1
|
Banasiewicz J, Gumowska A, Hołubek A, Orzechowski S. Adaptations of the Genus Bradyrhizobium to Selected Elements, Heavy Metals and Pesticides Present in the Soil Environment. Curr Issues Mol Biol 2025; 47:205. [PMID: 40136459 PMCID: PMC11941057 DOI: 10.3390/cimb47030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Rhizobial bacteria perform a number of extremely important functions in the soil environment. In addition to fixing molecular nitrogen and transforming it into a form available to plants, they participate in the circulation of elements and the decomposition of complex compounds present in the soil, sometimes toxic to other organisms. This review article describes the molecular mechanisms occurring in the most diverse group of rhizobia, the genus Bradyrhizobium, allowing these bacteria to adapt to selected substances found in the soil. Firstly, the adaptation of bradyrhizobia to low and high concentrations of elements such as iron, phosphorus, sulfur, calcium and manganese was shown. Secondly, the processes activated in their cells in the presence of heavy metals such as lead, mercury and arsenic, as well as radionuclides, were described. Additionally, due to the potential use of Bradyrhziobium as biofertilizers, their response to pesticides commonly used in agriculture, such as glyphosate, sulfentrazone, chlorophenoxy herbicides, flumioxazine, imidazolinone, atrazine, and insecticides and fungicides, was also discussed. The paper shows the great genetic diversity of bradyrhizobia in terms of adapting to variable environmental conditions present in the soil.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Gumowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.G.); (A.H.)
| | - Agata Hołubek
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (A.G.); (A.H.)
| | - Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Bates NA, Rodriguez R, Drwich R, Ray A, Stanley SA, Penn BH. Reactive Oxygen Detoxification Contributes to Mycobacterium abscessus Antibiotic Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618103. [PMID: 39554100 PMCID: PMC11565942 DOI: 10.1101/2024.10.13.618103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When a population of bacteria encounter a bactericidal antibiotic most cells die rapidly. However, a sub-population, known as "persister cells", can survive for prolonged periods in a non-growing, but viable, state. Persister cell frequency is dramatically increased by stresses such as nutrient deprivation, but it is unclear what pathways are required to maintain viability, and how this process is regulated. To identify the genetic determinants of antibiotic persistence in mycobacteria, we carried out transposon mutagenesis high-throughput sequencing (Tn-Seq) screens in Mycobacterium abscessus (Mabs). This analysis identified genes essential in both spontaneous and stress-induced persister cells, allowing the first genetic comparison of these states in mycobacteria, and unexpectedly identified multiple genes involved in the detoxification of reactive oxygen species (ROS). We found that endogenous ROS were generated following antibiotic exposure, and that the KatG catalase-peroxidase contributed to survival in both spontaneous and starvation-induced persisters. We also found that that hypoxia significantly impaired bacterial killing, and notably, in the absence of oxygen, KatG became dispensable. Thus, the lethality of some antibiotics is amplified by toxic ROS accumulation, and persister cells depend on detoxification systems to remain viable.
Collapse
Affiliation(s)
- Nicholas A. Bates
- Department of Internal Medicine, University of California, Davis, California, USA
- Graduate Group in Immunology, University of California, Davis, California, USA
| | - Ronald Rodriguez
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Rama Drwich
- Department of Internal Medicine, University of California, Davis, California, USA
| | - Abigail Ray
- Microbiology Graduate Group, University of California, Davis, California, USA
| | - Sarah A. Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Wu P, Ong A, O’Brian MR. Bradyrhizobium japonicum HmuP is an RNA-binding protein that positively controls hmuR operon expression by suppression of a negative regulatory RNA element in the 5' untranslated region. Mol Microbiol 2024; 121:1217-1227. [PMID: 38725184 PMCID: PMC11176003 DOI: 10.1111/mmi.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| |
Collapse
|
4
|
Yan YF, Liu Y, Liang H, Cai L, Yang XY, Yin TP. The erythromycin polyketide compound TMC-154 stimulates ROS generation to exert antibacterial effects against Streptococcus pyogenes. J Proteomics 2024; 292:105057. [PMID: 38043864 DOI: 10.1016/j.jprot.2023.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The erythromycin polyketide compound TMC-154 is a secondary metabolite that is isolated from the rhizospheric fungus Clonostachys rogersoniana associated with Panax notoginseng, which possesses antibacterial activity. However, its antibacterial mechanism has not been investigated thus far. In this study, proteomics coupled with bioinformatics approaches was used to explore the antibacterial mechanism of TMC-154. KEGG pathway enrichment analysis indicated that eight signaling pathways were associated with TMC-154, including oxidative phosphorylation, cationic antimicrobial peptide (CAMP) resistance, benzoate degradation, heme acquisition systems, glycine/serine and threonine metabolism, beta-lactam resistance, ascorbate and aldarate metabolism, and phosphotransferase system (PTS). Cell biology experiments confirmed that TMC-154 could induce reactive oxygen species (ROS) generation in Streptococcus pyogenes; moreover, TMC-154-induced antibacterial effects could be blocked by the inhibition of ROS generation with the antioxidant N-acetyl L-cysteine. In addition, TMC-154 combined with ciprofloxacin or chloramphenicol had synergistic antibacterial effects. These findings indicate the potential of TMC-154 as a promising drug to treat S. pyogenes infections. SIGNIFICANCE: Streptococcus pyogenes is a nearly ubiquitous human pathogen that causes a variety of diseases ranging from mild pharyngitis and skin infection to fatal sepsis and toxic heat shock syndrome. With the increasing incidence of known antibiotic resistance, there is an urgent need to find novel drugs with good antibacterial activity against S. pyogenes. In this study, we found that TMC-154, a secondary metabolite from the fungus Clonostachys rogersoniana, inhibited the growth of various bacteria, including Staphylococcus aureus, S. pyogenes, Streptococcus mutans, Pseudomonas aeruginosa and Vibrio parahemolyticus. Proteomic analysis combined with cell biology experiments revealed that TMC-154 stimulated ROS generation to exert antibacterial effects against S. pyogenes. This study provides potential options for the treatment of S. pyogenes infections in the future.
Collapse
Affiliation(s)
- Yuan-Feng Yan
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Ying Liu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Hangeri Liang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiao-Yan Yang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | - Tian-Peng Yin
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| |
Collapse
|
5
|
Ren WT, Guo LL, Bu YX, Han CH, Zhou P, Wu YH. Rheinheimera oceanensis sp. nov., a novel member of the genus Rheinheimera, isolated from the West Pacific Ocean. Int J Syst Evol Microbiol 2023; 73. [PMID: 37861399 DOI: 10.1099/ijsem.0.006054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Two Gram-stain-negative, aerobic, non-motile and short-rod-shaped bacteria, designated as strains GL-53T and GL-15-2-5, were isolated from the seamount area of the West Pacific Ocean and identified using a polyphasic taxonomic approach. The growth of strains GL-53ᵀ and GL-15-2-5 occurred at pH 5.5-10.0, 4-40 °C (optimum at 28 °C) and 0-10.0 % NaCl concentrations (optimum at 0-5.0 %). On the basis of 16S rRNA gene sequence analysis, strains GL-53ᵀ and GL-15-2-5 exhibited the highest similarity to Rheinheimera lutimaris YQF-2T (98.4 %), followed by Rheinheimera pacifica KMM 1406T (98.1 %), Rheinheimera nanhaiensis E407-8T (97.4 %), Rheinheimera aestuarii H29T (97.4 %), Rheinheimera hassiensis E48T (97.2 %) and Rheinheimera aquimaris SW-353T (97.2 %). Phylogenetic analysis revealed that the isolates were affiliated with the genus Rheinheimera and represented an independent lineage. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The sole isoprenoid quinone was ubiquinone 8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid (and one unidentified glycolipid. The DNA G+C content was 48.5 mol%. The average nucleotide identity, average amino acid identity and in silico DNA-DNA hybridization values among the genomes of strain GL-53ᵀ and the related strains in the genus Rheinheimera were 75.5-90.1 %, 67.5-93.9 % and 21.4-41.4 %, respectively. Based on their phenotypic, chemotaxonomic and genotypic properties, the two strains were identified as representing a novel species of the genus Rheinheimera, for which the name Rheinheimera oceanensis sp. nov. is proposed. The type strain is GL-53T (=KCTC 82651T=MCCC M20598T).
Collapse
Affiliation(s)
- Wen-Ting Ren
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Li-Li Guo
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yu-Xin Bu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Chen-Hua Han
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
6
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
7
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
8
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
9
|
Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. J Proteomics 2018; 194:160-167. [PMID: 30521977 DOI: 10.1016/j.jprot.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 01/03/2023]
Abstract
Drug resistance in bacteria is becoming a significant threat to global public health, and the development of novel and efficient antibacterial compounds is urgently needed. Recently, rhodium complexes have attracted attention as antimicrobial agents, yet their antibacterial mechanism remains unknown. In this study, we observed that the dirhodium (II) complex Rh2Ac4 inhibited Streptococcus. pneumoniae growth without significant cytotoxic side-effects on host cells in vitro. We subsequently investigated the antibacterial mechanism of Rh2Ac4 using iTRAQ-based proteomics combined with cellular and biochemical assays. Bioinformatics analysis on the proteomic alterations demonstrated that six molecular functional groups, including metal ion binding and twelve metabolic pathways, were significantly affected after treatment with Rh2Ac4. The interaction network analysis of metal ion binding proteins suggested that Rh2Ac4 decreased the protein expression levels of SPD_1652, SPD_1590 and Gap, which are associated with haem uptake/metabolism. Cellular and biochemical assays further confirmed that Rh2Ac4 could be taken up by bacteria via the PiuABCD haem-uptake system. The structurally similar Rh complex may compete with Fe-haem to decrease Fe-uptake via the PiuABCD system, disrupting iron metabolism to exert its antibacterial activity against S. pneumoniae. These data indicate that Rh2Ac4 is a promising new drug for the treatment of S. pneumoniae infections.
Collapse
|
10
|
González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de Los Santos A. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen 2017; 7:e00573. [PMID: 29280343 PMCID: PMC6011978 DOI: 10.1002/mbo3.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ciro A Cubillas
- Deparment of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiola Miranda
- Deparment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Araceli Dávalos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
11
|
Hood G, Ramachandran V, East AK, Downie JA, Poole PS. Manganese transport is essential for N 2 -fixation by Rhizobium leguminosarum in bacteroids from galegoid but not phaseoloid nodules. Environ Microbiol 2017; 19:2715-2726. [PMID: 28447383 PMCID: PMC5575495 DOI: 10.1111/1462-2920.13773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Rhizobium leguminosarum has two high-affinity Mn2+ transport systems encoded by sitABCD and mntH. In symbiosis, sitABCD and mntH were expressed throughout nodules and also strongly induced in Mn2+ -limited cultures of free-living cells. Growth of a sitA mntH double mutant was severely reduced under Mn2+ limitation and sitA and mntH single mutants were more sensitive to oxidative stress. The double sitA mntH mutant of R. leguminosarum was unable to fix nitrogen (Fix- ) with legumes belonging to the galegoid clade (Pisum sativum, Vicia faba and Vicia hirsuta). The presence of infection thread-like structures and sparsely-packed plant cells in nodules suggest that bacteroid development was blocked, either at a late stage of infection thread progression or during bacteroid-release. In contrast, a double sitA mntH mutant was Fix+ on common bean (Phaseoli vulgaris), a member of the phaseoloid clade of legumes, indicating a host-specific symbiotic requirement for Mn2+ transport.
Collapse
Affiliation(s)
- Graham Hood
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Vinoy Ramachandran
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Alison K. East
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - J. Allan Downie
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philip S. Poole
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
12
|
Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. TrmD: A Methyl Transferase for tRNA Methylation With m 1G37. Enzymes 2017; 41:89-115. [PMID: 28601227 DOI: 10.1016/bs.enz.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m1G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m1G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis. TrmD is unique among AdoMet-dependent methyl transferases in that it requires Mg2+ in the catalytic mechanism. This Mg2+ dependence is important for regulating Mg2+ transport to Salmonella for survival of the pathogen in the host cell. The strict conservation of TrmD among bacterial species suggests that a better characterization of its enzymology and biology will have a broad impact on our understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ryuma Matsubara
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryuichi Takase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Isao Masuda
- Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
13
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
14
|
Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation. mBio 2016; 7:mBio.01475-16. [PMID: 27677795 PMCID: PMC5050338 DOI: 10.1128/mbio.01475-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn) and manganese (Mn2+, Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii. Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress. Acinetobacter baumannii is a bacterium that causes bloodstream, wound, urinary tract, and pneumonia infections, with a high disease burden in intensive care units. Treatment of A. baumannii infection is complicated by resistance to most antibiotics in use today, and resistance to last-resort therapies has become commonplace. New treatments for A. baumannii infection are desperately needed, but our current understanding of the bacterial factors required to cause infection is limited. We previously found that the abundant innate immune protein calprotectin inhibits the growth of A. baumannii by withholding essential metals. Despite this, A. baumannii is still able to infect wild-type mice, which produce calprotectin during infection. Here, we identify factors employed by A. baumannii during infection to overcome calprotectin-mediated metal sequestration. Moreover, we expose a connection between metal starvation and metabolism that may be a “chink in the armor” of A. baumannii and lead to new treatment options.
Collapse
|
15
|
Hohle TH, O'Brian MR. Metal-specific control of gene expression mediated by Bradyrhizobium japonicum Mur and Escherichia coli Fur is determined by the cellular context. Mol Microbiol 2016; 101:152-66. [PMID: 26998998 DOI: 10.1111/mmi.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/21/2023]
Abstract
Bradyrhizobium japonicum Mur and Escherichia coli Fur are manganese- and iron-responsive transcriptional regulators, respectively, that belong to the same protein family. Here, we show that neither Mur nor Fur discriminate between Fe(2+) and Mn(2+) in vitro nor is there a metal preference for conferral of DNA-binding activity on the purified proteins. When expressed in E. coli, B. japonicum Mur responded to iron, but not manganese, as determined by in vivo promoter occupancy and transcriptional repression activity. Moreover, E. coli Fur activity was manganese-dependent in B. japonicum. Total and chelatable iron levels were higher in E. coli than in B. japonicum under identical growth conditions, and Mur responded to iron in a B. japonicum iron export mutant that accumulated high levels of the metal. However, elevated manganese content in E. coli did not confer activity on Fur or Mur, suggesting a regulatory pool of manganese in B. japonicum that is absent in E. coli. We conclude that the metal selectivity of Mur and Fur depends on the cellular context in which they function, not on intrinsic properties of the proteins. Also, the novel iron sensing mechanism found in the rhizobia may be an evolutionary adaptation to the cellular manganese status.
Collapse
Affiliation(s)
- Thomas H Hohle
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
16
|
Shabayek S, Bauer R, Mauerer S, Mizaikoff B, Spellerberg B. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions. Mol Microbiol 2016; 100:589-606. [PMID: 27150893 DOI: 10.1111/mmi.13335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany.,Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
F. M. Cellier M, Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. J Bacteriol 2015; 198:816-29. [PMID: 26712936 DOI: 10.1128/jb.00668-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties that are affected by both iron and manganese levels are those required for normal surface attachment and biofilm formation, but the requirement for each of these transition metals is mechanistically independent from the other.
Collapse
|
19
|
Abstract
Iron is an essential nutrient, but it can also be toxic. Therefore, iron homeostasis must be strictly regulated. Transcriptional control of iron-dependent gene expression in the rhizobia and other taxa of the Alphaproteobacteria is fundamentally different from the Fur paradigm in Escherichia coli and other model systems. Rather than sense iron directly, the rhizobia employ the iron response regulator (Irr) to monitor and respond to the status of an iron-dependent process, namely, heme biosynthesis. This novel control mechanism allows iron homeostasis to be integrated with other cellular processes, and it permits differential control of iron regulon genes in a manner not readily achieved by Fur. Moreover, studies of Irr have defined a role for heme in conditional protein stability that has been subsequently described in eukaryotes. Finally, Irr-mediated control of iron metabolism may reflect a cellular strategy that accommodates a greater reliance on manganese.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, New York 14214;
| |
Collapse
|
20
|
A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. ACTA ACUST UNITED AC 2014; 21:1351-1360. [PMID: 25219964 DOI: 10.1016/j.chembiol.2014.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
The catalytic mechanism of the majority of S-adenosyl methionine (AdoMet)-dependent methyl transferases requires no divalent metal ions. Here we report that methyl transfer from AdoMet to N(1) of G37-tRNA, catalyzed by the bacterial TrmD enzyme, is strongly dependent on divalent metal ions and that Mg(2+) is the most physiologically relevant. Kinetic isotope analysis, metal rescue, and spectroscopic measurements indicate that Mg(2+) is not involved in substrate binding, but in promoting methyl transfer. On the basis of the pH-activity profile indicating one proton transfer during the TrmD reaction, we propose a catalytic mechanism in which the role of Mg(2+) is to help to increase the nucleophilicity of N(1) of G37 and stabilize the negative developing charge on O(6) during attack on the methyl sulfonium of AdoMet. This work demonstrates how Mg(2+) contributes to the catalysis of AdoMet-dependent methyl transfer in one of the most crucial posttranscriptional modifications to tRNA.
Collapse
|
21
|
Cubillas C, Vinuesa P, Tabche ML, Dávalos A, Vázquez A, Hernández-Lucas I, Romero D, García-de los Santos A. The cation diffusion facilitator protein EmfA of Rhizobium etli belongs to a novel subfamily of Mn(2+)/Fe(2+) transporters conserved in α-proteobacteria. Metallomics 2014; 6:1808-15. [PMID: 25054342 DOI: 10.1039/c4mt00135d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese (Mn(2+)) plays a key role in important cellular functions such as oxidative stress response and bacterial virulence. The mechanisms of Mn(2+) homeostasis are not fully understood, there are few data regarding the functional and taxonomic diversity of Mn(2+) exporters. Our recent phylogeny of the cation diffusion facilitator (CDF) family of transporters classified the bacterial Mn(2+)-CDF transporters characterized to date, Streptococcus pneumoniae MntE and Deinococcus radiodurans DR1236, into two monophyletic groups. DR1236 was shown to belong to the highly-diverse metal specificity clade VI, together with TtCzrB, a Zn(2+)/Cd(2+) transporter from Thermus thermophilus, the Fe(2+) transporter Sll1263 from Synechocystis sp and eight uncharacterized homologs whose potential Mn(2+)/Zn(2+)/Cd(2+)/Fe(2+) specificities could not be accurately inferred because only eleven proteins were grouped in this clade. A new phylogeny inferred from the alignment of 197 clade VI homologs revealed three novel subfamilies of uncharacterized proteins. Remarkably, one of them contained 91 uncharacterized α-proteobacteria transporters (46% of the protein data set) grouped into a single subfamily. The Mn(2+)/Fe(2+) specificity of this subfamily was proposed through the functional characterization of the Rhizobium etli RHE_CH03072 gene. This gene was upregulated by Mn(2+), Zn(2+), Cd(2+) and Fe(2+) but conferred only Mn(2+) resistance to R. etli. The expression of the RHE_CH03072 gene in an E. coli mntP/zitB/zntA mutant did not relieve either Zn(2+) or Mn(2+) stress but slightly increased its Fe(2+) resistance. These results indicate that the RHE_CH03072 gene, now designated as emfA, encodes for a bacterial Mn(2+)/Fe(2+) resistance CDF protein, having orthologs in more than 60 α-proteobacterial species.
Collapse
Affiliation(s)
- Ciro Cubillas
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hohle TH, O'Brian MR. Magnesium-dependent processes are targets of bacterial manganese toxicity. Mol Microbiol 2014; 93:736-47. [PMID: 24975873 DOI: 10.1111/mmi.12687] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/09/2023]
Abstract
A Bradyrhizobium japonicum mutant defective in the gene encoding the high-affinity Mn(2+) transporter MntH has a severe growth phenotype under manganese limitation. Here, we isolated suppressor mutants of an mntH strain that grew under manganese limitation, and activities of high-affinity Mn(2+) transport and Mn(2+) -dependent enzymes were partially rescued. The suppressor strains harbour gain-of-function mutations in the gene encoding the Mg(2+) channel MgtE. The MgtE variants likely allow Mn(2+) entry via loss of a gating mechanism that normally holds the transporter in the closed state when cellular Mg(2+) levels are high. Both MgtE-dependent and MgtE-independent suppressor phenotypes were recapitulated by magnesium-limited growth of the mntH strain. Growth studies of wild-type cells suggest that manganese is toxic to cells when environmental magnesium is low. Moreover, extracellular manganese and magnesium levels were manipulated to inhibit growth without substantially altering the intracellular content of either metal, implying that manganese toxicity depends on its cellular distribution rather than the absolute concentration. Mg(2+) -dependent enzyme activities were found to be inhibited or stimulated by Mn(2+) . We conclude that Mn(2+) can occupy Mg(2+) binding sites in cells, and suggest that Mg(2+) -dependent processes are targets of manganese toxicity.
Collapse
Affiliation(s)
- Thomas H Hohle
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | | |
Collapse
|
23
|
Shin JH, Wakeman CA, Goodson JR, Rodionov DA, Freedman BG, Senger RS, Winkler WC. Transport of magnesium by a bacterial Nramp-related gene. PLoS Genet 2014; 10:e1004429. [PMID: 24968120 PMCID: PMC4072509 DOI: 10.1371/journal.pgen.1004429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Collapse
Affiliation(s)
- Jung-Ho Shin
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Catherine A. Wakeman
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Dallas, Texas, United States of America
| | - Jonathan R. Goodson
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Dmitry A. Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Benjamin G. Freedman
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Ryan S. Senger
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Wade C. Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sankari S, O'Brian MR. A bacterial iron exporter for maintenance of iron homeostasis. J Biol Chem 2014; 289:16498-507. [PMID: 24782310 DOI: 10.1074/jbc.m114.571562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutritional iron acquisition by bacteria is well described, but almost nothing is known about bacterial iron export even though it is likely to be an important homeostatic mechanism. Here, we show that Bradyrhizobium japonicum MbfA (Blr7895) is an inner membrane protein expressed in cells specifically under high iron conditions. MbfA contains an N-terminal ferritin-like domain (FLD) and a C-terminal domain homologous to the eukaryotic vacuolar membrane Fe(2+)/Mn(2+) transporter CCC1. An mbfA deletion mutant is severely defective in iron export activity, contains >2-fold more intracellular iron than the parent strain, and displays an aberrant iron-dependent gene expression phenotype. B. japonicum is highly resistant to iron and H2O2 stresses, and MbfA contributes substantially to this as determined by phenotypes of the mbfA mutant strain. The N-terminal FLD was localized to the cytoplasmic side of the inner membrane. Substitution mutations in the putative iron-binding amino acid residues E20A and E107A within the N-terminal FLD abrogate iron export activity and stress response function. Purified soluble FLD oxidizes ferrous iron (Fe(2+)) to incorporate ferric iron (Fe(3+)) in a 2:1 iron:protein ratio, which does not occur in the E20A/E107A mutant. The FLD fragment is a dimer in solution, implying that the MbfA exporter functions as a dimer. MbfA belongs to a protein family found in numerous prokaryotic genera. The findings strongly suggest that iron export plays an important role in bacterial iron homeostasis.
Collapse
Affiliation(s)
- Siva Sankari
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| | - Mark R O'Brian
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
25
|
Jaggavarapu S, O'Brian MR. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function. Mol Microbiol 2014; 92:609-24. [PMID: 24646221 DOI: 10.1111/mmi.12584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/26/2022]
Abstract
Bradyrhizobium japonicum Irr is a conditionally stable transcriptional activator and repressor that accumulates in cells under iron-limited, manganese-replete conditions, but degrades in a haem-dependent manner under high iron conditions, manganese limitation or upon exposure to H2 O2 . Here, we identified Irr-regulated genes that were relatively unresponsive to factors that promote Irr degradation. The promoters of those genes bound Irr with at least 200-fold greater affinity than promoters of the responsive genes, resulting in maintenance of promoter occupancy over a wide cellular Irr concentration range. For Irr-repressible genes, promoter occupancy correlated with transcriptional repression, resulting in differential levels of expression based on Irr affinity for target promoters. However, inactivation of positively controlled genes required neither promoter vacancy nor loss of DNA-binding activity by Irr. Thus, activation and repression functions of Irr may be uncoupled from each other under certain conditions. Abrogation of Irr activation function was haem-dependent, thus haem has two functionally separable roles in modulating Irr activity. The findings imply a greater complexity of control by Irr than can be achieved by conditional stability alone. We suggest that these regulatory mechanisms accommodate the differing needs for Irr regulon genes in response to the prevailing metabolic state of the cell.
Collapse
Affiliation(s)
- Siddharth Jaggavarapu
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, Buffalo, NY, 14214, USA
| | | |
Collapse
|
26
|
α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (Reading) 2014; 160:514-524. [DOI: 10.1099/mic.0.073171-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3′ termination site of the α-fur transcript was determined by 3′ rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.
Collapse
|
27
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
28
|
Zappa S, Bauer CE. The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus. Mol Microbiol 2013; 90:1277-92. [PMID: 24134691 PMCID: PMC3890261 DOI: 10.1111/mmi.12431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/27/2023]
Abstract
The purple bacterium Rhodobacter capsulatus is unique among Rhodobacteriacae as it contains a putative iron response regulator (Irr) but does not possess a copy of the ferric uptake regulator (Fur). Interestingly, an in-frame deletion mutant of Irr shows no major role in iron homeostasis. Instead, we showed that the previously identified activator of haem gene expression HbrL is a crucial regulator of iron homeostasis. We demonstrated that an HbrL deletion strain is unable to grow in iron-limited medium in aerobic, semi-aerobic and photosynthetic conditions and that suppressor strains can be isolated with mutations in iron uptake genes. Gene expression studies revealed that HbrL is a transcriptional activator of multiple ferrous and ferric iron uptake systems in addition to a haem uptake system. Finally, HbrL activates the expression of numerous haem biosynthesis genes. Thus, HbrL has a central role in controlling the amount of iron transport in conjunction with the synthesis of its cognate tetrapyrrole haem.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| |
Collapse
|
29
|
Banh A, Chavez V, Doi J, Nguyen A, Hernandez S, Ha V, Jimenez P, Espinoza F, Johnson HA. Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1. PLoS One 2013; 8:e77835. [PMID: 24147089 PMCID: PMC3798386 DOI: 10.1371/journal.pone.0077835] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.
Collapse
Affiliation(s)
- Andy Banh
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Valarie Chavez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Julia Doi
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Allison Nguyen
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Sophia Hernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Vu Ha
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Peter Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Fernanda Espinoza
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Hope A. Johnson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
Collapse
Affiliation(s)
- Michael Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
31
|
Hohle TH, O'Brian MR. Manganese is required for oxidative metabolism in unstressed Bradyrhizobium japonicum cells. Mol Microbiol 2012; 84:766-77. [PMID: 22463793 DOI: 10.1111/j.1365-2958.2012.08057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies of Mn(2+) transport mutants indicate that manganese is essential for unstressed growth in some bacterial species, but is required primarily for induced stress responses in others. A Bradyrhizobium japonicum mutant defective in the high-affinity Mn(2+) transporter gene mntH has a severe growth phenotype under manganese limitation, suggesting a requirement for the metal under unstressed growth. Here, we found that activities of superoxide dismutase and the glycolytic enzyme pyruvate kinase were deficient in an mntH strain grown under manganese limitation. We identified pykM as the only pyruvate kinase-encoding gene based on deficiency in activity of a pykM mutant, rescue of the growth phenotype with pyruvate, and pyruvate kinase activity of purified recombinant PykM. PykM is unusual in that it required Mn(2+) rather than Mg(2+) for high activity, and that neither fructose-1,6-bisphosphate nor AMP was a positive allosteric effector. The mntH-dependent superoxide dismutase is encoded by sodM, the only expressed superoxide dismutase-encoding gene under unstressed growth conditions. An mntH mutant grew more slowly on pyruvate under manganese-limited conditions than did a pykM sodM double mutant, implying additional manganese-dependent processes. The findings implicate roles for manganese in key steps in unstressed oxidative metabolism in B. japonicum.
Collapse
Affiliation(s)
- Thomas H Hohle
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
32
|
HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum. J Bacteriol 2012; 194:3137-43. [PMID: 22505680 DOI: 10.1128/jb.00071-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Utilization of heme as an iron source by Bradyrhizobium japonicum involves induction of the outer membrane heme receptor gene hmuR and other genes within the heme utilization locus. Here, we discovered the hmuP gene located upstream of hmuR and transcribed divergently from it along with hmuTUV. hmuP encodes a small protein that accumulated under iron limitation and is transcriptionally controlled by the global iron-responsive regulator Irr, as were all genes within the heme utilization locus. Cross-linking and immunoprecipitation experiments showed that Irr occupies the hmuR-hmuP promoter in vivo. An hmuP mutant did not grow on heme as an iron source, but retained the ability to use ferric chloride. Correspondingly, induction of hmuR mRNA under iron limitation was severely diminished in an hmuP strain, but other genes within the Irr regulon were unaffected. HmuP occupied the hmuR-hmuP promoter, and thus it plays a direct regulatory role in gene expression. HmuP was not required for Irr occupancy, nor was ectopic expression of hmuP from an Irr-independent promoter sufficient to induce the hmuR gene. Thus, both HmuP and Irr occupancy are necessary for hmuR induction. We suggest that HmuP is a coactivator of Irr-dependent expression of hmuR.
Collapse
|
33
|
|
34
|
Mur regulates the gene encoding the manganese transporter MntH in Brucella abortus 2308. J Bacteriol 2011; 194:561-6. [PMID: 22101848 DOI: 10.1128/jb.05296-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MntH is the only high-affinity manganese transporter identified in Brucella. A previous study showed that MntH is required for the wild-type virulence of Brucella abortus 2308 in mice (Anderson ES, et al., Infect. Immun. 77:3466-3474, 2009) and indicated that the mntH gene is regulated in a manganese-responsive manner in this strain by a Mur homolog. In the study presented here, the transcriptional start site for mntH in B. abortus 2308 was determined by primer extension analysis. Specific interactions between Mur and the mntH promoter region were demonstrated in an electrophoretic mobility shift assay (EMSA), and a Mur binding site was identified in the -55 to -24 region of the mntH promoter by DNase I footprint analysis. The specificity of the interaction of Mur with the putative Mur box was further evaluated by EMSA employing oligonucleotides in which the consensus nucleotides in this region were substituted. These studies not only confirm a direct role for Mur in the Mn-responsive regulation of mntH expression in Brucella abortus 2308 but also identify the cis-acting elements upstream of mntH that are responsible for this regulation.
Collapse
|
35
|
Bacterial outer membrane channel for divalent metal ion acquisition. Proc Natl Acad Sci U S A 2011; 108:15390-5. [PMID: 21880957 DOI: 10.1073/pnas.1110137108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The prevailing model of bacterial membrane function predicts that the outer membrane is permeable to most small solutes because of pores with limited selectivity based primarily on size. Here, we identified mnoP in the Gram-negative bacterium Bradyrhizobium japonicum as a gene coregulated with the inner membrane Mn(2+) transporter gene mntH. MnoP is an outer membrane protein expressed specifically under manganese limitation. MnoP acts as a channel to facilitate the tranlocation of Mn(2+), but not Co(2+) or Cu(2+), into reconstituted proteoliposomes. An mnoP mutant is defective in high-affinity Mn(2+) transport into cells and has a severe growth phenotype under manganese limitation. We suggest that the outer membrane is a barrier to divalent metal ions that requires a selective channel to meet the nutritional needs of the cell.
Collapse
|
36
|
Li C, Tao J, Mao D, He C. A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS One 2011; 6:e21983. [PMID: 21789199 PMCID: PMC3136493 DOI: 10.1371/journal.pone.0021983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/14/2011] [Indexed: 12/01/2022] Open
Abstract
Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions.
Collapse
Affiliation(s)
- Chunxia Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Daqing Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chaozu He
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, Hainan, China
- * E-mail:
| |
Collapse
|
37
|
Abstract
Exposure to hydrogen peroxide (H(2)O(2)) and other reactive oxygen species is a universal feature of life in an aerobic environment. Bacteria express enzymes to detoxify H(2)O(2) and to repair the resulting damage, and their synthesis is typically regulated by redox-sensing transcription factors. The best characterized bacterial peroxide-sensors are Escherichia coli OxyR and Bacillus subtilis PerR. Analysis of their regulons has revealed that, in addition to inducible detoxification enzymes, adaptation to H(2)O(2) is mediated by modifications of metal ion homeostasis. Analogous adaptations appear to be present in other bacteria as here reviewed for Deinococcus radiodurans, Neisseria gonorrhoeae, Streptococcus pyogenes, and Bradyrhizobium japonicum. As a general theme, peroxide stress elicits changes in cytosolic metal distribution with the net effect of reducing the damage caused by reactive ferrous iron. Iron levels are reduced by repression of uptake, sequestration in storage proteins, and incorporation into metalloenzymes. In addition, peroxide-inducible transporters elevate cytosolic levels of Mn(II) and/or Zn(II) that can displace ferrous iron from sensitive targets. Although bacteria differ significantly in the detailed mechanisms employed to modulate cytosolic metal levels, a high Mn:Fe ratio has emerged as one key correlate of reactive oxygen species resistance.
Collapse
Affiliation(s)
- Melinda J Faulkner
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
38
|
Peuser V, Metz S, Klug G. Response of the photosynthetic bacterium Rhodobacter sphaeroides to iron limitation and the role of a Fur orthologue in this response. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:397-404. [PMID: 23761286 DOI: 10.1111/j.1758-2229.2011.00245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We studied the response of the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides to iron limitation in order to get first insights into the underlying mechanisms and the link between iron metabolism and oxidative stress. Our data reveal the production of elevated levels of reactive oxygen species upon iron limitation, nevertheless the response to iron limitation shows clear differences to the oxidative stress response of R. sphaeroides. While most genes of the oxidative stress response were not induced by iron limitation, we observed an upregulation of the alternative sigma factor RpoE, which has a main role in the regulation of the defence to singlet oxygen. Deletion of the Fur orthologue RSP_2494, which was designated Mur as a result of a proposed regulatory role in manganese metabolism, revealed that this protein is involved in regulation of the iron metabolism in R. sphaeroides. One predicted target of Fur/Mur is the sit operon encoding a Mn(2+) /Fe(2+) transport system. The basal level of sitA was higher in a fur/mur deletion strain compared with the wild type, which is in agreement with a repressor function of the Fur/Mur protein. In addition, we could also demonstrate a function of the Fur/Mur protein in manganese homeostasis.
Collapse
Affiliation(s)
- Verena Peuser
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
39
|
Cornelis P, Wei Q, Andrews SC, Vinckx T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011; 3:540-9. [PMID: 21566833 DOI: 10.1039/c1mt00022e] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Microbial Interactions, Department of Molecular and Cellular Interactions, VIB and Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
40
|
Fleischhacker AS, Kiley PJ. Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 2011; 15:335-41. [PMID: 21292540 PMCID: PMC3074041 DOI: 10.1016/j.cbpa.2011.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
Abstract
Iron-binding transcription factors are widespread throughout the bacterial world and to date are known to bind several types of cofactors, such as Fe2+, heme, or iron-sulfur clusters. The known chemistry of these cofactors is exploited by transcription factors, including Fur, FNR, and NsrR, to sense molecules such as Fe2+, gases (e.g. oxygen and nitric oxide), or reactive oxygen species. New structural data and information generated by genome-wide analysis studies have provided additional details about the mechanism and function of iron-binding transcription factors that act as sensors.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706
| |
Collapse
|
41
|
Manganese Oxidation by Bacteria: Biogeochemical Aspects. MOLECULAR BIOMINERALIZATION 2011; 52:49-76. [DOI: 10.1007/978-3-642-21230-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Hohle TH, O'Brian MR. Transcriptional control of the Bradyrhizobium japonicum irr gene requires repression by fur and Antirepression by Irr. J Biol Chem 2010; 285:26074-80. [PMID: 20573962 PMCID: PMC2924008 DOI: 10.1074/jbc.m110.145979] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/21/2010] [Indexed: 11/06/2022] Open
Abstract
Bradyrhizobium japonicum Fur mediates manganese-responsive transcriptional control of the mntH gene independently of iron, but it also has been implicated in iron-dependent regulation of the irr gene. Thus, we sought to address the apparent discrepancy in Fur responsiveness to metals. Irr is a transcriptional regulator found in iron-limited cells. Here, we show that irr gene mRNA was regulated by both iron and manganese, and repression occurred only in the presence of both metals. Under these conditions, Fur occupied the irr promoter in vivo in the parent strain, and irr mRNA expression was derepressed in a fur mutant. Under low iron conditions, the irr promoter was occupied by Irr, but not by Fur, and control by manganese was lost. Fur occupancy of the irr promoter was dependent on manganese, but not iron, in an irr mutant, suggesting that Irr normally interferes with Fur binding. Correspondingly, regulation of irr mRNA was dependent only on manganese in the irr strain. The Irr binding site within the irr promoter partially overlaps the Fur binding site. DNase I footprinting analysis showed that Irr interfered with Fur binding in vitro. In addition, Fur repression of transcription from the irr promoter in vitro was relieved by Irr. We conclude that Fur mediates manganese-dependent repression of irr transcription and that Irr acts as an antirepressor under iron limitation by preventing Fur binding to the promoter.
Collapse
Affiliation(s)
- Thomas H. Hohle
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| | - Mark R. O'Brian
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
43
|
Abstract
Perception and response to nutritional iron availability by bacteria are essential to control cellular iron homeostasis. The Irr protein from Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to globally regulate iron-dependent gene expression. Heme binds directly to Irr to trigger its degradation. Here, we show that severe manganese limitation created by growth of a Mn(2+) transport mutant in manganese-limited media resulted in a cellular iron deficiency. In wild-type cells, Irr levels were attenuated under manganese limitation, resulting in reduced promoter occupancy of target genes and altered iron-dependent gene expression. Irr levels were high regardless of manganese availability in a heme-deficient mutant, indicating that manganese normally affects heme-dependent degradation of Irr. Manganese altered the secondary structure of Irr in vitro and inhibited binding of heme to the protein. We propose that manganese limitation destabilizes Irr under low-iron conditions by lowering the threshold of heme that can trigger Irr degradation. The findings implicate a mechanism for the control of iron homeostasis by manganese in a bacterium.
Collapse
|
44
|
Amarelle V, Koziol U, Rosconi F, Noya F, O'Brian MR, Fabiano E. A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2010; 156:1873-1882. [PMID: 20167620 PMCID: PMC3068671 DOI: 10.1099/mic.0.037713-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sinorhizobium meliloti has multiple systems for iron acquisition, including the use of haem as an iron source. Haem internalization involves the ShmR haem outer membrane receptor and the hmuTUV locus, which participates in haem transport across the cytoplasmic membrane. Previous studies have demonstrated that expression of the shmR gene is negatively regulated by iron through RirA. Here, we identify hmuP in a genetic screen for mutants that displayed aberrant control of shmR. The normal induction of shmR in response to iron limitation was lost in the hmuP mutant, showing that this gene positively affects shmR expression. Moreover, the HmuP protein is not part of the haemin transporter system. Analysis of gene expression and siderophore production indicates that disruption of hmuP does not affect other genes related to the iron-restriction response. Our results strongly indicate that the main function of HmuP is the transcriptional regulation of shmR. Sequence alignment of HmuP homologues and comparison with the NMR structure of Rhodopseudomonas palustris CGA009 HmuP protein revealed that certain amino acids localized within predicted β-sheets are well conserved. Our data indicate that at least one of the β-sheets is important for HmuP activity.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay.,Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Federico Rosconi
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Francisco Noya
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Mark R O'Brian
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Elena Fabiano
- Laboratorio de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Av. Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
45
|
Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 2009; 77:3466-74. [PMID: 19487482 PMCID: PMC2715675 DOI: 10.1128/iai.00444-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/03/2009] [Accepted: 05/20/2009] [Indexed: 11/20/2022] Open
Abstract
The gene designated BAB1_1460 in the Brucella abortus 2308 genome sequence is predicted to encode the manganese transporter MntH. Phenotypic analysis of an isogenic mntH mutant indicates that MntH is the sole high-affinity manganese transporter in this bacterium but that MntH does not play a detectable role in the transport of Fe(2+), Zn(2+), Co(2+), or Ni(2+). Consistent with the apparent selectivity of the corresponding gene product, the expression of the mntH gene in B. abortus 2308 is repressed by Mn(2+), but not Fe(2+), and this Mn-responsive expression is mediated by a Mur-like repressor. The B. abortus mntH mutant MWV15 exhibits increased susceptibility to oxidative killing in vitro compared to strain 2308, and a comparative analysis of the superoxide dismutase activities present in these two strains indicates that the parental strain requires MntH in order to make wild-type levels of its manganese superoxide dismutase SodA. The B. abortus mntH mutant also exhibits extreme attenuation in both cultured murine macrophages and experimentally infected C57BL/6 mice. These experimental findings indicate that Mn(2+) transport mediated by MntH plays an important role in the physiology of B. abortus 2308, particularly during its intracellular survival and replication in the host.
Collapse
Affiliation(s)
- Eric S Anderson
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|