1
|
Suwannin P, Jangpatarapongsa K, Polpanich D, Alhibshi A, Errachid A, Elaissari A. Enhancing leptospirosis control with nanosensing technology: A critical analysis. Comp Immunol Microbiol Infect Dis 2024; 104:102092. [PMID: 37992537 DOI: 10.1016/j.cimid.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a serious health problem in tropical areas; thus, animals shed leptospires in the environment. Humans are accidental hosts infected through exposure to contaminating bacteria in the environment. One health strategy can be applied to protect and eliminate leptospirosis because this cooperates and coordinates activities between doctors, veterinarians, and ecologists. However, conventional methods still have limitations. Therefore, the main challenges of leptospirosis control are the high sensing of detection methods to screen and control the pathogens. Interestingly, nano sensing combined with a leptospirosis detection approach can increase the sensitivity and eliminate some limitations. This article reviews nanomaterial development for an advanced leptospirosis detection method, e.g., latex beads-based agglutination test, magnetic nanoparticles enrichment, and gold-nanoparticles-based immunochromatographic assay. Thus, nanomaterials can be functionalized with biomolecules or sensing molecules utilized in various mechanisms such as biosensors. Over the last decade, many biosensors have been developed for Leptospira spp. pathogen and others. The evolution of biosensors for leptospirosis detection was designed for high efficiency and might be an alternative tool. In addition, the high-sensing fabrications are useful for leptospires screening in very low levels, for example, soil or water from the environment.
Collapse
Affiliation(s)
- Patcharapan Suwannin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France.
| |
Collapse
|
2
|
Schuler EJ, Patel DT, Marconi RT. The leptospiral OmpA-like protein (Loa22) is a surface-exposed antigen that elicits bactericidal antibody against heterologous Leptospira. Vaccine X 2023; 15:100382. [PMID: 37727366 PMCID: PMC10506094 DOI: 10.1016/j.jvacx.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Leptospirosis is the most widespread zoonosis, affecting over 1 million humans each year, with more than 60,000 deaths worldwide. Leptospirosis poses a significant health threat to dogs, horses, cattle, and wildlife. The disease may be self-limiting or progress to a life-threatening multi-system disorder affecting the kidneys, liver, and lungs. Currently, bacterin vaccine formulations that consist of one or more laboratory-cultivated strains are used for prevention. However, the antibody response elicited by these vaccines is directed primarily at lipopolysaccharide and is generally serovar-specific. The development of broadly protective subunit vaccines for veterinary and human applications would be a significant step forward in efforts to combat this emerging and antigenically variable pathogen. This study assessed the properties and potential utility of the Leptospira Loa22 (Leptospira OmpA-like 22 kDa protein) protein as a vaccine antigen. Loa22 is a virulence factor that is predicted to transverse the outer membrane and present its N-terminal domain on the cell surface. This report demonstrates that diverse Leptospira strains express Loa22 in vitro and that the protein is antigenic during infection in dogs. Immunoblot and size exclusion chromatography revealed that Loa22 exists in monomeric and trimeric forms. Immunization of rats with recombinant Loa22 elicited bactericidal antibodies against diverse Leptospira strains. The immunodominant bactericidal epitopes were localized within the N-terminal domain using protein-blocking bactericidal assays. This study supports the utility of Loa22, or subfragments thereof, in developing a multivalent chimeric subunit vaccine to prevent leptospirosis and sheds new light on the cellular localization of Loa22.
Collapse
Affiliation(s)
- Edward J.A. Schuler
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| |
Collapse
|
3
|
Zhang Y, Zheng Y. Leptospirosis-associated meningitis in a patient with sjögren's syndrome: a case report. BMC Infect Dis 2023; 23:778. [PMID: 37946137 PMCID: PMC10636908 DOI: 10.1186/s12879-023-08794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Leptospirosis is a zoonotic disease that afflicts both humans and animals. It progresses from flu-like symptoms to more severe hepatic and renal failure, and may also lead to aseptic meningitis. Individuals with autoimmune diseases (ADs) are potentially more susceptible to Leptospirosis. Thus far, limited data has documented the association between Leptospirosis and autoimmune disorders. CASE PRESENTATION The patient had a definitive pathological diagnosis of Sjögren's syndrome (SS). Due to recurrent headaches, the patient sought consultation with a neurologist. Lumbar puncture revealed elevated white blood cells and protein levels in the cerebrospinal fluid, along with decreased glucose. Tuberculous meningitis was suspected. Radiographic imaging exhibited meningeal enhancement, ventricular enlargement, and hydrocephalus. The patient commenced treatment with anti-tuberculosis therapy and corticosteroids. Subsequently, high-throughput sequencing (HTS) of cerebrospinal fluid identified the presence of Leptospira interrogans. The patient was ultimately diagnosed with Leptospiral meningitis, and underwent antimicrobial and immunosuppressive therapy, resulting in stabilization of the condition and gradual symptom recovery. CONCLUSIONS The case highlights the challenges in diagnosing and managing leptospirosis-related meningitis in the presence of ADs and emphasizes the importance of utilizing HTS for accurate pathogen detection. The potential correlation between leptospirosis and SS warrants further investigation, as does the need for multidisciplinary involvement in treatment strategies for such complex cases.
Collapse
Affiliation(s)
- Yifan Zhang
- Neurological Center, Shenzhen Baoan People's Hospital, Shenzhen, China
| | - Yong Zheng
- Neurological Center, Shenzhen Baoan People's Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Fernandes LGV, Teixeira AF, Nascimento ALTO. Evaluation of Leptospira interrogans knockdown mutants for LipL32, LipL41, LipL21, and OmpL1 proteins. Front Microbiol 2023; 14:1199660. [PMID: 37426019 PMCID: PMC10326724 DOI: 10.3389/fmicb.2023.1199660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Leptospirosis is a worldwide zoonosis caused by pathogenic and virulent species of the genus Leptospira, whose pathophysiology and virulence factors remain widely unexplored. Recently, the application of CRISPR interference (CRISPRi) has allowed the specific and rapid gene silencing of major leptospiral proteins, favoring the elucidation of their role in bacterial basic biology, host-pathogen interaction and virulence. Episomally expressed dead Cas9 from the Streptococcus pyogenes CRISPR/Cas system (dCas9) and single-guide RNA recognize and block transcription of the target gene by base pairing, dictated by the sequence contained in the 5' 20-nt sequence of the sgRNA. Methods In this work, we tailored plasmids for silencing the major proteins of L. interrogans serovar Copenhageni strain Fiocruz L1-130, namely LipL32, LipL41, LipL21 and OmpL1. Double- and triple-gene silencing by in tandem sgRNA cassettes were also achieved, despite plasmid instability. Results OmpL1 silencing resulted in a lethal phenotype, in both L. interrogans and saprophyte L. biflexa, suggesting its essential role in leptospiral biology. Mutants were confirmed and evaluated regarding interaction with host molecules, including extracellular matrix (ECM) and plasma components, and despite the dominant abundance of the studied proteins in the leptospiral membrane, protein silencing mostly resulted in unaltered interactions, either because they intrinsically display low affinity to the molecules assayed or by a compensation mechanism, where other proteins could be upregulated to fill the niche left by protein silencing, a feature previously described for the LipL32 mutant. Evaluation of the mutants in the hamster model confirms the augmented virulence of the LipL32 mutant, as hinted previously. The essential role of LipL21 in acute disease was demonstrated, since the LipL21 knockdown mutants were avirulent in the animal model, and even though mutants could still colonize the kidneys, they were found in markedly lower numbers in the animals' liver. Taking advantage of higher bacterial burden in LipL32 mutant-infected organs, protein silencing was demonstrated in vivo directly in leptospires present in organ homogenates. Discussion CRISPRi is now a well-established, attractive genetic tool that can be applied for exploring leptospiral virulence factors, leading to the rational for designing more effective subunit or even chimeric recombinant vaccines.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, São Paulo, Brazil
| |
Collapse
|
5
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
6
|
Nakamura S. Motility of the Zoonotic Spirochete Leptospira: Insight into Association with Pathogenicity. Int J Mol Sci 2022; 23:ijms23031859. [PMID: 35163781 PMCID: PMC8837006 DOI: 10.3390/ijms23031859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species. Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly, some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled how the spirochete pathogenicity involves such amphibious motility. This review focuses on the causative agent of zoonosis leptospirosis and discusses the significance of their motility in liquid and on surfaces, called crawling, as a virulence factor.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
7
|
Schuler EJA, Marconi RT. The Leptospiral General Secretory Protein D (GspD), a secretin, elicits complement-independent bactericidal antibody against diverse Leptospira species and serovars. Vaccine X 2021; 7:100089. [PMID: 33733085 PMCID: PMC7941034 DOI: 10.1016/j.jvacx.2021.100089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Leptospirosis, the most common zoonotic infection worldwide, is a multi-system disorder affecting the kidney, liver, and lungs. Infections can be asymptomatic, self-limiting or progress to multi-organ system failure and pulmonary hemorrhage. The incidence of canine and human leptospirosis is steadily increasing worldwide. At least sixty-four Leptospira species and several hundred lipopolysaccharide-based serovars have been defined. Preventive vaccines are available for use in veterinary medicine and limited use in humans in some countries. All commercially available vaccines are bacterin formulations that consist of a combination of laboratory cultivated strains of different lipopolysaccharide serotypes. The development of a broadly protective subunit vaccine would represent a significant step forward in efforts to combat leptospirosis in humans, livestock, and companion animals worldwide. Here we investigate the potential of General secretory protein D (GspD; LIC11570), a secretin, to serve as a possible antigen in a multi-valent vaccine formulation. GspD is conserved, expressed in vitro, antigenic during infection and elicits antibody with complement independent bactericidal activity. Importantly, antibody to GspD is bactericidal against diverse Leptospira species of the P1 subclade. Epitope mapping localized the bactericidal epitopes to the N-terminal N0 domain of GspD. The data within support further exploration of GspD as a candidate for inclusion in a next generation multi-protein subunit vaccine.
Collapse
Affiliation(s)
- EJA. Schuler
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - RT. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| |
Collapse
|
8
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
9
|
Thoduvayil S, Dhandapani G, Brahma R, Devasahayam Arokia Balaya R, Mangalaparthi KK, Patel K, Kumar M, Tennyson J, Satheeshkumar PK, Kulkarni MJ, Pinto SM, Prasad TSK, Madanan MG. Triton X-114 Fractionated Subcellular Proteome of Leptospira interrogans Shows Selective Enrichment of Pathogenic and Outer Membrane Proteins in the Detergent Fraction. Proteomics 2020; 20:e2000170. [PMID: 32846045 DOI: 10.1002/pmic.202000170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Indexed: 12/28/2022]
Abstract
The Triton X-114-based solubilization and temperature-dependent phase separation of proteins is used for subcellular fractionation where, aqueous, detergent, and pellet fractions represents cytoplasmic, outer membrane (OM), and inner membrane proteins, respectively. Mass spectrometry-based proteomic analysis of Triton X-114 fractions of proteomic analysis of Leptospira interrogans identified 2957 unique proteins distributed across the fractions. The results are compared with bioinformatics predictions on their subcellular localization and pathogenic nature. Analysis of the distribution of proteins across the Triton X-114 fractions with the predicted characteristics is performed based on "number" of unique type of proteins, and "quantity" which represents the amount of unique protein. The highest number of predicted outer membrane proteins (OMPs) and pathogenic proteins are found in aqueous and pellet fractions, whereas detergent fraction representing the OM has the highest quantity of OMPs and pathogenic proteins though lower in number than the aqueous and pellet fractions. This leaves the possibility of an upsurge in pathogenic proteins and OMPs on the OM under pathogenic conditions suggesting their potential use to combat leptospirosis. Further, the Triton X-114 subcellular fractions are more correlated to enrichment of pathogenic proteins predicted by MP3 software than predicted localization.
Collapse
Affiliation(s)
- Sikha Thoduvayil
- Indian Council of Medical Research, Regional Medical Research Centre Port Blair, Dollygunj, Port Blair, 744103, India.,Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Gunasekaran Dhandapani
- Indian Council of Medical Research, Regional Medical Research Centre Port Blair, Dollygunj, Port Blair, 744103, India.,Department of Chemical Sciences, Ariel University, Ariel, 70400, Israel
| | - Rahul Brahma
- Indian Council of Medical Research, Regional Medical Research Centre Port Blair, Dollygunj, Port Blair, 744103, India
| | - Rex Devasahayam Arokia Balaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, 575018, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jebasingh Tennyson
- School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - P K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, 575018, India.,Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, 575018, India.,Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Madathiparambil G Madanan
- Indian Council of Medical Research, Regional Medical Research Centre Port Blair, Dollygunj, Port Blair, 744103, India
| |
Collapse
|
10
|
Xu J, Koizumi N, Nakamura S. Crawling Motility on the Host Tissue Surfaces Is Associated With the Pathogenicity of the Zoonotic Spirochete Leptospira. Front Microbiol 2020; 11:1886. [PMID: 32849465 PMCID: PMC7419657 DOI: 10.3389/fmicb.2020.01886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial motility is crucial for many pathogenic species in the process of invasion and/or dissemination. The spirochete bacteria Leptospira spp. cause symptoms, such as hemorrhage, jaundice, and nephritis, in diverse mammals including humans. Although loss-of-motility attenuate the spirochete's virulence, the mechanism of the motility-dependent pathogenicity is unknown. Here, focusing on that Leptospira spp. swim in liquid and crawl on solid surfaces, we investigated the spirochetal dynamics on the host tissues by infecting cultured kidney cells from various species with pathogenic and non-pathogenic leptospires. We found that, in the case of the pathogenic leptospires, a larger fraction of bacteria attached to the host cells and persistently traveled long distances using the crawling mechanism. Our results associate the kinetics and kinematic features of the spirochetal pathogens with their virulence.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Ptak CP, Akif M, Hsieh C, Devarajan A, He P, Xu Y, Oswald RE, Chang Y. Comparative screening of recombinant antigen thermostability for improved leptospirosis vaccine design. Biotechnol Bioeng 2018; 116:260-271. [DOI: 10.1002/bit.26864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher P. Ptak
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Mohd. Akif
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of BiochemistryUniversity of HyderabadHyderabad India
| | - Ching‐Lin Hsieh
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Alex Devarajan
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Ping He
- Department of Microbiology and ImmunologyInstitutes of Medical Science, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug ControlBeijing China
| | - Robert E. Oswald
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Yung‐Fu Chang
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| |
Collapse
|
12
|
André-Fontaine G, Triger L. MAT cross-reactions or vaccine cross-protection: retrospective study of 863 leptospirosis canine cases. Heliyon 2018; 4:e00869. [PMID: 30426097 PMCID: PMC6222973 DOI: 10.1016/j.heliyon.2018.e00869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Dogs are naturally exposed to numerous pathogenic serogroups. Leptospirosis vaccines are claimed to afford a clinical protection restricted to the serogroups of which they are composed. Objectives Dogs exhibiting liver and kidney injury were suspected of having leptospirosis. The purpose of this study was to compare the microscopic agglutination test (MAT) results in naive and vaccinated dogs experiencing leptospirosis outcomes. Only MAT-positive animals were included in the study. Methods Over five years, 3 512 dogs were suspected of having leptospirosis. For each case, biochemical parameter results were recorded. Leptospirosis involvement was investigated by MAT performed against 6 major serogroups (Icterohaemorrhagiae, Canicola, Australis, Autumnalis, Grippotyphosa and Sejroë). MAT-positive results confirmed leptospirosis cases in 147 naïve dogs and in 580 fully vaccinated dogs. Serological titres of agglutinating antibodies were related to the severity of liver and kidney failure. Results The most prevalent outcome of leptospirosis in unvaccinated dogs was liver failure (57.8%) compared to 51.7% for kidney disease, but the most severe onset (90.8%) was found among the cases of acute kidney injury compared to the severe (42.3%) hepatitis cases. In dogs vaccinated by bivalent Icterohaemorrhagiae and Canicola bacterins, hepatitis decreased from 57.8 to 46.5% and acute kidney injury from 51.7 to 21.6%. The decrease was shown in leptospirosis cases induced by field strains belonging to the six most prevalent serogroups, including the 4 serogroups heterologous to the vaccine. Conclusion Common vaccination was efficient in decreasing hepatitis and kidney failure induced by field Leptospira spp infection regardless of the MAT-prominent serogroup and limited the disease severity in the remaining cases.
Collapse
Affiliation(s)
- Geneviève André-Fontaine
- Laboratoire de Bactériologie Médicale et Moléculaire des Leptospires, École Nationale Vétérinaire, ONIRIS, Route de Gachet, CS 40706, 44307 Nantes Cedex 03, France
| | - Laetitia Triger
- Laboratoire de Bactériologie Médicale et Moléculaire des Leptospires, École Nationale Vétérinaire, ONIRIS, Route de Gachet, CS 40706, 44307 Nantes Cedex 03, France
| |
Collapse
|
13
|
Heterologous DNA prime-protein boost immunization with RecA and FliD offers cross-clade protection against leptospiral infection. Sci Rep 2018; 8:6447. [PMID: 29691454 PMCID: PMC5915591 DOI: 10.1038/s41598-018-24674-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The emergence of >300 serovars of Leptospira confounded the use of generalized bacterin, the whole cell lysate, as vaccines to control leptospirosis. Because of substantial genetic and geographic heterogeneity among circulating serovars, one vaccine strain per serovar cannot be efficacious against all the serovars. We have performed heterologous DNA prime-protein boost vaccination challenge studies in hamsters using in vivo expressed, leptospiral recombinase A (RecA) and flagellar hook associated protein (FliD). We prepared the monovalent recombinant protein, plasmid DNA, and DNA prime protein boost adjuvant vaccines. The whole cell bacterin served as a control. Our data show that (i) RecA and FliD have multiple immunogenic B and T-cell epitopes with highly conserved domains among most prevalent pathogenic Leptospira spp., (ii) humoral and cell mediated immune responses were induced remarkably, (iii) provides significant protection against homologous (Autumnalis strain N2) and cross-clade heterologous (Canicola strain PAI-1) challenge infection for the heterologous prime-protein boost (∼91–100%) and, the DNA vaccine (∼75–83%). Recombinant protein vaccine shows only partial protection (∼58–66%), (iv) RecA prime-protein boost vaccine shows sterilizing immunity, with heterologous protection. This RecA/FliD prime-protein boost strategy holds potential for vaccination against animal leptospirosis and for a better control of zoonotic transmission.
Collapse
|
14
|
Catecholamine-Modulated Novel Surface-Exposed Adhesin LIC20035 of Leptospira spp. Binds Host Extracellular Matrix Components and Is Recognized by the Host during Infection. Appl Environ Microbiol 2018; 84:AEM.02360-17. [PMID: 29269501 DOI: 10.1128/aem.02360-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, the effect of the host stress hormone catecholamine on Leptospira gene transcripts encoding outer membrane proteins was investigated. There was no impact of catecholamine supplementation on the in vitro growth pattern of Leptospira interrogans; however, 7 genes out of 41 were differentially transcribed, and the effect was reversed to the basal level in the presence of the antagonist propranolol. Comprehensive analysis of one of the differentially regulated proteins, LIC20035 (in serovar Copenhageni)/LB047 (in serovar Lai) (due to catecholamine supplementation), revealed immunogenicity and ability to adhere to host extracellular matrices. Protease accessibility assay and phase partition of integral membrane proteins of Leptospira showed LIC20035/LB047 to be an outer membrane surface-exposed protein. The recombinant LIC20035 protein can be serologically detected using human/bovine sera positive for leptospirosis. Moreover, the recombinant LIC20035 can bind to diverse host extracellular matrices, with a higher affinity toward collagen and chondroitin sulfate.IMPORTANCE Leptospirosis is a neglected tropical disease of global importance. This study aimed to identify outer membrane proteins of pathogenic Leptospira responding to host chemical signals like catecholamines, with the potential to serve as virulence factors, new serodiagnostic antigens, and vaccine candidates. This study mimicked the plausible means by which Leptospira during infection and hormonal stress intercepts host catecholamines to disseminate in host tissues.
Collapse
|
15
|
Grassmann AA, Kremer FS, Dos Santos JC, Souza JD, Pinto LDS, McBride AJA. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front Immunol 2017; 8:463. [PMID: 28496441 PMCID: PMC5406399 DOI: 10.3389/fimmu.2017.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/04/2017] [Indexed: 12/03/2022] Open
Abstract
Leptospira spp. are diderm (two membranes) bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin) vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb) transmembrane proteins and outer membrane (OM) lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II) epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins identified included, e.g., TolC efflux pump proteins, a BamA-like OM component of the βb transmembrane protein assembly machinery, and the LptD-like LPS assembly protein. The structural mapping of the immunodominant epitopes identified the location of conserved, surface-exposed, immunogenic regions for each vaccine candidate. The proteins identified in this study are currently being evaluated for experimental evidence for their involvement in virulence, disease pathogenesis, and physiology, in addition to vaccine development.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Frederico Schmitt Kremer
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia Cougo Dos Santos
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Bahia, Brazil
| |
Collapse
|
16
|
Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages. Sci Rep 2016; 6:39530. [PMID: 27996041 PMCID: PMC5172228 DOI: 10.1038/srep39530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21 kDa Leptospira surface adhesin, Lsa21 had strong TLR2 and TLR4 activity leading to production of proinflammatory cytokines and expression of costimulatory molecules in mouse macrophages. This activity of Lsa21 on innate response was dependent on activation of mitogen activated protein kinases (MAPKs) via stimulating the rapid phosphorylation of p38, JNK and activation of transcription factor NF-κB. Additionally, neutralizing antibodies against TLR2 and TLR4 significantly inhibited cytokine secretion and attenuated Lsa21 induced phosphorylation of p38 and JNK. Furthermore, Lsa21 induced cytokine levels were significantly lower in TLR2-/- and TLR4-/- than in wild type mouse macrophage cell lines. Confocal microscopy and molecular docking confirmed that Lsa21 interacted with both TLR2 and TLR4. These results indicate that Lsa21 is a potent TLR2 and TLR4 agonist that induces strong innate response and may play important role in Leptospira pathogenesis.
Collapse
|
17
|
Oliveira TL, Grassmann AA, Schuch RA, Seixas Neto ACP, Mendonça M, Hartwig DD, McBride AJA, Dellagostin OA. Evaluation of the Leptospira interrogans Outer Membrane Protein OmpL37 as a Vaccine Candidate. PLoS One 2015; 10:e0142821. [PMID: 26588685 PMCID: PMC4654524 DOI: 10.1371/journal.pone.0142821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
The identification of potential vaccine candidates against leptospirosis remains a challenge. However, one such candidate is OmpL37, a potentially surface-exposed antigen that has the highest elastin-binding ability described to date, suggesting that it plays an important role in host colonization. In order to evaluate OmpL37's ability to induce a protective immune response, prime-boost, DNA and subunit vaccine strategies were tested in the hamster model of lethal leptospirosis. The humoral immune response was evaluated using an indirect ELISA test, and the cytokine profile in whole blood was determined by quantitative real-time PCR. Unlike the DNA vaccine, the administration of recombinant OmpL37 induced a strong IgG antibody response. When individually administrated, both formulations stimulated a TNF-α mediated inflammatory response. However, none of the OmpL37 formulations or vaccination strategies induced protective immunity. Further studies are required towards the identification of new vaccine targets against leptospirosis.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - André Alex Grassmann
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Andrade Schuch
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alan John Alexander McBride
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- * E-mail:
| |
Collapse
|
18
|
Buyuktimkin B, Saier MH. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species. Microb Pathog 2015; 88:52-64. [PMID: 26247102 DOI: 10.1016/j.micpath.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 11/17/2022]
Abstract
Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity was accompanied by progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles.
Collapse
Affiliation(s)
- Bora Buyuktimkin
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
19
|
Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G, Picardeau M. Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect Immun 2015; 83:3061-73. [PMID: 25987703 PMCID: PMC4496612 DOI: 10.1128/iai.00427-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins.
Collapse
Affiliation(s)
- Azad Eshghi
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Elisa Pappalardo
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Svenja Hester
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Benjamin Thomas
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Gabriela Pretre
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | | |
Collapse
|
20
|
Liu B, Wang Y, Guo X, Zhu W, Zhang Y, He P. Carboxyfluorescein diacetate succinimidyl ester labeling method to study the interaction between Leptospira and macrophages. J Microbiol Methods 2015; 107:205-13. [PMID: 25455022 DOI: 10.1016/j.mimet.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022]
Abstract
Leptospirosis, which is caused by pathogenic species of the genus Leptospira, has emerged as one of the most widespread zoonotic diseases in the world. The exact mechanism of pathogenesis remains unknown, and the interaction between Leptospira and macrophages is not well understood. In this study, we report that carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) can efficiently label different Leptospira interrogans strains without affecting bacterial motility, viability, or virulence. Following co-incubation, CFDA-SE-labeled leptospires associated with macrophages were quantified by flow cytometry or confocal microscopy. In addition, we showed that trypan blue efficiently quenched the extracellular fluorescence from the adherent leptospires, which enabled intracellular and extracellular bacteria to be distinguished.
Collapse
Affiliation(s)
- Boyu Liu
- Department of Immunology and Microbiology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able to survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H.Factor H. On the other hand, the OM must enable leptospires to evade detection by the host's immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane outer membrane proteins (OMPs) in many cases are better understood, thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis.
Collapse
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA,
| | | |
Collapse
|
22
|
Kitashoji E, Koizumi N, Lacuesta TLV, Usuda D, Ribo MR, Tria ES, Go WS, Kojiro M, Parry CM, Dimaano EM, Villarama JB, Ohnishi M, Suzuki M, Ariyoshi K. Diagnostic Accuracy of Recombinant Immunoglobulin-like Protein A-Based IgM ELISA for the Early Diagnosis of Leptospirosis in the Philippines. PLoS Negl Trop Dis 2015; 9:e0003879. [PMID: 26110604 PMCID: PMC4482399 DOI: 10.1371/journal.pntd.0003879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Leptospirosis is an important but largely under-recognized public health problem in the tropics. Establishment of highly sensitive and specific laboratory diagnosis is essential to reveal the magnitude of problem and to improve treatment. This study aimed to evaluate the diagnostic accuracy of a recombinant LigA protein based IgM ELISA during outbreaks in the clinical-setting of a highly endemic country. METHODOLOGY/PRINCIPAL FINDINGS A prospective study was conducted from October 2011 to September 2013 at a national referral hospital for infectious diseases in Manila, Philippines. Patients who were hospitalized with clinically suspected leptospirosis were enrolled. Plasma and urine were collected on admission and/or at discharge and tested using the LigA-IgM ELISA and a whole cell-based IgM ELISA. Sensitivity and specificity of these tests were evaluated with cases diagnosed by microscopic agglutination test (MAT), culture and LAMP as the composite reference standard and blood bank donors as healthy controls: the mean+3 standard deviation optical density value of healthy controls was used as the cut-off limit (0.062 for the LigA-IgM ELISA and 0.691 for the whole cell-based IgM ELISA). Of 304 patients enrolled in the study, 270 (89.1%) were male and the median age was 30.5 years; 167 (54.9%) were laboratory confirmed. The sensitivity and ROC curve AUC for the LigA-IgM ELISA was significantly greater than the whole cell-based IgM ELISA (69.5% vs. 54.3%, p<0.01; 0.90 vs. 0.82, p<0.01) on admission, but not at discharge. The specificity of LigA-IgM ELISA and whole cell-based IgM ELISA were not significantly different (98% vs. 97%). Among 158 MAT negative patients, 53 and 28 were positive by LigA- and whole cell-based IgM ELISA, respectively; if the laboratory confirmation was re-defined by LigA-IgM ELISA and LAMP, the clinical findings were more characteristic of leptospirosis than the diagnosis based on MAT/culture/LAMP. CONCLUSIONS/SIGNIFICANCE The newly developed LigA-IgM ELISA is more sensitive than the whole cell-based IgM based ELISA. Although the final diagnosis must be validated by more specific tests, LigA-IgM ELISA could be a useful diagnostic test in a real clinical-setting, where diagnosis is needed in the early phase of infection.
Collapse
Affiliation(s)
- Emi Kitashoji
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- * E-mail: (NK); (KA)
| | | | - Daisuke Usuda
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi City, Toyama, Japan
| | - Maricel R. Ribo
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Edith S. Tria
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Winston S. Go
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Maiko Kojiro
- Department of Infectious Diseases, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Christopher M. Parry
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Efren M. Dimaano
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Jose B. Villarama
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Motoi Suzuki
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
| | - Koya Ariyoshi
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
- * E-mail: (NK); (KA)
| |
Collapse
|
23
|
Evangelista KV, Hahn B, Wunder EA, Ko AI, Haake DA, Coburn J. Identification of cell-binding adhesins of Leptospira interrogans. PLoS Negl Trop Dis 2014; 8:e3215. [PMID: 25275630 PMCID: PMC4183468 DOI: 10.1371/journal.pntd.0003215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1-130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Karen V. Evangelista
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Beth Hahn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Medicine, Urology, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bourhy P, Collet L, Brisse S, Picardeau M. Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans. Int J Syst Evol Microbiol 2014; 64:4061-4067. [PMID: 25249563 DOI: 10.1099/ijs.0.066597-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A group of strains representing species of the genus Leptospira, isolated from patients with leptospirosis in Mayotte (Indian Ocean), were previously found to be considerably divergent from other known species of the genus Leptospira. This was inferred from sequence analysis of rrs (16S rRNA) and other genetic loci and suggests that they belong to a novel species. Two strains from each serogroup currently identified within this novel species were studied. Spirochaete, aerobic, motile, helix-shaped strains grew well at 30-37 °C, but not at 13 °C or in the presence of 8-azaguanine. Draft genomes of the strains were also analysed to study the DNA relatedness with other species of the genus Leptospira. The new isolates formed a distinct clade, which was most closely related to Leptospira borgpetersenii, in multilocus sequence analysis using concatenated sequences of the genes rpoB, recA, fusA, gyrB, leuS and sucA. Analysis of average nucleotide identity and genome-to-genome distances, which have recently been proposed as reliable substitutes for classical DNA-DNA hybridization, further confirmed that these isolates should be classified as representatives of a novel species. The G+C content of the genomic DNA was 39.5 mol%. These isolates are considered to represent a novel species, for which the name Leptospira mayottensis sp. nov. is proposed, with 200901116(T) ( = CIP 110703(T) = DSM 28999(T)) as the type strain.
Collapse
Affiliation(s)
- Pascale Bourhy
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Louis Collet
- Hospital Centre of Mayotte (CHM), Mayotte, France
| | - Sylvain Brisse
- CNRS, UMR 3525, Paris, France.,Institut Pasteur, Microbial Evolutionary Genomics Unit, Paris, France
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| |
Collapse
|
25
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
26
|
Oral immunization with Escherichia coli expressing a lipidated form of LigA protects hamsters against challenge with Leptospira interrogans serovar Copenhageni. Infect Immun 2013; 82:893-902. [PMID: 24478102 DOI: 10.1128/iai.01533-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a potentially fatal zoonosis transmitted by reservoir host animals that harbor leptospires in their renal tubules and shed the bacteria in their urine. Leptospira interrogans serovar Copenhageni transmitted from Rattus norvegicus to humans is the most prevalent cause of urban leptospirosis. We examined L. interrogans LigA, domains 7 to 13 (LigA7-13), as an oral vaccine delivered by Escherichia coli as a lipidated, membrane-associated protein. The efficacy of the vaccine was evaluated in a susceptible hamster model in terms of the humoral immune response and survival from leptospiral challenge. Four weeks of oral administration of live E. coli expressing LigA7-13 improved survival from intraperitoneal (i.p.) and intradermal (i.d.) challenge by L. interrogans serovar Copenhageni strain Fiocruz L1-130 in Golden Syrian hamsters. Immunization with E. coli expressing LigA7-13 resulted in a systemic antibody response, and a significant LigA7-13 IgG level after the first 2 weeks of immunization was completely predictive of survival 28 days after challenge. As in previous LigA vaccine studies, all immunized hamsters that survived infection had renal leptospiral colonization and histopathological changes. In summary, an oral LigA-based vaccine improved survival from leptospiral challenge by either the i.p. or i.d. route.
Collapse
|
27
|
Hamond C, Pinna A, Martins G, Lilenbaum W. The role of leptospirosis in reproductive disorders in horses. Trop Anim Health Prod 2013; 46:1-10. [PMID: 23990441 DOI: 10.1007/s11250-013-0459-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Leptospirosis is a zoonotic disease of global importance and has a worldwide distribution. This infection displays clear seasonal nature in some regions of the tropics, where the rainy season is marked by high temperatures. Household and wild animals carry leptospires and contribute to their dissemination in nature. Transmission mainly occurs by contact with water contaminated with the urine of infected animals, and consequently, it is quite widespread especially in times of rain, since many areas are subject to flooding and have poor sanitation. Serological tests demonstrate that Leptospira sp. infection in horses occurs worldwide and that the predominant serovar may vary depending on the region or infection sources. Besides systemic and ocular manifestations, leptospirosis in horses has been recognized as an important disease of the reproductive system, since it leads to the birth of weak foals, stillbirths or neonatal mortality, and mainly to abortion, usually after the sixth month of pregnancy. In this context, this review aims to gather and discuss information about the role of leptospirosis in reproductive disorders in horses.
Collapse
Affiliation(s)
- Camila Hamond
- Veterinary Bacteriology Laboratory,, Universidade Federal Fluminense,, Niterói, 24210-130, Brazil
| | | | | | | |
Collapse
|
28
|
A prime-boost strategy using the novel vaccine candidate, LemA, protects hamsters against leptospirosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:747-52. [PMID: 23515012 DOI: 10.1128/cvi.00034-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toward developing an effective vaccine capable of conferring heterologous protection, the putative lipoprotein LemA, which presents an M3 epitope similar to that of Listeria, was evaluated as a vaccine candidate in the hamster model of leptospirosis. LemA is conserved (>70% pairwise identity) among the pathogenic Leptospira spp., indicating its potential in stimulating a cross-protective immune response. Using different vaccination strategies, including prime-boost, DNA vaccine, and a subunit preparation, recombinant LemA conferred different levels of protection in hamsters. Significant protection against mortality was observed for the prime-boost and the DNA vaccine strategies, which showed 87.5% (P < 0.01) and 62.5% (P < 0.05) efficacy, respectively. Although the subunit vaccine preparation protected 50.0% of immunized hamsters, the level of protection was not significant. None of the hamsters in the control groups survived challenge with a virulent strain of Leptospira interrogans serogroup Icterohaemorrhagiae. Characterization of the immune response found that the strongest antibody response was stimulated by the subunit vaccine preparation, followed by the prime-boost strategy. The DNA vaccine failed to elicit an antibody response in immunized hamsters.
Collapse
|
29
|
Hartleben CP, Leal FMA, Monte LG, Hartwig DD, Seixas FK, Vasconcellos SA, Brihuega B, Dellagostin OA. Serological analysis by enzyme-linked immunosorbent assay using recombinant antigen LipL32 for the diagnosis of swine leptospirosis. Curr Microbiol 2012; 66:106-9. [PMID: 23064970 DOI: 10.1007/s00284-012-0237-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
Leptospirosis is an important global zoonotic disease caused by pathogenic Leptospira spp. species. Swine leptospirosis has a major economic impact because pigs are sources of animal protein and by-products. The signs of swine leptospirosis are abortion, stillbirth, birth of weak or ill piglets, appearing 14-60 days after infection. The reference method for diagnosis of leptospirosis is the microscopic agglutination test (MAT), in which serum samples are reacted with live antigen suspensions of leptospiral serovars. However, MAT is laborious and time consuming as a diagnostic procedure when dealing with a large number of samples; therefore, efforts are being made to develop novel, sensitive, and specific diagnostic tests for leptospirosis. In this study, a recombinant LipL32 based on enzyme-linked immunosorbent assay (rLipL32/ELISA) was evaluated as a screening test for the detection of pathogenic leptospiral-specific antibodies. A total of 86 swine serum samples tested by MAT were used to develop rLipL32/ELISA. Compared to positive and negative sera tested by MAT, rLipL32/ELISA showed 100 % sensitivity, 85.1 % specificity, and 91.86 % accuracy. No positive reaction for other bacterial diseases (enzootic pneumonia and brucellosis) was observed. The rLipL32/ELISA reported in this study is a specific, sensitive, and convenient test for the detection of antibodies against swine leptospiral infection and can be used as a rapid screening test in epidemiological surveys.
Collapse
Affiliation(s)
- Cláudia P Hartleben
- Laboratório de Imunodiagnóstico, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, P.O. Box 354, Pelotas, RS, CEP 96010-900, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J Bacteriol 2012; 194:1299-306. [PMID: 22228733 DOI: 10.1128/jb.06474-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique "cap" at the cell end, this report provides structural insights into these fascinating Leptospira species.
Collapse
|
31
|
Coutinho ML, Choy HA, Kelley MM, Matsunaga J, Babbitt JT, Lewis MS, Aleixo JAG, Haake DA. A LigA three-domain region protects hamsters from lethal infection by Leptospira interrogans. PLoS Negl Trop Dis 2011; 5:e1422. [PMID: 22180800 PMCID: PMC3236721 DOI: 10.1371/journal.pntd.0001422] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/23/2011] [Indexed: 11/19/2022] Open
Abstract
The leptospiral LigA protein consists of 13 bacterial immunoglobulin-like (Big) domains and is the only purified recombinant subunit vaccine that has been demonstrated to protect against lethal challenge by a clinical isolate of Leptospira interrogans in the hamster model of leptospirosis. We determined the minimum number and location of LigA domains required for immunoprotection. Immunization with domains 11 and 12 was found to be required but insufficient for protection. Inclusion of a third domain, either 10 or 13, was required for 100% survival after intraperitoneal challenge with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. As in previous studies, survivors had renal colonization; here, we quantitated the leptospiral burden by qPCR to be 1.2×10(3) to 8×10(5) copies of leptospiral DNA per microgram of kidney DNA. Although renal histopathology in survivors revealed tubulointerstitial changes indicating an inflammatory response to the infection, blood chemistry analysis indicated that renal function was normal. These studies define the Big domains of LigA that account for its vaccine efficacy and highlight the need for additional strategies to achieve sterilizing immunity to protect the mammalian host from leptospiral infection and its consequences.
Collapse
Affiliation(s)
- Mariana L. Coutinho
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Henry A. Choy
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Melissa M. Kelley
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jane T. Babbitt
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Michael S. Lewis
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | | | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
BACKGROUND Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. RESULTS As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. CONCLUSION Improved localization prediction accuracy is not simply a matter of developing better computational algorithms. It also entails gathering key knowledge regarding the host architecture and translocation machinery and associated substrate recognition via experimentation and integration of diverse computational analyses from many proteins and, where possible, that are derived from different species within the same genus.
Collapse
Affiliation(s)
- Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
33
|
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MAD, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 2011; 80:1496-515. [PMID: 21488980 PMCID: PMC3115443 DOI: 10.1111/j.1365-2958.2011.07662.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Star M Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Morgan LeDoyt
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael A. D. Cummings
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| |
Collapse
|
34
|
Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 2011; 21:1210-29. [PMID: 21423275 DOI: 10.1038/cr.2011.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601. The complete genome sequence of the IPAV strain was determined and used to compare with, and then rectify and reannotate the genome sequence of strain 56601. Aside from their highly similar genomic structure and gene order, a total of 33 insertions, 53 deletions and 301 single-nucleotide variations (SNVs) were detected throughout the genome of IPAV directly affecting 101 genes, either in their 5' upstream region or within their coding region. Among them, the majority of the 44 functional genes are involved in signal transduction, stress response, transmembrane transport and nitrogen metabolism. Comparative proteomic analysis based on quantitative liquid chromatography (LC)-MS/MS data revealed that among 1 627 selected pairs of orthologs, 174 genes in the IPAV strain were upregulated, with enrichment mainly in classes of energy production and lipid metabolism. In contrast, 228 genes in strain 56601 were upregulated, with the majority enriched in the categories of protein translation and DNA replication/repair. The combination of genomic and proteomic approaches illustrated that altered expression or mutations in critical genes, such as those encoding a Ser/Thr kinase, carbon-starvation protein CstA, glutamine synthetase, GTP-binding protein BipA, ribonucleotide-diphosphate reductase and phosphate transporter, and alterations in the translational profile of lipoproteins or outer membrane proteins are likely to account for the virulence attenuation in strain IPAV.
Collapse
|