMC3887979 DOI: 10.1007/s10059-013-0082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
Abstract
ssrS-encoded 6S RNA is an abundant noncoding RNA that binds σ(70)-RNA polymerase and regulates expression at a subset of promoters in Escherichia coli. It is transcribed from two tandem promoters, ssrS P1 and ssrS P2. Regulation of transcription from two ssrS promoters in 6S RNA biogenesis was examined. Both P1 and P2 were growth phase-dependently regulated. Depletion of 6S RNA had no effect on growth-phase-dependent transcription from either promoter, whereas overexpression of 6S RNA increased P1 transcription and decreased P2 transcription, suggesting that transcription from P1 and P2 is subject to feedback activation and feedback inhibition, respectively. This feedback regulation disappeared in Δfis strains, supporting involvement of Fis in this process. The differential feedback regulation may provide a means for maintaining appropriate cellular concentrations of 6S RNA.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Hongmarn Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Geunu Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
42
|
Abstract
Besides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying the transcription of single-strand templates by bacterial RNAP, we selected high-affinity single-strand DNA aptamers that are specifically bound by RNAP holoenzyme, and characterized a novel class of aptamer-based transcription templates. The aptamer templates have a hairpin structure that mimics the upstream part of the open promoter bubble with accordingly placed specific promoter elements. The affinity of the RNAP holoenzyme to such DNA structures probably underlies its promoter-melting activity. Depending on the template structure, the aptamer templates can direct synthesis of productive RNA transcripts or effectively trap RNAP in the process of abortive synthesis, involving DNA scrunching, and competitively inhibit promoter recognition. The aptamer templates provide a novel tool for structure-function studies of transcription initiation by bacterial RNAP and its inhibition.
Collapse
|
43
|
Abstract
We have discovered that 6S-1 RNA (encoded by bsrA) is important for appropriate timing of sporulation in Bacillus subtilis in that cells lacking 6S-1 RNA sporulate earlier than wild-type cells. The time to generate a mature spore once the decision to sporulate has been made is unaffected by 6S-1 RNA, and, therefore, we propose that it is the timing of onset of sporulation that is altered. Interestingly, the presence of cells lacking 6S-1 RNA in coculture leads to all cell types exhibiting an early-sporulation phenotype. We propose that cells lacking 6S-1 RNA modify their environment in a manner that promotes early sporulation. In support of this model, resuspension of wild-type cells in conditioned medium from ΔbsrA cultures also resulted in early sporulation. Use of Escherichia coli growth as a reporter of the nutritional status of conditioned media suggested that B. subtilis cells lacking 6S-1 RNA reduce the nutrient content of their environment earlier than wild-type cells. Several pathways known to impact the timing of sporulation, such as the skf- and sdp-dependent cannibalism pathways, were eliminated as potential targets of 6S-1 RNA-mediated changes, suggesting that 6S-1 RNA activity defines a novel mechanism for altering the timing of onset of sporulation. In addition, 6S-2 RNA does not influence the timing of sporulation, providing further evidence of the independent influences of these two related RNAs on cell physiology.
Collapse
|
44
|
Trigui H, Mendis N, Li L, Saad M, Faucher SP. Facets of small RNA-mediated regulation in Legionella pneumophila. Curr Top Microbiol Immunol 2013; 376:53-80. [PMID: 23918178 DOI: 10.1007/82_2013_347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.
Collapse
Affiliation(s)
- Hana Trigui
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada,
| | | | | | | | | |
Collapse
|
45
|
ncRNAs and thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett 2012; 586:4061-9. [PMID: 23098758 DOI: 10.1016/j.febslet.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
During cellular stress response, a widespread inhibition of transcription and blockade of splicing and other post-transcriptional processing is detected, while certain specific genes are induced. In particular, free-living cells constantly monitor temperature. When the thermal condition changes, they activate a set of genes coding for proteins that participate in the response. Non-coding RNAs, ncRNAs, and conformational changes in specific regions of mRNAs seem also to be crucial regulators that enable the cell to adjust its physiology to environmental changes. They exert their effects following the same principles in all organisms and may affect all steps of gene expression. These ncRNAs and structural elements as related to thermal stress response in bacteria are reviewed. The resemblances to eukaryotic ncRNAs are highlighted.
Collapse
|
46
|
Lakhotia SC. Long non-coding RNAs coordinate cellular responses to stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:779-96. [PMID: 22976942 DOI: 10.1002/wrna.1135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following the initial discovery of the heat shock RNA omega (hsrω) gene of Drosophila melanogaster to be non-coding (nc) and also inducible by cell stress, other stress-inducible long non-coding RNAs (lncRNA) have been described in diverse organisms. In view of the rapid sequence divergence of lncRNAs, present knowledge of stress trasncriptome is limited and fragmented. Several known stress-related lncRNAs, associated with specific nuclear speckled domains or nucleolus, provide structural base for sequestering diverse RNA-processing/regulatory proteins. Others have roles in transcriptional or translational inhibition during stress or in signaling pathways; functions of several other lncRNAs are not yet known. Most stress-related lncRNAs act primarily by modulating activity of the proteins to which they bind or by sequestering specific sets of proteins away from the active pool. A common emerging theme is that a given lncRNA targets one or more protein/s with key role/s in the cascade of events triggered by the stress and therefore has a widespread integrative effect. Since proteins associate with RNA through short sequence motifs, the overall base sequence of functionally similar ncRNAs is often not conserved except for specific motifs. The rapid evolvability of ncRNA sequences provides elegant modules for adaptability to changing environment as binding of one or the other protein to ncRNA can alter its structure and functions in distinct ways. Thus the stress-related lncRNAs act as hubs in the cellular networks to coordinate activities of the members within and between different networks to maintain cellular homeostasis for survival or to trigger cell death.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
47
|
Brouwers E, Ma I, Thomas NA. Dual temporal transcription activation mechanisms control cesT expression in enteropathogenic Escherichia coli. Microbiology (Reading) 2012; 158:2246-2261. [DOI: 10.1099/mic.0.059444-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erin Brouwers
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Irene Ma
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil A. Thomas
- Department of Medicine (Division of Infectious Diseases), Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
48
|
Rediger A, Geißen R, Steuten B, Heilmann B, Wagner R, Axmann IM. 6S RNA - an old issue became blue-green. MICROBIOLOGY-SGM 2012; 158:2480-2491. [PMID: 22767549 DOI: 10.1099/mic.0.058958-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
6S RNA from Escherichia coli acts as a versatile transcriptional regulator by binding to the RNA polymerase and changing promoter selectivity. Although homologous 6S RNA structures exist in a wide range of bacteria, including cyanobacteria, our knowledge of 6S RNA function results almost exclusively from studies with E. coli. To test for potential structural and functional conservation, we selected four predicted cyanobacterial 6S RNAs (Synechocystis, Synechococcus, Prochlorococcus and Nostoc), which we compared with their E. coli counterpart. Temperature-gradient gel electrophoresis revealed similar thermodynamic transition profiles for all 6S RNAs, indicating basically similar secondary structures. Subtle differences in melting behaviour of the different RNAs point to minor structural variations possibly linked to differences in optimal growth temperature. Secondary structural analysis of three cyanobacterial 6S RNAs employing limited enzymic hydrolysis and in-line probing supported the predicted high degree of secondary structure conservation. Testing for functional homology we found that all cyanobacterial 6S RNAs were active in binding E. coli RNA polymerase and transcriptional inhibition, and had the ability to act as template for transcription of product RNAs (pRNAs). Deletion of the 6S RNA gene in Synechocystis did not significantly affect cell growth in liquid media but reduced fitness during growth on solid agar. While our study shows that basic 6S RNA functions are conserved in species as distantly related as E. coli and cyanobacteria, we also noted a subtle degree of divergence, which might reflect fundamental differences in transcriptional regulation and lifestyle, thus providing the first evidence for a possible physiological role in cyanobacteria.
Collapse
Affiliation(s)
- Anne Rediger
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - René Geißen
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benedikt Steuten
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Beate Heilmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Rolf Wagner
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| |
Collapse
|
49
|
Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 2011; 194:686-701. [PMID: 22139505 DOI: 10.1128/jb.06112-11] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.
Collapse
|
50
|
Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003798. [PMID: 20980440 DOI: 10.1101/cshperspect.a003798] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small RNA regulators (sRNAs) have been identified in a wide range of bacteria and found to play critical regulatory roles in many processes. The major families of sRNAs include true antisense RNAs, synthesized from the strand complementary to the mRNA they regulate, sRNAs that also act by pairing but have limited complementarity with their targets, and sRNAs that regulate proteins by binding to and affecting protein activity. The sRNAs with limited complementarity are akin to eukaryotic microRNAs in their ability to modulate the activity and stability of multiple mRNAs. In many bacterial species, the RNA chaperone Hfq is required to promote pairing between these sRNAs and their target mRNAs. Understanding the evolution of regulatory sRNAs remains a challenge; sRNA genes show evidence of duplication and horizontal transfer but also could be evolved from tRNAs, mRNAs or random transcription.
Collapse
|