1
|
Vastel M, Pau-Roblot C, Ferré S, Tocqueville V, Ambroset C, Marois-Créhan C, Gautier-Bouchardon AV, Tardy F, Gaurivaud P. Capsular Polysaccharide Production in Bacteria of the Mycoplasma Genus: A Huge Diversity of Pathways and Synthases for So-Called Minimal Bacteria. Mol Microbiol 2024; 122:866-878. [PMID: 39473362 DOI: 10.1111/mmi.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 12/21/2024]
Abstract
Mycoplasmas are wall-less bacteria with many species spread across various animal hosts in which they can be pathogenic. Despite their reduced anabolic capacity, some mycoplasmas are known to secrete hetero- and homopolysaccharides, which play a role in host colonization through biofilm formation or immune evasion, for instance. This study explores how widespread the phenomenon of capsular homopolysaccharide secretion is within mycoplasmas, and investigates the diversity of both the molecules produced and the synthase-type glycosyltransferases responsible for their production. Fourteen strains representing 14 (sub)species from four types of hosts were tested in vitro for their polysaccharide secretion using both specific (immunodetection) and nonspecific (sugar dosage) assays. We evidenced a new, atypical homopolymer of β-(1 → 6)-glucofuranose (named glucofuranan) in the human pathogen Mycoplasma (M.) fermentans, as well as a β-(1 → 6)-glucopyranose polymer for the turkey pathogen M. iowae and galactan (β-(1 → 6)-galactofuranose) and β-(1 → 2)-glucopyranose for M. bovigenitalium infecting ruminants. Sequence and phylogenetic analyses revealed a huge diversity of synthases from varied Mycoplasma species. The clustering of these membrane-embedded glycosyltransferases into three main groups was only partially correlated to the structure of the produced homopolysaccharides.
Collapse
Affiliation(s)
- Manon Vastel
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Séverine Ferré
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Véronique Tocqueville
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Chloé Ambroset
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| | - Corinne Marois-Créhan
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Anne V Gautier-Bouchardon
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Florence Tardy
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Patrice Gaurivaud
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| |
Collapse
|
2
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
3
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
4
|
Daubenspeck JM, Totten AH, Needham J, Feng M, Balish MF, Atkinson TP, Dybvig K. Mycoplasma genitalium Biofilms Contain Poly-GlcNAc and Contribute to Antibiotic Resistance. Front Microbiol 2020; 11:585524. [PMID: 33193233 PMCID: PMC7652822 DOI: 10.3389/fmicb.2020.585524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma genitalium is an important etiologic agent of non-gonococcal urethritis (NGU), known for chronicity and multidrug resistance, in which biofilms may play an integral role. In some bacterial species capable of forming biofilms, extracellular polymeric substances (EPS) composed of poly-N-acetylglucosamine (PNAG) are a crucial component of the matrix. Monosaccharide analysis of M. genitalium strains revealed high abundance of GlcNAc, suggesting a biofilm-specific EPS. Chromatograms also showed high concentrations of galactose and glucose as observed in other mycoplasma species. Fluorescence microscopy of M. genitalium biofilms utilizing fluor-coupled lectins revealed differential staining of biofilm structures. Scanning electron microscopy (SEM) showed increasing maturation over time of bacterial “towers” seen in biofilm development. As seen with Mycoplasma pneumoniae, organisms within fully mature M. genitalium biofilms exhibited loss of cell polarization. Bacteria associated with disrupted biofilms exhibited decreased dose-dependent viability after treatment with antibiotics compared to bacteria with intact biofilms. In addition, growth index analysis demonstrated decreases in metabolism in cultures with disrupted biofilms with antibiotic treatment. Taken together, these data suggest that M. genitalium biofilms are a contributing factor in antibiotic resistance.
Collapse
Affiliation(s)
- James M Daubenspeck
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica Feng
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Qin L, Chen Y, You X. Subversion of the Immune Response by Human Pathogenic Mycoplasmas. Front Microbiol 2019; 10:1934. [PMID: 31497004 PMCID: PMC6712165 DOI: 10.3389/fmicb.2019.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are a large group of prokaryotes which is believed to be originated from Gram-positive bacteria via degenerative evolution, and mainly capable of causing a wide range of human and animal infections. Although innate immunity and adaptive immunity play crucial roles in preventing mycoplasma infection, immune response that develops after infection fails to completely eliminate this bacterium under certain circumstances. Thus, it is reasonable to speculate that mycoplasmas employ some mechanisms to deal with coercion of host defense system. In this review, we will highlight and provide a comprehensive overview of immune evasion strategies that have emerged in mycoplasma infection, which can be divided into four aspects: (i) Molecular mimicry and antigenic variation on the surface of the bacteria to evade the immune surveillance; (ii) Overcoming the immune effector molecules assaults: Induction of detoxified enzymes to degradation of reactive oxygen species; Expression of nucleases to degrade the neutrophil extracellular traps to avoid killing by Neutrophil; Capture and cleavage of immunoglobulins to evade humoral immune response; (iii) Persistent survival: Invading into the host cell to escape the immune damage; Formation of a biofilm to establish a persistent infection; (iv) Modulation of the immune system to down-regulate the intensity of immune response. All of these features increase the probability of mycoplasma survival in the host and lead to a persistent, chronic infections. A profound understanding on the mycoplasma to subvert the immune system will help us to better understand why mycoplasma is so difficult to eradicate and ultimately provide new insights on the development of therapeutic regimens against this bacterium in future.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
6
|
Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Lynott MR, Hutchison CA, Smith HO, Lapek JD, Gonzalez DJ, de Crécy-Lagard V, Haas D, Hanson AD, Labhsetwar P, Glass JI, Luthey-Schulten Z. Essential metabolism for a minimal cell. eLife 2019; 8:36842. [PMID: 30657448 PMCID: PMC6609329 DOI: 10.7554/elife.36842] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/17/2019] [Indexed: 11/29/2022] Open
Abstract
JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism. One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating ‘minimal bacterial cells’. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive – in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.
Collapse
Affiliation(s)
- Marian Breuer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tyler M Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | | | - Kim S Wise
- J Craig Venter Institute, La Jolla, United States
| | - Lijie Sun
- J Craig Venter Institute, La Jolla, United States
| | | | | | | | - John D Lapek
- Department of Pharmacology and School of Pharmacy, University of California at San Diego, La Jolla, United States
| | - David J Gonzalez
- Department of Pharmacology and School of Pharmacy, University of California at San Diego, La Jolla, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Drago Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, United States
| | - Piyush Labhsetwar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John I Glass
- J Craig Venter Institute, La Jolla, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
7
|
Ambroset C, Pau-Roblot C, Game Y, Gaurivaud P, Tardy F. Identification and Characterization of Mycoplasma feriruminatoris sp. nov. Strains Isolated from Alpine Ibex: A 4th Species in the Mycoplasma mycoides Cluster Hosted by Non-domesticated Ruminants? Front Microbiol 2017; 8:939. [PMID: 28611743 PMCID: PMC5447728 DOI: 10.3389/fmicb.2017.00939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
The genus Mycoplasma, a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma (M.) feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, β-(1→6)-galactan and β-(1→6)-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas.
Collapse
Affiliation(s)
- Chloé Ambroset
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des RuminantsMarcy-l'Étoile, France.,Anses, Laboratoire de Lyon, UMR Mycoplasmoses des RuminantsLyon, France
| | - Corinne Pau-Roblot
- Unité de Biologie des Plantes et Innovation, EA 3900, Université de Picardie Jules VerneAmiens, France
| | - Yvette Game
- Laboratoire Départemental d'Analyses Vétérinaires de SavoieChambéry, France
| | - Patrice Gaurivaud
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des RuminantsMarcy-l'Étoile, France.,Anses, Laboratoire de Lyon, UMR Mycoplasmoses des RuminantsLyon, France
| | - Florence Tardy
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des RuminantsMarcy-l'Étoile, France.,Anses, Laboratoire de Lyon, UMR Mycoplasmoses des RuminantsLyon, France
| |
Collapse
|
8
|
Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis. Vet Microbiol 2016; 198:17-22. [PMID: 28062003 DOI: 10.1016/j.vetmic.2016.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/09/2016] [Accepted: 11/20/2016] [Indexed: 11/21/2022]
Abstract
Mycoplasma gallisepticum (MG) is an important pathogen that can cause chronic respiratory disease in chickens and infectious sinusitis in turkeys. MG has the ability to form biofilms. The molecular mechanisms underlying MG biofilm formation are complex and poorly understood. To better understand the mechanisms involved in biofilm formation, mini-Tn4001-SGM, a novel transposon vector containing the gentamicin gene was constructed and electroporated into MG strain Rlow. Of the 738 mutants obtained, 12 had significantly reduced capacity to form biofilms in a polystyrene microtiter-plate biofilm assay. Ten different genes were identified as disrupted in these mutants using genomic walking from the transposon insertion sites and Southern bolt hybridization with a transposon-based probe. Four genes were associated with cellular processes, especially synthesis of extracellular polysaccharide and several lipoproteins encoded. Other genes were associated with translation, metabolism and gene regulation, and one had unknown function. Seven genes identified in this study have been previously associated with biofilm formation in MG or other bacterial species. The other three have not been previously reported to play a role in biofilm formation in MG. In conclusion, a new transposon vector was shown to be a powerful tool for future studies of MG pathogenesis. This study adds to our understanding of the molecular mechanisms involved in MG biofilm formation and may shed light on the persistence of MG infections.
Collapse
|
9
|
Daubenspeck JM, Liu R, Dybvig K. Rhamnose Links Moonlighting Proteins to Membrane Phospholipid in Mycoplasmas. PLoS One 2016; 11:e0162505. [PMID: 27603308 PMCID: PMC5014317 DOI: 10.1371/journal.pone.0162505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Many proteins that have a primary function as a cytoplasmic protein are known to have the ability to moonlight on the surface of nearly all organisms. An example is the glycolytic enzyme enolase, which can be found on the surface of many types of cells from bacteria to human. Surface enolase is not enzymatic because it is monomeric and oligomerization is required for glycolytic activity. It can bind various molecules and activate plasminogen. Enolase lacks a signal peptide and the mechanism by which it attaches to the surface is unknown. We found that treatment of whole cells of the murine pathogen Mycoplasma pulmonis with phospholipase D released enolase and other common moonlighting proteins. Glycostaining suggested that the released proteins were glycosylated. Cytoplasmic and membrane-bound enolase was isolated by immunoprecipitation. No post-translational modification was detected on cytoplasmic enolase, but membrane enolase was associated with lipid, phosphate and rhamnose. Treatment with phospholipase released the lipid and phosphate from enolase but not the rhamnose. The site of rhamnosylation was identified as a glutamine residue near the C-terminus of the protein. Rhamnose has been found in all species of mycoplasma examined but its function was previously unknown. Mycoplasmas are small bacteria with have no peptidoglycan, and rhamnose in these organisms is also not associated with polysaccharide. We suggest that rhamnose has a central role in anchoring proteins to the membrane by linkage to phospholipid, which may be a general mechanism for the membrane association of moonlighting proteins in mycoplasmas and perhaps other bacteria.
Collapse
Affiliation(s)
- James M. Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mycoplasma agalactiae Secretion of β-(1→6)-Glucan, a Rare Polysaccharide in Prokaryotes, Is Governed by High-Frequency Phase Variation. Appl Environ Microbiol 2016; 82:3370-3383. [PMID: 27037120 DOI: 10.1128/aem.00274-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Mycoplasmas are minimal, wall-less bacteria but have retained the ability to secrete complex carbohydrate polymers that constitute a glycocalyx. In members of the Mycoplasma mycoides cluster, which are important ruminant pathogens, the glycocalyx includes both cell-attached and cell-free polysaccharides. This report explores the potential secretion of polysaccharides by M. agalactiae, another ruminant pathogen that belongs to a distant phylogenetic group. Comparative genomic analyses showed that M. agalactiae possesses all the genes required for polysaccharide secretion. Notably, a putative synthase gene (gsmA) was identified, by in silico reconstruction of the biosynthetic pathway, that could be involved in both polymerization and export of the carbohydrate polymers. M. agalactiae polysaccharides were then purified in vitro and found to be mainly cell attached, with a linear β-(1→6)-glucopyranose structure [β-(1→6)-glucan]. Secretion of β-(1→6)-glucan was further shown to rely on the presence of a functional gsmA gene, whose expression is subjected to high-frequency phase variation. This event is governed by the spontaneous intraclonal variation in length of a poly(G) tract located in the gsmA coding sequence and was shown to occur in most of the M. agalactiae clinical isolates tested in this study. M. agalactiae susceptibility to serum-killing activity appeared to be dictated by ON/OFF switching of β-(1→6)-glucan secretion, suggesting a role of this phenomenon in survival of the pathogen when it invades the host bloodstream. Finally, β-(1→6)-glucan secretion was not restricted to M. agalactiae but was detected also in M. mycoides subsp. capri PG3(T), another pathogen of small ruminants. IMPORTANCE Many if not all bacteria are able to secrete polysaccharides, either attached to the cell surface or exported unbound into the extracellular environment. Both types of polysaccharides can play a role in bacterium-host interactions. Mycoplasmas are no exception despite their poor overall metabolic capacity. We showed here that M. agalactiae secretes a capsular β-(1→6)-glucopyranose thanks to a specific glycosyltransferase with synthase activity. This secretion is governed by high-frequency ON/OFF phase variation that might be crucial in mycoplasma host dissemination, as cell-attached β-(1→6)-glucopyranose increases serum-killing susceptibility. Our results provide functional genetic data about mycoplasmal glycosyltransferases with dual functions, i.e., assembly and export of the sugar polymers across the cell membrane. Furthermore, we demonstrated that nonprotein epitopes can be subjected to surface antigenic variation in mycoplasmas. Finally, the present report contributes to unravel the role of secreted polysaccharides in the virulence and pathogenicity of these peculiar bacteria.
Collapse
|
11
|
Daubenspeck JM, Jordan DS, Simmons W, Renfrow MB, Dybvig K. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide. PLoS One 2015; 10:e0143362. [PMID: 26599081 PMCID: PMC4657876 DOI: 10.1371/journal.pone.0143362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.
Collapse
Affiliation(s)
- James M. Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David S. Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Warren Simmons
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
12
|
Highly dynamic genomic loci drive the synthesis of two types of capsular or secreted polysaccharides within the Mycoplasma mycoides cluster. Appl Environ Microbiol 2014; 81:676-87. [PMID: 25398856 DOI: 10.1128/aem.02892-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas of the Mycoplasma mycoides cluster are all ruminant pathogens. Mycoplasma mycoides subsp. mycoides is responsible for contagious bovine pleuropneumonia and is known to produce capsular polysaccharide (CPS) and exopolysaccharide (EPS). Previous studies have strongly suggested a role for Mycoplasma mycoides subsp. mycoides polysaccharides in pathogenicity. Mycoplasma mycoides subsp. mycoides-secreted EPS was recently characterized as a β(1→6)-galactofuranose homopolymer (galactan) identical to the capsular product. Here, we extended the characterization of secreted polysaccharides to all other members of the M. mycoides cluster: M. capricolum subsp. capripneumoniae, M. capricolum subsp. capricolum, M. leachii, and M. mycoides subsp. capri (including the LC and Capri serovars). Extracted EPS was characterized by nuclear magnetic resonance, resulting in the identification of a homopolymer of β(1→2)-glucopyranose (glucan) in M. capricolum subsp. capripneumoniae and M. leachii. Monoclonal antibodies specific for this glucan and for the Mycoplasma mycoides subsp. mycoides-secreted galactan were used to detect the two polysaccharides. While M. mycoides subsp. capri strains of serovar LC produced only capsular galactan, no polysaccharide could be detected in strains of serovar Capri. All strains of M. capricolum subsp. capripneumoniae and M. leachii produced glucan CPS and EPS, whereas glucan production and localization varied among M. capricolum subsp. capricolum strains. Genes associated with polysaccharide synthesis and forming a biosynthetic pathway were predicted in all cluster members. These genes were organized in clusters within two loci representing genetic variability hot spots. Phylogenetic analysis showed that some of these genes, notably galE and glf, were acquired via horizontal gene transfer. These findings call for a reassessment of the specificity of the serological tests based on mycoplasma polysaccharides.
Collapse
|
13
|
Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4. Infect Immun 2014; 82:3076-86. [PMID: 24799628 DOI: 10.1128/iai.01961-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycoplasma pneumoniae causes pneumonia, tracheobronchitis, pharyngitis, and asthma in humans. The pathogenesis of M. pneumoniae infection is attributed to excessive immune responses. We previously demonstrated that M. pneumoniae lipoproteins induced inflammatory responses through Toll-like receptor 2 (TLR2). In the present study, we demonstrated that M. pneumoniae induced strong inflammatory responses in macrophages derived from TLR2 knockout (KO) mice. Cytokine production in TLR2 KO macrophages was increased compared with that in the macrophages of wild-type (WT) mice. Heat-killed, antibiotic-treated, and overgrown M. pneumoniae failed to induce inflammatory responses in TLR2 KO macrophages. 3-Methyladenine and chloroquine, inhibitors of autophagy, decreased the induction of inflammatory responses in TLR2 KO macrophages. These inflammatory responses were also inhibited in macrophages treated with the TLR4 inhibitor VIPER and those obtained from TLR2 and TLR4 (TLR2/4) double-KO mice. Two mutants that lacked the ability to induce inflammatory responses in TLR2 KO macrophages were obtained by transposon mutagenesis. The transposons were inserted in atpC encoding an ATP synthase F0F1 ε subunit and F10_orf750 encoding hypothetical protein MPN333. These mutants showed deficiencies in cytadherence. These results suggest that cytadherence of M. pneumoniae induces inflammatory responses through TLR4 and autophagy.
Collapse
|
14
|
Castro L, Zhang R, Muñoz JA, González F, Blázquez ML, Sand W, Ballester A. Characterization of exopolymeric substances (EPS) produced by Aeromonas hydrophila under reducing conditions. BIOFOULING 2014; 30:501-511. [PMID: 24673176 DOI: 10.1080/08927014.2014.892586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this work was to investigate the production of extracellular polymeric substances (EPS) by Aeromonas hydrophila grown under anaerobic conditions. EPS composition was studied for planktonic cells, cells attached to carbon fibre supports using a soluble ferric iron source and cells grown with a solid ferric iron mineral (gossan). Conventional spectrophotometric methods, Fourier transform infrared (FTIR) and confocal laser scanning microscopy (CLSM) were used to determine the main components in the biofilm extracted from the cultures. The key EPS components were proteins, indicating their importance for electron transfer reactions. Carbohydrates were observed mostly on the mineral and contained terminal mannosyl and/or terminal glucose, fucose and N-acetylgalactosamine residues.
Collapse
Affiliation(s)
- Laura Castro
- a Department of Material Science and Metallurgical Engineering , Complutense University of Madrid , Madrid , Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Jordan DS, Daubenspeck JM, Laube AH, Renfrow MB, Dybvig K. O-linked protein glycosylation in Mycoplasma. Mol Microbiol 2013; 90:1046-53. [PMID: 24118505 DOI: 10.1111/mmi.12415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 01/06/2023]
Abstract
Although mycoplasmas have a paucity of glycosyltransferases and nucleotidyltransferases recognizable by bioinformatics, these bacteria are known to produce polysaccharides and glycolipids. We show here that mycoplasmas also produce glycoproteins and hence have glycomes more complex than previously realized. Proteins from several species of Mycoplasma reacted with a glycoprotein stain, and the murine pathogen Mycoplasma arthritidis was chosen for further study. The presence of M. arthritidis glycoproteins was confirmed by high-resolution mass spectrometry. O-linked glycosylation was clearly identified at both serine and threonine residues. No consensus amino acid sequence was evident for the glycosylation sites of the glycoproteins. A single hexose was identified as the O-linked modification, and glucose was inferred by (13) C-labelling to be the hexose at several of the glycosylation sites. This is the first study to conclusively identify sites of protein glycosylation in any of the mollicutes.
Collapse
Affiliation(s)
- David S Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | | | | |
Collapse
|
16
|
Interaction of cationic antimicrobial peptides with Mycoplasma pulmonis. FEBS Lett 2013; 587:3321-6. [PMID: 23994526 DOI: 10.1016/j.febslet.2013.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/23/2022]
Abstract
We investigated the mode of action underlying the anti-mycoplasma activity of cationic antimicrobial peptides (AMPs) using four known AMPs and Mycoplasma pulmonis as a model mycoplasma. Scanning electron microscopy revealed that the integrity of the M. pulmonis membrane was significantly damaged within 30 min of AMPs exposure, which was confirmed by measuring the uptake of propidium iodine into the mycoplasma cells. The anti-mycoplasma activity of AMPs was found to depend on the binding affinity for phosphatidylcholine, which was incorporated into the mycoplasma membrane from the growth medium and preferentially distributed in the outer leaflet of the lipid bilayer.
Collapse
|
17
|
Jordan DS, Daubenspeck JM, Dybvig K. Rhamnose biosynthesis in mycoplasmas requires precursor glycans larger than monosaccharide. Mol Microbiol 2013; 89:918-28. [PMID: 23826905 DOI: 10.1111/mmi.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
Despite the apparent absence of genes coding for the known pathways for biosynthesis, the monosaccharide rhamnose was detected in the d configuration in Mycoplasma pneumoniae and Mycoplasma pulmonis, and in both the d and l configurations in Mycoplasma arthritidis. Surprisingly, the monosaccharide glucose was not a precursor for rhamnose biosynthesis and was not incorporated at detectable levels in glucose-containing polysaccharides or glycoconjugates. In contrast, carbon atoms from starch, a polymer of glucose, were incorporated into rhamnose in each of the three species examined. When grown in a serum-free medium supplemented with starch, M. arthritidis synthesized higher levels of rhamnose, with a shift in the relative amounts of the d and l configurations. Our findings suggest the presence of a novel pathway for rhamnose synthesis that is widespread in the genus Mycoplasma.
Collapse
Affiliation(s)
- David S Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | |
Collapse
|
18
|
Simmons WL, Daubenspeck JM, Osborne JD, Balish MF, Waites KB, Dybvig K. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. MICROBIOLOGY-SGM 2013; 159:737-747. [PMID: 23412845 DOI: 10.1099/mic.0.064782-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several mycoplasma species have been shown to form biofilms that confer resistance to antimicrobials and which may affect the host immune system, thus making treatment and eradication of the pathogens difficult. The present study shows that the biofilms formed by two strains of the human pathogen Mycoplasma pneumoniae differ quantitatively and qualitatively. Compared with strain UAB PO1, strain M129 grows well but forms biofilms that are less robust, with towers that are less smooth at the margins. A polysaccharide containing N-acetylglucosamine is secreted by M129 into the culture medium but found in tight association with the cells of UAB PO1. The polysaccharide may have a role in biofilm formation, contributing to differences in virulence, chronicity and treatment outcome between strains of M. pneumoniae. The UAB PO1 genome was found to be that of a type 2 strain of M. pneumoniae, whereas M129 is type 1. Examination of other M. pneumoniae isolates suggests that the robustness of the biofilm correlates with the strain type.
Collapse
Affiliation(s)
- Warren L Simmons
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James M Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John D Osborne
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH 45056-3619, USA
| | - Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin Dybvig
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Shaw BM, Daubenspeck JM, Simmons WL, Dybvig K. EPS-I polysaccharide protects Mycoplasma pulmonis from phagocytosis. FEMS Microbiol Lett 2012. [PMID: 23190331 DOI: 10.1111/1574-6968.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Few mycoplasmal polysaccharides have been described and little is known about their role in pathogenesis. The infection of mice with Mycoplasma pulmonis has been utilized in many in vivo and in vitro studies to gain a better understanding of host-pathogen interactions during chronic respiratory infection. Although alveolar macrophages have a primary role in host defence, M. pulmonis is killed inefficiently in vitro. One antiphagocytic factor produced by the mycoplasma is the family of phase- and size-variable Vsa lipoproteins. However, bacteria generally employ multiple strategies for combating host defences, with capsular polysaccharide often having a key role. We show here that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibit increased susceptibility to binding and subsequent killing by alveolar macrophages. These results give further insight into how mycoplasmas are able to avoid the host immune system and sustain a chronic infection.
Collapse
Affiliation(s)
- Brandon M Shaw
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
20
|
Bolland JR, Simmons WL, Daubenspeck JM, Dybvig K. Mycoplasma polysaccharide protects against complement. MICROBIOLOGY-SGM 2012; 158:1867-1873. [PMID: 22504437 DOI: 10.1099/mic.0.058222-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although they lack a cell wall, mycoplasmas do possess a glycocalyx. The interactions between the glycocalyx, mycoplasmal surface proteins and host complement were explored using the murine pathogen Mycoplasma pulmonis as a model. It was previously shown that the length of the tandem repeat region of the surface lipoprotein Vsa is associated with susceptibility to complement-mediated killing. Cells producing a long Vsa containing about 40 repeats are resistant to complement, whereas strains that produce a short Vsa of five or fewer repeats are susceptible. We show here that the length of the Vsa protein modulates the affinity of the M. pulmonis EPS-I polysaccharide for the mycoplasma cell surface, with more EPS-I being associated with mycoplasmas producing a short Vsa protein. An examination of mutants that lack EPS-I revealed that planktonic mycoplasmas were highly susceptible to complement killing even when the Vsa protein was long, demonstrating that both EPS-I and Vsa length contribute to resistance. In contrast, the mycoplasmas were resistant to complement even in the absence of EPS-I when the cells were encased in a biofilm.
Collapse
Affiliation(s)
- Jeffrey R Bolland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Warren L Simmons
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James M Daubenspeck
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin Dybvig
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Bolland JR, Dybvig K. Mycoplasma pulmonis Vsa proteins and polysaccharide modulate adherence to pulmonary epithelial cells. FEMS Microbiol Lett 2012; 331:25-30. [PMID: 22428866 DOI: 10.1111/j.1574-6968.2012.02551.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022] Open
Abstract
The Mycoplasma pulmonis Vsa proteins are a family of size- and phase-variable lipoproteins that shield the mycoplasmas from complement and modulate attachment to abiotic surfaces. Mycoplasmas producing a long Vsa protein hemadsorb poorly and yet are proficient at colonizing rats and mice. The effect of the length of the Vsa protein on the attachment of mycoplasmas to epithelial cells has not been previously explored. We find that independent of Vsa isotype, mycoplasmas producing a long Vsa protein with many tandem repeats adhere poorly to murine MLE-12 cells compared with mycoplasmas producing a short Vsa. We also find that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibited decreased adherence to MLE-12 cells, even though it has been shown previously that such mutants have an enhanced ability to form a biofilm.
Collapse
Affiliation(s)
- Jeffrey R Bolland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | |
Collapse
|
22
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|