1
|
Alejandre-Sixtos JE, Aguirre-Martínez K, Cruz-López J, Mares-Rivera A, Álvarez-Martínez SM, Zamorano-Sánchez D. Insights on the regulation and function of the CRISPR/Cas transposition system located in the pathogenicity island VpaI-7 from Vibrio parahaemolyticus RIMD2210633. Infect Immun 2025:e0016925. [PMID: 40310292 DOI: 10.1128/iai.00169-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
CRISPR/Cas-mediated transposition is a recently recognized strategy for horizontal gene transfer in a variety of bacterial species. However, our understanding of the factors that control their function in their natural hosts is still limited. In this work, we report our initial genetic characterization of the elements associated with the CRISPR/Cas-transposition machinery (CASTm) from Vibrio parahaemolyticus (VpaCASTm), which are encoded within the pathogenicity island VpaI-7. Our results revealed that the components of the VpaCASTm and their associated CRISPR arrays (VpaCAST system) are transcriptionally active in their native genetic context. Furthermore, we were able to detect the presence of polycistrons and several internal promoters within the loci that compose the VpaCAST system. Our results also suggest that the activity of the promoter of the atypical CRISPR array is not repressed by the baseline activity of its known regulator VPA1391 in V. parahaemolyticus. In addition, we found that the activity of the promoter of tniQ was modulated by a regulatory cascade involving ToxR, LeuO, and H-NS. Since it was previously reported that the activity of the VpaCAST system was less efficient than that of the VchCAST system at promoting transposition of a miniaturized CRISPR-associated transposon (mini-CAST) in Escherichia coli, we analyzed if the transposition efficiency mediated by the VpaCAST system could be enhanced inside its natural host V. parahaemolyticus. We provide evidence that this might be the case, suggesting that there could be host induction factors in V. parahaemolyticus that could enable more efficient transposition of CASTs.IMPORTANCEMobile genetic elements such as transposons play important roles in the evolutionary trajectories of bacterial genomes. The success of transposon dissemination depends on their ability to carry selectable markers that improve the fitness of the host cell or loci with addictive traits such as the toxin-antitoxin systems. Here we aimed to characterize a transposon from Vibrio parahaemolyticus that carries and could disseminate multiple virulence factors. This transposon belongs to a recently discovered family of transposons whose transposition is guided by crRNA. We showed that the transposition machinery of this transposon is transcribed in V. parahaemolyticus and that there are likely host-associated factors that favor transposition in the natural host V. parahaemolyticus over transposition in Escherichia coli.
Collapse
Affiliation(s)
- Jesús E Alejandre-Sixtos
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Kebia Aguirre-Martínez
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jessica Cruz-López
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Aliandi Mares-Rivera
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Samanda M Álvarez-Martínez
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - David Zamorano-Sánchez
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Fuqua T, Sun Y, Wagner A. The emergence and evolution of gene expression in genome regions replete with regulatory motifs. eLife 2024; 13:RP98654. [PMID: 39704646 DOI: 10.7554/elife.98654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called -10 and -35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 'promoter islands', DNA sequences enriched with -10 and -35 boxes. We mutagenize these starting 'parent' sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new -10 and -35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all -10 and -35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new -10 and -35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that -10 and -35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.
Collapse
Affiliation(s)
- Timothy Fuqua
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Yiqiao Sun
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, United States
| |
Collapse
|
3
|
Kim K, Islam MM, Bang S, Kim J, Lee CY, Lee JC, Shin M. H-NS is a Transcriptional Repressor of the CRISPR-Cas System in Acinetobacter baumannii ATCC 19606. J Microbiol 2024; 62:999-1012. [PMID: 39527185 DOI: 10.1007/s12275-024-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606T standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606T and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Seunghyeok Bang
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongah Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
4
|
Karpov DS, Kazakova EM, Kovalev MA, Shumkov MS, Kusainova T, Tarasova IA, Osipova PJ, Poddubko SV, Mitkevich VA, Kuznetsova MV, Goncharenko AV. Determinants of Antibiotic Resistance and Virulence Factors in the Genome of Escherichia coli APEC 36 Strain Isolated from a Broiler Chicken with Generalized Colibacillosis. Antibiotics (Basel) 2024; 13:945. [PMID: 39452211 PMCID: PMC11504656 DOI: 10.3390/antibiotics13100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: Multidrug-resistant, highly pathogenic Escherichia coli strains are the primary causative agents of intestinal and extraintestinal human diseases. The extensive utilization of antibiotics for farm animals has been identified as a contributing factor to the emergence and dissemination of E. coli strains that exhibit multidrug resistance and possess high pathogenic potential. Consequently, a significant research objective is to examine the genetic diversity of pathogenic E. coli strains and to identify those that may pose a threat to human health. Methods: In this study, we present the results of genome sequencing and analysis, as well as the physiological characterization of E. coli strain APEC 36, which was isolated from the liver of a broiler chicken with generalized colibacillosis. Results: We found that APEC 36 possess a number of mechanisms of antibiotic resistance, including antibiotic efflux, antibiotic inactivation, and antibiotic target alteration/replacement/protection. The most widely represented group among these mechanisms was that of antibiotic efflux. This finding is consistent with the strain's documented resistance to multiple antibiotics. APEC 36 has an extremely rare variant of the beta-lactamase CTX-M-169. Notwithstanding the multitude of systems for interfering with foreign DNA present in the strain, seven plasmids have been identified, three of which may possess novel replication origins. Additionally, qnrS1, which confers resistance to fluoroquinolones, was found to be encoded in the genome rather than in the plasmid. This suggests that the determinants of antibiotic resistance may be captured in the genome and stably transmitted from generation to generation. Conclusions: The APEC 36 strain has genes for toxins, adhesins, protectins, and an iron uptake system. The obtained set of genetic and physiological characteristics allowed us to assume that this strain has a high pathogenic potential for humans.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Elizaveta M. Kazakova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Maxim A. Kovalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Mikhail S. Shumkov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tomiris Kusainova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Irina A. Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Pamila J. Osipova
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Vladimir A. Mitkevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Marina V. Kuznetsova
- Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences, 614081 Perm, Russia;
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
5
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Song Q, Wu H, Zhang P, Zhu H, Xie J, Liu J, Qiao J. The MarR family regulator RmaH mediates acid tolerance of Lactococcus lactis through regulating peptidoglycan modification genes. J Dairy Sci 2024:S0022-0302(24)01078-6. [PMID: 39154730 DOI: 10.3168/jds.2024-25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Lactococcus lactis, widely used in the food fermentation industry, has developed various ways to regulate acid adaptation in the process of evolution. The investigation into how peptidoglycan (PG) senses and responds to acid stress is an expanding field. Here, we addressed the regulation of murT-gatD genes which are responsible for the amidation of PG D-Glu. We found that lactic acid stress reduced murT-gatD expression, and overexpressing these genes notably decreased acid tolerance of L. lactis NZ9000, possibly due to a reduction in PG's negative charge, facilitating the influx of extracellular protons into the cell. Subsequently, using a combination of DNA pull-down assay and electrophoretic mobility shift assay (EMSA), we identified a novel MarR family regulator, RmaH, as an activator of murT-gatD transcription. Further MEME motif prediction, EMSA verification and fluorescent protein reporter assay showed that RmaH directly bound to the DNA motif 5'-KGVAWWTTTTGCT-3' located in the upstream region of murT-gatD. Beyond the mechanistic investigation of RmaH activation of murT-gatD, this study provides new insight into how peptidoglycan modification is regulated and responds to lactic acid stress.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China
| | - Peng Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiawei Xie
- Institute of New Energy and Low-Carbon Technology, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China;; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, China;; SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
7
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
8
|
Ogunleye SC, Islam S, Chowdhury QMMK, Ozdemir O, Lawrence ML, Abdelhamed H. Catabolite control protein C contributes to virulence and hydrogen peroxide-induced oxidative stress responses in Listeria monocytogenes. Front Microbiol 2024; 15:1403694. [PMID: 38881664 PMCID: PMC11176438 DOI: 10.3389/fmicb.2024.1403694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Listeria monocytogenes causes listeriosis, an infectious and potentially fatal disease of animals and humans. A diverse network of transcriptional regulators, including LysR-type catabolite control protein C (CcpC), is critical for the survival of L. monocytogenes and its ability to transition into the host environment. In this study, we explored the physiological and genetic consequences of deleting ccpC and the effects of such deletion on the ability of L. monocytogenes to cause disease. We found that ccpC deletion did not impact hemolytic activity, whereas it resulted in significant reductions in phospholipase activities. Western blotting revealed that the ΔccpC strain produced significantly reduced levels of the cholesterol-dependent cytolysin LLO relative to the wildtype F2365 strain. However, the ΔccpC mutant displayed no significant intracellular growth defect in macrophages. Furthermore, ΔccpC strain exhibited reduction in plaque numbers in fibroblasts compared to F2365, but plaque size was not significantly affected by ccpC deletion. In a murine model system, the ΔccpC strain exhibited a significantly reduced bacterial burden in the liver and spleen compared to the wildtype F2365 strain. Interestingly, the deletion of this gene also enhanced the survival of L. monocytogenes under conditions of H2O2-induced oxidative stress. Transcriptomic analyses performed under H2O2-induced oxidative stress conditions revealed that DNA repair, cellular responses to DNA damage and stress, metalloregulatory proteins, and genes involved in the biosynthesis of peptidoglycan and teichoic acids were significantly induced in the ccpC deletion strain relative to F2365. In contrast, genes encoding internalin, 1-phosphatidylinositol phosphodiesterase, and genes associated with sugar-specific phosphotransferase system components, porphyrin, branched-chain amino acids, and pentose phosphate pathway were significantly downregulated in the ccpC deletion strain relative to F2365. This finding highlights CcpC as a key factor that regulates L. monocytogenes physiology and responses to oxidative stress by controlling the expression of important metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, United States
| |
Collapse
|
9
|
Kretz J, Börner J, Friedrich T, McIntosh M, Procida-Kowalski T, Gerken F, Wilhelm J, Klug G. Function of the RNA-targeting class 2 type VI CRISPR Cas system of Rhodobacter capsulatus. Front Microbiol 2024; 15:1384543. [PMID: 38741736 PMCID: PMC11089165 DOI: 10.3389/fmicb.2024.1384543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria use CRISPR Cas systems to defend against invading foreign nucleic acids, e.g., phage genomes, plasmids or mobile genetic elements. Some CRISPR Cas systems were reported to have physiological importance under a variety of abiotic stress conditions. We used physiological tests under different stress conditions and RNA-seq analyses to address the possible function of the RNA-targeting class 2 type VI CRISPR Cas system of the facultative phototrophic α-proteobacterium Rhodobacter capsulatus. Expression of the system was low under exponential non-stress conditions and high during oxidative stress, membrane stress and in stationary phase. Induction of the CRISPR Cas system in presence of a target protospacer RNA resulted in a growth arrest of R. capsulatus. RNA-seq revealed a strong alteration of the R. capsulatus transcriptome when cas13a was induced in presence of a target protospacer. RNA 5' end mapping indicated that the CRISPR Cas-dependent transcriptome remodeling is accompanied by fragmentation of cellular RNAs, e.g., for mRNAs originating from a genomic locus which encodes multiple ribosomal proteins and the RNA polymerase subunits RpoA, RpoB and RpoC. The data suggest a function of this CRISPR Cas system in regulated growth arrest, which may prevent the spread of phages within the population.
Collapse
Affiliation(s)
- Jonas Kretz
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | - Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | - Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | | | - Florian Gerken
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Justus-Liebig-University, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
10
|
Lara P, Gama-Castro S, Salgado H, Rioualen C, Tierrafría VH, Muñiz-Rascado LJ, Bonavides-Martínez C, Collado-Vides J. Flexible gold standards for transcription factor regulatory interactions in Escherichia coli K-12: architecture of evidence types. Front Genet 2024; 15:1353553. [PMID: 38505828 PMCID: PMC10949920 DOI: 10.3389/fgene.2024.1353553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. Here, we present for the first time a detailed analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of Escherichia coli K-12. An RI groups the transcription factor, its effect (positive or negative) and the regulated target, a promoter, a gene or transcription unit. We improved the evidence codes so that specific methods are incorporated and classified into independent groups. On this basis we updated the computation of confidence levels, weak, strong, or confirmed, for the collection of RIs. These updates enabled us to map the RI set to the current collection of HT TF-binding datasets from ChIP-seq, ChIP-exo, gSELEX and DAP-seq in RegulonDB, enriching in this way the evidence of close to one-quarter (1329) of RIs from the current total 5446 RIs. Based on the new computational capabilities of our improved annotation of evidence sources, we can now analyze the internal architecture of evidence, their categories (experimental, classical, HT, computational), and confidence levels. This is how we know that the joint contribution of HT and computational methods increase the overall fraction of reliable RIs (the sum of confirmed and strong evidence) from 49% to 71%. Thus, the current collection has 3912 reliable RIs, with 2718 or 70% of them with classical evidence which can be used to benchmark novel HT methods. Users can selectively exclude the method they want to benchmark, or keep for instance only the confirmed interactions. The recovery of regulatory sites in RegulonDB by the different HT methods ranges between 33% by ChIP-exo to 76% by ChIP-seq although as discussed, many potential confounding factors limit their interpretation. The collection of improvements reported here provides a solid foundation to incorporate new methods and data, and to further integrate the diverse sources of knowledge of the different components of the transcriptional regulatory network. There is no other genomic database that offers this comprehensive high-quality architecture of knowledge supporting a corpus of transcriptional regulatory interactions.
Collapse
Affiliation(s)
- Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Luis J. Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Mexico
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Saito S, Kobayashi I, Hoshina M, Uenaka E, Sakurai A, Imamura S, Shimada T. Regulatory Role of GgaR (YegW) for Glycogen Accumulation in Escherichia coli K-12. Microorganisms 2024; 12:115. [PMID: 38257942 PMCID: PMC10819704 DOI: 10.3390/microorganisms12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Glycogen, the stored form of glucose, accumulates upon growth arrest in the presence of an excess carbon source in Escherichia coli and other bacteria. Chromatin immunoprecipitation screening for the binding site of a functionally unknown GntR family transcription factor, YegW, revealed that the yegTUV operon was a single target of the E. coli genome. Although none of the genes in the yegTUV operon have a clear function, a previous study suggested their involvement in the production of ADP-glucose (ADPG), a glycogen precursor. Various validation through in vivo and in vitro experiments showed that YegW is a single-target transcription factor that acts as a repressor of yegTUV, with an intracellular concentration of consistently approximately 10 molecules, and senses ADPG as an effector. Further analysis revealed that YegW repressed glycogen accumulation in response to increased glucose concentration, which was not accompanied by changes in the growth phase. In minimal glucose medium, yegW-deficient E. coli promoted glycogen accumulation, at the expense of poor cell proliferation. We concluded that YegW is a single-target transcription factor that senses ADPG and represses glycogen accumulation in response to the amount of glucose available to the cell. We propose renaming YegW to GgaR (repressor of glycogen accumulation).
Collapse
Affiliation(s)
- Shunsuke Saito
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Motoki Hoshina
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Emi Uenaka
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Atsushi Sakurai
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| |
Collapse
|
12
|
Lara P, Gama-Castro S, Salgado H, Rioualen C, Tierrafría VH, Muñiz-Rascado LJ, Bonavides-Martínez C, Collado-Vides J. A Gold Standard for Transcription Factor Regulatory Interactions in Escherichia coli K-12: Architecture of Evidence Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530038. [PMID: 37163020 PMCID: PMC10168212 DOI: 10.1101/2023.02.25.530038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is to compare their results with those from established methodologies, such as the classic methods of molecular biology used to characterize transcription factor binding sites, promoters, or transcription units. In the case of Escherichia coli K-12, the best-studied microorganism, for the last 30 years we have continuously gathered such knowledge from original scientific publications, and have organized it in two databases, RegulonDB and EcoCyc. Furthermore, since RegulonDB version 11.0 (1), we offer comprehensive datasets of binding sites from chromatin immunoprecipitation combined with sequencing (ChIP-seq), ChIP combined with exonuclease digestion and next-generation sequencing (ChIP-exo), genomic SELEX screening (gSELEX), and DNA affinity purification sequencing (DAP-seq) HT technologies, as well as additional datasets for transcription start sites, transcription units and RNA sequencing (RNA-seq) expression profiles. Here, we present for the first time an analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of E. coli K-12. An RI is formed by the transcription factor, its positive or negative effect on a promoter, a gene or transcription unit. We improved the evidence codes so that the specific methods are described, and we classified them into seven independent groups. This is the basis for our updated computation of confidence levels, weak, strong, or confirmed, for the collection of RIs. We compare the confidence levels of the RI collection before and after adding HT evidence illustrating how knowledge will change as more HT data and methods appear in the future. Users can generate subsets filtering out the method they want to benchmark and avoid circularity, or keep for instance only the confirmed interactions. The comparison of different HT methods with the available datasets indicate that ChIP-seq recovers the highest fraction (>70%) of binding sites present in RegulonDB followed by gSELEX, DAP-seq and ChIP-exo. There is no other genomic database that offers this comprehensive high-quality anatomy of evidence supporting a corpus of transcriptional regulatory interactions.
Collapse
|
13
|
Boas Lichty KE, Gregory GJ, Boyd EF. NhaR, LeuO, and H-NS Are Part of an Expanded Regulatory Network for Ectoine Biosynthesis Expression. Appl Environ Microbiol 2023; 89:e0047923. [PMID: 37278653 PMCID: PMC10304999 DOI: 10.1128/aem.00479-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.
Collapse
Affiliation(s)
| | - Gwendolyn J. Gregory
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Takada H, Kijima K, Ishiguro A, Ishihama A, Shimada T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. Int J Mol Sci 2023; 24:3696. [PMID: 36835109 PMCID: PMC9962212 DOI: 10.3390/ijms24043696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Flagella are vital bacterial organs that allow microorganisms to move to favorable environments. However, their construction and operation consume a large amount of energy. The master regulator FlhDC mediates all flagellum-forming genes in E. coli through a transcriptional regulatory cascade, the details of which remain elusive. In this study, we attempted to uncover a direct set of target genes in vitro using gSELEX-chip screening to re-examine the role of FlhDC in the entire E. coli genome regulatory network. We identified novel target genes involved in the sugar utilization phosphotransferase system, sugar catabolic pathway of glycolysis, and other carbon source metabolic pathways in addition to the known flagella formation target genes. Examining FlhDC transcriptional regulation in vitro and in vivo and its effects on sugar consumption and cell growth suggested that FlhDC activates these new targets. Based on these results, we proposed that the flagella master transcriptional regulator FlhDC acts in the activation of a set of flagella-forming genes, sugar utilization, and carbon source catabolic pathways to provide coordinated regulation between flagella formation, operation and energy production.
Collapse
Grants
- 22K06184 Ministry of Education, Culture, Sports, Science and Technology
- 18310133 Ministry of Education, Culture, Sports, Science and Technology
- 25430173 Ministry of Education, Culture, Sports, Science and Technology
- 15K18676 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kaede Kijima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishiguro
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
15
|
Kobayashi I, Mochizuki K, Teramoto J, Imamura S, Takaya K, Ishihama A, Shimada T. Transcription Factor SrsR (YgfI) Is a Novel Regulator for the Stress-Response Genes in Stationary Phase in Escherichia coli K-12. Int J Mol Sci 2022; 23:ijms23116055. [PMID: 35682733 PMCID: PMC9181523 DOI: 10.3390/ijms23116055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the functional information of all genes and the biological mechanism based on the comprehensive genome regulation mechanism is an important task in life science. YgfI is an uncharacterized LysR family transcription factor in Escherichia coli. To identify the function of YgfI, the genomic SELEX (gSELEX) screening was performed for YgfI regulation targets on the E. coli genome. In addition, regulatory and phenotypic analyses were performed. A total of 10 loci on the E. coli genome were identified as the regulatory targets of YgfI with the YgfI binding activity. These predicted YgfI target genes were involved in biofilm formation, hydrogen peroxide resistance, and antibiotic resistance, many of which were expressed in the stationary phase. The TCAGATTTTGC sequence was identified as an YgfI box in in vitro gel shift assay and DNase-I footprinting assays. RT-qPCR analysis in vivo revealed that the expression of YgfI increased in the stationary phase. Physiological analyses suggested the participation of YgfI in biofilm formation and an increase in the tolerability against hydrogen peroxide. In summary, we propose to rename ygfI as srsR (a stress-response regulator in stationary phase).
Collapse
Affiliation(s)
- Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| | - Kenji Mochizuki
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Jun Teramoto
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Kazuhiro Takaya
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
- Correspondence: (A.I.); (T.S.)
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
- Correspondence: (A.I.); (T.S.)
| |
Collapse
|
16
|
Shimada T, Murayama R, Mashima T, Kawano N, Ishihama A. Regulatory role of CsuR (YiaU) in determination of cell surface properties of Escherichia coli K-12. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35438626 DOI: 10.1099/mic.0.001166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic SELEX screening was performed to identify the binding sites of YiaU, an uncharacterized LysR family transcription factor, on the Escherichia coli K-12 genome. Five high-affinity binding targets of YiaU were identified, all of which were involved in the structures of the bacterial cell surface such as outer and inner membrane proteins, and lipopolysaccharides. Detailed in vitro and in vivo analyses suggest that YiaU activates these target genes. To gain insight into the effects of YiaU in vivo on physiological properties, we used phenotype microarrays, biofilm screening assays and the sensitivity against serum complement analysed using a yiaU deletion mutant or YiaU expression strain. Together, these results suggest that the YiaU regulon confers resistance to some antibiotics, and increases biofilm formation and complement sensitivity. We propose renaming YiaU as CsuR (regulator of cell surface).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan.,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo 184-8584, Japan
| | - Rie Murayama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomoki Mashima
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Natsuko Kawano
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishihama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo 184-8584, Japan.,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
17
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Massively parallel transposon mutagenesis identifies temporally essential genes for biofilm formation in Escherichia coli. Microb Genom 2021; 7. [PMID: 34783647 PMCID: PMC8743551 DOI: 10.1099/mgen.0.000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biofilms complete a life cycle where cells aggregate, grow and produce a structured community before dispersing to colonize new environments. Progression through this life cycle requires temporally controlled gene expression to maximize fitness at each stage. Previous studies have largely focused on identifying genes essential for the formation of a mature biofilm; here, we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress, a massively parallel transposon mutagenesis approach using transposon-located promoters to assay the impact of disruption or altered expression of all genes in the genome on biofilm formation. We identified 48 genes that affected the fitness of cells growing in a biofilm, including genes with known roles and those not previously implicated in biofilm formation. Regulation of type 1 fimbriae and motility were important at all time points, adhesion and motility were important for the early biofilm, whereas matrix production and purine biosynthesis were only important as the biofilm matured. We found strong temporal contributions to biofilm fitness for some genes, including some where expression changed between being beneficial or detrimental depending on the stage at which they are expressed, including dksA and dsbA. Novel genes implicated in biofilm formation included zapE and truA involved in cell division, maoP in chromosome organization, and yigZ and ykgJ of unknown function. This work provides new insights into the requirements for successful biofilm formation through the biofilm life cycle and demonstrates the importance of understanding expression and fitness through time.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
18
|
Islam MM, Kim K, Lee JC, Shin M. LeuO, a LysR-Type Transcriptional Regulator, Is Involved in Biofilm Formation and Virulence of Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:738706. [PMID: 34708004 PMCID: PMC8543017 DOI: 10.3389/fcimb.2021.738706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that can survive in different environmental conditions and poses a severe threat to public health due to its multidrug resistance properties. Research on transcriptional regulators, which play an essential role in adjusting to new environments, could provide new insights into A. baumannii pathogenesis. LysR-type transcriptional regulators (LTTRs) are structurally conserved among bacterial species and regulate virulence in many pathogens. We identified a novel LTTR, designated as LeuO encoded in the A. baumannii genome. After construction of LeuO mutant strain, transcriptome analysis showed that LeuO regulates the expression of 194 upregulated genes and 108 downregulated genes responsible for various functions and our qPCR validation of several differentially expressed genes support transcriptome data. Our results demonstrated that disruption of LeuO led to increased biofilm formation and increased pathogenicity in an animal model. However, the adherence and surface motility of the LeuO mutant were reduced compared with those of the wild-type strain. We observed some mutations on amino acids sequence of LeuO in clinical isolates. These mutations in the A. baumannii biofilm regulator LeuO may cause hyper-biofilm in the tested clinical isolates. This study is the first to demonstrate the association between the LTTR member LeuO and virulence traits of A. baumannii.
Collapse
Affiliation(s)
- Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
19
|
Fernández-Mora M, Sánchez-Popoca D, Altamirano-Cruz G, López-Méndez G, Téllez-Galicia AT, Guadarrama C, Calva E. The S. Typhi leuO gene contains multiple functional promoters. J Med Microbiol 2021; 70. [PMID: 34590996 DOI: 10.1099/jmm.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S. Typhi leuO gene, which codes for the LysR-type transcriptional regulator LeuO, contains five forward promoters named P3, P1, P2, P5 and P4, and two reverse promoters, P6 and P7. The activity of the forward promoters was revealed by primer extension using gene reporter fusions in an S. Typhi hns lrp mutant strain. Likewise, the activity of the reverse promoters was revealed in an hns background. Derepression of the transcription of the chromosomal gene was confirmed by RT-PCR in the hns lrp mutant. The leuOP1 transcriptional reporter fusion, which contained only the major P1 promoter, had a lower expression in a relA spoT mutant strain, indicating that the steady-state levels of the (p)ppGpp alarmone positively regulate it. In contrast, the leuOP3, leuOP5P4, leuOP6 and leuOP7 transcriptional fusions were derepressed in the relA spoT background, indicating that the alarmone has a negative effect on their expression. Thus, the search for genetic regulators and environmental cues that would differentially derepress leuO gene expression by antagonizing the action of the H-NS and Lrp nucleoid-associated proteins, or that would fine-tune the expression of the various promoters, will further our understanding of the significance that multiple promoters have in the control of LeuO expression.
Collapse
Affiliation(s)
- Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Diego Sánchez-Popoca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Gloria Altamirano-Cruz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Grecia López-Méndez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Andrea Teresa Téllez-Galicia
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | |
Collapse
|
20
|
Bowman EK, Wagner JM, Yuan SF, Deaner M, Palmer CM, D'Oelsnitz S, Cordova L, Li X, Craig FF, Alper HS. Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proc Natl Acad Sci U S A 2021; 118:e2106818118. [PMID: 34475218 PMCID: PMC8433520 DOI: 10.1073/pnas.2106818118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.
Collapse
Affiliation(s)
- Emily K Bowman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Shuo-Fu Yuan
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Claire M Palmer
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Simon D'Oelsnitz
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Lauren Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Xin Li
- Sphere Fluidics Limited, Cambridge CB21 6GP, United Kingdom
| | - Frank F Craig
- Sphere Fluidics Limited, Cambridge CB21 6GP, United Kingdom
| | - Hal S Alper
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
21
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
22
|
Brandi A, Giangrossi M, Fabbretti A, Falconi M. The hns Gene of Escherichia coli Is Transcriptionally Down-Regulated by (p)ppGpp. Microorganisms 2020; 8:microorganisms8101558. [PMID: 33050410 PMCID: PMC7601328 DOI: 10.3390/microorganisms8101558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Second messenger nucleotides, such as guanosine penta- or tetra-phosphate, commonly referred to as (p)ppGpp, are powerful signaling molecules, used by all bacteria to fine-tune cellular metabolism in response to nutrient availability. Indeed, under nutritional starvation, accumulation of (p)ppGpp reduces cell growth, inhibits stable RNAs synthesis, and selectively up- or down- regulates the expression of a large number of genes. Here, we show that the E. coli hns promoter responds to intracellular level of (p)ppGpp. hns encodes the DNA binding protein H-NS, one of the major components of bacterial nucleoid. Currently, H-NS is viewed as a global regulator of transcription in an environment-dependent mode. Combining results from relA (ppGpp synthetase) and spoT (ppGpp synthetase/hydrolase) null mutants with those from an inducible plasmid encoded RelA system, we have found that hns expression is inversely correlated with the intracellular concentration of (p)ppGpp, particularly in exponential phase of growth. Furthermore, we have reproduced in an in vitro system the observed in vivo (p)ppGpp-mediated transcriptional repression of hns promoter. Electrophoretic mobility shift assays clearly demonstrated that this unusual nucleotide negatively affects the stability of RNA polymerase-hns promoter complex. Hence, these findings demonstrate that the hns promoter is subjected to an RNA polymerase-mediated down-regulation by increased intracellular levels of (p)ppGpp.
Collapse
|
23
|
Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6. [PMID: 32975502 PMCID: PMC7660256 DOI: 10.1099/mgen.0.000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The transcription factor PdhR has been recognized as the master regulator of the pyruvate catabolism pathway in Escherichia coli, including both NAD-linked oxidative decarboxylation of pyruvate to acetyl-CoA by PDHc (pyruvate dehydrogenase complex) and respiratory electron transport of NADH to oxygen by Ndh-CyoABCD enzymes. To identify the whole set of regulatory targets under the control of pyruvate-sensing PdhR, we performed genomic SELEX (gSELEX) screening in vitro. A total of 35 PdhR-binding sites were identified along the E. coli K-12 genome, including previously identified targets. Possible involvement of PdhR in regulation of the newly identified target genes was analysed in detail by gel shift assay, RT-qPCR and Northern blot analysis. The results indicated the participation of PdhR in positive regulation of fatty acid degradation genes and negative regulation of cell mobility genes. In fact, GC analysis indicated an increase in free fatty acids in the mutant lacking PdhR. We propose that PdhR is a bifunctional global regulator for control of a total of 16–23 targets, including not only the genes involved in central carbon metabolism but also some genes for the surrounding pyruvate-sensing cellular pathways such as fatty acid degradation and flagella formation. The activity of PdhR is controlled by pyruvate, the key node between a wide variety of metabolic pathways, including generation of metabolic energy and cell building blocks.
Collapse
Affiliation(s)
- Takumi Anzai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
24
|
Park NY, Lee KW, Kim KS. H-NS Silences Gene Expression of LeuO, the Master Regulator of the Cyclic(Phe-Pro)-dependent Signal Pathway, in Vibrio vulnificus. J Microbiol Biotechnol 2020; 30:830-838. [PMID: 32238773 PMCID: PMC9728156 DOI: 10.4014/jmb.2001.01021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
The histone-like nucleoid structuring protein (H-NS) is an abundant global regulator of environmentally controlled gene expression. Herein, we demonstrate that H-NS represses the expression of LeuO, the master regulator of the cyclic(Phe-Pro)-dependent signaling pathway, by directly binding to the upstream region of the gene. H-NS binds to a long stretched region (more than 160-bp long), which overlaps with binding sites for ToxR and LeuO. A high quantity of H-NS outcompetes ToxR for binding to the cis-acting element of leuO. However, our footprinting analyses suggests that the binding of H-NS is relatively weaker than LeuO or ToxR at the same molarity. Considering that the DNA nucleotide sequences of the upstream regions of leuO genes are highly conserved among various Vibrio, such patterns as those found in V. vulnificus would be a common feature in the regulation of leuO gene expression in Vibrionaceae. Taken together, these results suggest that, in species belonging to Vibrionaceae, H-NS regulates the expression of leuO as a basal stopper when cFP-ToxR mediated signaling is absent.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Keun-Woo Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea,Corresponding author Phone: +82-2-705-8460 Fax: +82-2-704-3601 E-mail:
| |
Collapse
|
25
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
26
|
Mitić D, Radovčić M, Markulin D, Ivančić-Baće I. StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli. Biochimie 2020; 174:136-143. [PMID: 32353388 DOI: 10.1016/j.biochi.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Functional CRISPR-Cas systems provide many bacteria and most archaea with adaptive immunity against invading DNA elements. CRISPR arrays store DNA fragments of previous infections while products of cas genes provide immunity by integrating new DNA fragments and using this information to recognize and destroy invading DNA. Escherichia coli contains the CRISPR-Cas type I-E system in which foreign DNA targets are recognized by Cascade, a crRNA-guided complex comprising five proteins (CasA, CasB, CasC, CasD, CasE), and degraded by Cas3. In E. coli the CRISPR-Cas type I-E system is repressed by the histone-like nucleoid-structuring protein H-NS. H-NS repression can be relieved either by inactivation of the hns gene or by elevated levels of the H-NS antagonist LeuO, which induces higher transcript levels of cas genes than was observed for Δhns cells. This suggests that derepression in Δhns cells is incomplete and that an additional repressor could be involved in the silencing. One such candidate is the H-NS paralog protein StpA, which has DNA binding preferences similar to those of H-NS. Here we show that overexpression of StpA in Δhns cells containing anti-lambda spacers abolishes resistance to λvir infection and reduces transcription of the casA gene. In cells lacking hns and stpA genes, the transcript levels of the casA gene are higher than Δhns and similar to wt cells overexpressing LeuO. Taken together, these results suggest that Cascade genes in E. coli are repressed by the StpA protein when H-NS is absent.
Collapse
Affiliation(s)
- Damjan Mitić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Marin Radovčić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Dora Markulin
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Ivana Ivančić-Baće
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model. mBio 2020; 11:mBio.02273-19. [PMID: 32019787 PMCID: PMC7002338 DOI: 10.1128/mbio.02273-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum.IMPORTANCE In actinobacteria, Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XS) of horizontally acquired genomic regions, including viral elements, virulence gene clusters in Mycobacterium tuberculosis, and genes involved in cryptic specialized metabolism in Streptomyces species. Consequently, a detailed mechanistic understanding of Lsr2 binding in vivo is relevant as a potential drug target and for the identification of novel bioactive compounds. Here, we followed an in vivo approach to investigate the rules underlying xenogeneic silencing and counter-silencing of the Lsr2-like XS CgpS from Corynebacterium glutamicum Our results demonstrated that CgpS distinguishes between self and foreign by recognizing a distinct drop in GC profile in combination with a short, sequence-specific motif at the nucleation site. Following a synthetic counter-silencer approach, we studied the potential and constraints of transcription factors to counteract CgpS silencing, thereby facilitating the integration of new genetic traits into host regulatory networks.
Collapse
|
28
|
Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory Role of PlaR (YiaJ) for Plant Utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415. [PMID: 31892694 PMCID: PMC6958661 DOI: 10.1038/s41598-019-56886-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Outside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization). The natural hosts of enterobacterium Escherichia coli are warm-blooded animals, but even outside hosts, E. coli can survive even under stressful environments. On earth, the most common organic materials to be used as nutrients by E. coli are plant-derived components, but up to the present time, the genetic system of E. coli for plant utilization is poorly understand. In the course of gSELEX screening of the regulatory targets for hitherto uncharacterized TFs, we identified in this study the involvement of the IclR-family YiaJ in the regulation of about 20 genes or operons, of which the majority are related to the catabolism of plant-derived materials such as ascorbate, galacturonate, sorbitol, fructose and fructoselysine. Therefore, we propose to rename YiaJ to PlaR (regulator of plant utilization).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan. .,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan.
| | - Yui Yokoyama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Takumi Anzai
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan. .,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
29
|
Fragel SM, Montada A, Heermann R, Baumann U, Schacherl M, Schnetz K. Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Nucleic Acids Res 2019; 47:7363-7379. [PMID: 31184713 PMCID: PMC6698644 DOI: 10.1093/nar/gkz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
LeuO is a pleiotropic LysR-type transcriptional regulator (LTTR) and co-regulator of the abundant nucleoid-associated repressor protein H-NS in Gammaproteobacteria. As other LTTRs, LeuO is a tetramer that is formed by dimerization of the N-terminal DNA-binding domain (DBD) and C-terminal effector-binding domain (EBD). To characterize the Escherichia coli LeuO protein, we screened for LeuO mutants that activate the cas (CRISPR-associated/Cascade) promoter more effectively than wild-type LeuO. This yielded nine mutants carrying amino acid substitutions in the dimerization interface of the regulatory EBD, as shown by solving the EBD’s crystal structure. Superimposing of the crystal structures of LeuO-EBD and LeuO-S120D-EBD suggests that the Ser120 to Asp substitution triggers a structural change that is related to effector-induced structural changes of LTTRs. Corresponding functional analyses demonstrated that LeuO-S120D has a higher DNA-binding affinity than wild-type LeuO. Further, a palindromic DNA-binding core-site and a consensus sequence were identified by DNase I footprinting with LeuO-S120D as well as with the dimeric DBD. The data suggest that LeuO-S120D mimics an effector-induced form of LeuO regulating a distinct set of target loci. In general, constitutive mutants and determining the DNA-binding specificity of the DBD-dimer are feasible approaches to characterize LTTRs of unknown function.
Collapse
Affiliation(s)
- Susann M Fragel
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Anna Montada
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Ralf Heermann
- Department of Microbiology, Ludwig-Maximilians-Universität Munich, Großhaderner Str. 2-4, 82152 Martinsried, Germany.,Institute for Molecular Physiology, Microbiology, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Magdalena Schacherl
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
30
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Abstract
Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli. Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCEEscherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.
Collapse
|
32
|
Taniguchi S, Kasho K, Ozaki S, Katayama T. Escherichia coli CrfC Protein, a Nucleoid Partition Factor, Localizes to Nucleoid Poles via the Activities of Specific Nucleoid-Associated Proteins. Front Microbiol 2019; 10:72. [PMID: 30792700 PMCID: PMC6374313 DOI: 10.3389/fmicb.2019.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
The Escherichia coli CrfC protein is an important regulator of nucleoid positioning and equipartition. Previously we revealed that CrfC homo-oligomers bind the clamp, a DNA-binding subunit of the DNA polymerase III holoenzyme, promoting colocalization of the sister replication forks, which ensures the nucleoid equipartition. In addition, CrfC localizes at the cell pole-proximal loci via an unknown mechanism. Here, we demonstrate that CrfC localizes to the distinct subnucleoid structures termed nucleoid poles (the cell pole-proximal nucleoid-edges) even in elongated cells as well as in wild-type cells. Systematic analysis of the nucleoid-associated proteins (NAPs) and related proteins revealed that HU, the most abundant NAP, and SlmA, the nucleoid occlusion factor regulating the localization of cell division apparatus, promote the specific localization of CrfC foci. When the replication initiator DnaA was inactivated, SlmA and HU were required for formation of CrfC foci. In contrast, when the replication initiation was inhibited with a specific mutant of the helicase-loader DnaC, CrfC foci were sustained independently of SlmA and HU. H-NS, which forms clusters on AT-rich DNA regions, promotes formation of CrfC foci as well as transcriptional regulation of crfC. In addition, MukB, the chromosomal structure mainetanice protein, and SeqA, a hemimethylated nascent DNA region-binding protein, moderately stimulated formation of CrfC foci. However, IHF, a structural homolog of HU, MatP, the replication terminus-binding protein, Dps, a stress-response factor, and FtsZ, an SlmA-interacting factor in cell division apparatus, little or only slightly affected CrfC foci formation and localization. Taken together, these findings suggest a novel and unique mechanism that CrfC localizes to the nucleoid poles in two steps, assembly and recruitment, dependent upon HU, MukB, SeqA, and SlmA, which is stimulated directly or indirectly by H-NS and DnaA. These factors might concordantly affect specific nucleoid substructures. Also, these nucleoid dynamics might be significant in the role for CrfC in chromosome partition.
Collapse
Affiliation(s)
- Saki Taniguchi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Shimada T, Yamamoto K, Nakano M, Watanabe H, Schleheck D, Ishihama A. Regulatory role of CsqR (YihW) in transcription of the genes for catabolism of the anionic sugar sulfoquinovose (SQ) in Escherichia coli K-12. MICROBIOLOGY-SGM 2018; 165:78-89. [PMID: 30372406 DOI: 10.1099/mic.0.000740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.
Collapse
Affiliation(s)
- Tomohiro Shimada
- 1Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Kaneyoshi Yamamoto
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| | - Masahiro Nakano
- 4Kyoto University, Institute for Frontier Life and Medical Sciences, Sakyo-ku, Kyoto, Japan
| | - Hiroki Watanabe
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - David Schleheck
- 5Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Akira Ishihama
- 3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| |
Collapse
|
35
|
Coordinated Hibernation of Transcriptional and Translational Apparatus during Growth Transition of Escherichia coli to Stationary Phase. mSystems 2018; 3:mSystems00057-18. [PMID: 30225374 PMCID: PMC6134199 DOI: 10.1128/msystems.00057-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions. In the process of Escherichia coli K-12 growth from exponential phase to stationary, marked alteration takes place in the pattern of overall genome expression through modulation of both parts of the transcriptional and translational apparatus. In transcription, the sigma subunit with promoter recognition properties is replaced from the growth-related factor RpoD by the stationary-phase-specific factor RpoS. The unused RpoD is stored by binding with the anti-sigma factor Rsd. In translation, the functional 70S ribosome is converted to inactive 100S dimers through binding with the ribosome modulation factor (RMF). Up to the present time, the regulatory mechanisms of expression of these two critical proteins, Rsd and RMF, have remained totally unsolved. In this study, attempts were made to identify the whole set of transcription factors involved in transcription regulation of the rsd and rmf genes using the newly developed promoter-specific transcription factor (PS-TF) screening system. In the first screening, 74 candidate TFs with binding activity to both of the rsd and rmf promoters were selected from a total of 194 purified TFs. After 6 cycles of screening, we selected 5 stress response TFs, ArcA, McbR, RcdA, SdiA, and SlyA, for detailed analysis in vitro and in vivo of their regulatory roles. Results indicated that both rsd and rmf promoters are repressed by ArcA and activated by McbR, RcdA, SdiA, and SlyA. We propose the involvement of a number of TFs in simultaneous and coordinated regulation of the transcriptional and translational apparatus. By using genomic SELEX (gSELEX) screening, each of the five TFs was found to regulate not only the rsd and rmf genes but also a variety of genes for growth and survival. IMPORTANCE During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions.
Collapse
|
36
|
Abstract
Biofilms are often described as protective shelters that preserve bacteria from hostile surroundings. However, biofilm bacteria are also exposed to various stresses and need to adjust to the heterogeneous physicochemical conditions prevailing within biofilms. In Gram-negative bacteria, such adaptations can result in modifications of the lipopolysaccharide, a major component of the outer membrane characterized by a highly dynamic structure responding to environmental changes. We previously showed that Gram-negative biofilm bacteria undergo an increase in lipid A palmitoylation mediated by the PagP enzyme, contributing to increased resistance to host defenses. Here we describe a regulatory pathway leading to transcriptional induction of pagP in response to specific conditions created in the biofilm environment. We show that pagP expression is induced via the Rcs envelope stress system independently of the Rcs phosphorelay cascade and that it requires the GadE auxiliary regulator. Moreover, we identify an increase in osmolarity (i.e., ionic stress) as a signal able to induce pagP expression in an RcsB-dependent manner. Consistently, we show that the biofilm is a hyperosmolar environment and that RcsB-dependent pagP induction can be dampened in the presence of an osmoprotectant. These results provide new insights into the adaptive mechanisms of bacterial differentiation in biofilm.IMPORTANCE The development of the dense bacterial communities called biofilms creates a highly heterogeneous environment in which bacteria are subjected to a variety of physicochemical stresses. We investigated the mechanisms of a widespread and biofilm-associated chemical modification of the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer membranes. This modification corresponds to the incorporation, mediated by the enzyme PagP, of a palmitate chain into lipid A (palmitoylation) that reduces bacterial recognition by host immune responses. Using biochemical and genetic approaches, we demonstrate that a significant part of biofilm-associated lipid A palmitoylation is triggered upon induction of pagP transcription by the hyperosmolar biofilm environment. pagP induction is regulated by RcsB, the response regulator of the Rcs stress response pathway, and is not observed under planktonic conditions. Our report provides new insights into how physiological adaptations to local biofilm microenvironments can contribute to decreases in susceptibility to antimicrobial agents and host immune defenses.
Collapse
|
37
|
Yamanaka Y, Winardhi RS, Yamauchi E, Nishiyama SI, Sowa Y, Yan J, Kawagishi I, Ishihama A, Yamamoto K. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation. J Biol Chem 2018; 293:9496-9505. [PMID: 29695505 DOI: 10.1074/jbc.ra117.001425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/20/2018] [Indexed: 11/06/2022] Open
Abstract
The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing.
Collapse
Affiliation(s)
- Yuki Yamanaka
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan.,the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and
| | - Ricksen S Winardhi
- the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and.,the Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Erika Yamauchi
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - So-Ichiro Nishiyama
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Yoshiyuki Sowa
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Jie Yan
- the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and.,the Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Ikuro Kawagishi
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan, .,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
38
|
Yamamoto K, Yamanaka Y, Shimada T, Sarkar P, Yoshida M, Bhardwaj N, Watanabe H, Taira Y, Chatterji D, Ishihama A. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome. mSystems 2018; 3:e00172-17. [PMID: 29468196 PMCID: PMC5811629 DOI: 10.1128/msystems.00172-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β', of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Yuki Yamanaka
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Paramita Sarkar
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Neerupma Bhardwaj
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yuki Taira
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Dipankar Chatterji
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
39
|
Ayala JC, Wang H, Benitez JA, Silva AJ. Molecular basis for the differential expression of the global regulator VieA in Vibrio cholerae biotypes directed by H-NS, LeuO and quorum sensing. Mol Microbiol 2017; 107:330-343. [PMID: 29152799 DOI: 10.1111/mmi.13884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
Abstract
VieA is a cyclic diguanylate phosphodiesterase that modulates biofilm development and motility in Vibrio cholerae O1 of the classical biotype. vieA is part of an operon encoding the VieSAB signal transduction pathway that is nearly silent in V. cholerae of the El Tor biotype. A DNA pull-down assay for proteins interacting with the vieSAB promoter identified the LysR-type regulator LeuO. We show that in classical biotype V. cholerae, LeuO cooperates with the nucleoid-associated protein H-NS to repress vieSAB transcription. LeuO and H-NS interacted with the vieSAB promoter of both biotypes with similar affinities and protected overlapping DNA sequences. H-NS was expressed at similar levels in both cholera biotypes. In contrast, El Tor biotype strains expressed negligible LeuO under identical conditions. In El Tor biotype vibrios, transcription of vieSAB is repressed by the quorum sensing regulator HapR, which is absent in classical biotype strains. Restoring HapR expression in classical biotype V. cholerae repressed vieSAB transcription by binding to its promoter. We propose that double locking of the vieSAB promoter by H-NS and HapR in the El Tor biotype prior to the cessation of exponential growth results in a more pronounced decline in VieA specific activity compared to the classical biotype.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
41
|
Shimada T, Tanaka K, Ishihama A. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase. PLoS One 2017; 12:e0179181. [PMID: 28666008 PMCID: PMC5493296 DOI: 10.1371/journal.pone.0179181] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by the sigma subunit. The model prokaryote Escherichia coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. For identification of the "constitutive promoters" that are recognized by each RNAP holoenzyme alone in the absence of other supporting factors, we have performed the genomic SELEX screening in vitro for their binding sites along the E. coli K-12 W3110 genome using each of the reconstituted RNAP holoenzymes and a collection of genome DNA segments of E. coli K-12. The whole set of constitutive promoters for each RNAP holoenzyme was then estimated based on the location of RNAP-binding sites. The first successful screening of the constitutive promoters was achieved for RpoD (σ70), the principal sigma for transcription of growth-related genes. As an extension, we performed in this study the screening of constitutive promoters for four minor sigma subunits, stationary-phase specific RpoS (σ38), heat-shock specific RpoH (σ32), flagellar-chemotaxis specific RpoF (σ28) and extra-cytoplasmic stress-response RpoE (σ24). The total number of constitutive promoters were: 129~179 for RpoS; 101~142 for RpoH; 34~41 for RpoF; and 77~106 for RpoE. The list of constitutive promoters were compared with that of known promoters identified in vivo under various conditions and using varieties of E. coli strains, altogether allowing the estimation of "inducible promoters" in the presence of additional supporting factors.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
42
|
Sugino H, Usui T, Shimada T, Nakano M, Ogasawara H, Ishihama A, Hirata A. A structural sketch of RcdA, a transcription factor controlling the master regulator of biofilm formation. FEBS Lett 2017; 591:2019-2031. [PMID: 28608551 DOI: 10.1002/1873-3468.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
RcdA is a regulator of curlin subunit gene D, the master regulator of biofilm formation in Escherichia coli. Here, we determined the X-ray structure of RcdA at 2.55 Å resolution. RcdA consists of an N-terminal DNA-binding domain (DBD) containing a helix-turn-helix (HTH) motif and a C-terminal dimerization domain, and forms a homodimer in crystals. A computational docking model of the RcdA-DNA complex allowed prediction of the candidate residues responsible for DNA binding. Our structure-guided mutagenesis, in combination with gel shift assay, atomic force microscopic observation, and reporter assay, indicate that R32 in α2 of the HTH motif plays an essential role in the recognition and binding of target DNA while T46 in α3 influences the mode of oligomerization. These results provide insights into the DNA-binding mode of RcdA.
Collapse
Affiliation(s)
- Hirotaka Sugino
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takanori Usui
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa, Japan
| | - Masahiro Nakano
- Department of Virus Research, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center and Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
43
|
Curran TD, Abacha F, Hibberd SP, Rolfe MD, Lacey MM, Green J. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon. MICROBIOLOGY-SGM 2017; 163:400-409. [PMID: 28073397 PMCID: PMC5797941 DOI: 10.1099/mic.0.000423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.
Collapse
Affiliation(s)
- Thomas D Curran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fatima Abacha
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Stephen P Hibberd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melissa M Lacey
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Breddermann H, Schnetz K. Activation of leuO by LrhA in Escherichia coli. Mol Microbiol 2017; 104:664-676. [PMID: 28252809 DOI: 10.1111/mmi.13656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/26/2022]
Abstract
LeuO is a conserved LysR-type transcription factor of pleiotropic function in Enterobacteria. Regulation of the leuO gene has been best studied in Escherichia coli and Salmonella enterica. Its expression is silenced by the nucleoid-associated proteins H-NS and StpA, autoregulated by LeuO, and in E. coli activated by the transcription regulator BglJ-RcsB. However, signals which induce leuO expression remain unknown. Here we show that LrhA, a conserved LysR-type transcription regulator, activates leuO in E. coli. LrhA specifically binds the leuO regulatory region and activates expression of leuO from three promoters. Activation of leuO by LrhA is synergistic with activation by BglJ-RcsB, while co-regulation by LrhA, LeuO and H-NS/StpA suggests a complex regulatory interplay. In addition, hyperactive LrhA mutants including LrhA-12DN, 221TA, 61HR/221TA and 303DG were identified. Regulation of leuO by LrhA reveals a connection between the two pleiotropic regulators LeuO and LrhA in E. coli.
Collapse
Affiliation(s)
- Hannes Breddermann
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
45
|
Takada H, Shimada T, Dey D, Quyyum MZ, Nakano M, Ishiguro A, Yoshida H, Yamamoto K, Sen R, Ishihama A. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli. PLoS One 2016; 11:e0163057. [PMID: 28005933 PMCID: PMC5179076 DOI: 10.1371/journal.pone.0163057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed independent of rRNA synthesis under specific conditions where further synthesis of ribosomes is not needed.
Collapse
Affiliation(s)
- Hiraku Takada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Debashish Dey
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ranjan Sen
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:89-100. [PMID: 28510216 DOI: 10.1007/s12551-016-0238-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthew J Dorman
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
47
|
Larsonneur F, Martin FA, Mallet A, Martinez-Gil M, Semetey V, Ghigo JM, Beloin C. Functional analysis of Escherichia coli Yad fimbriae reveals their potential role in environmental persistence. Environ Microbiol 2016; 18:5228-5248. [PMID: 27696649 DOI: 10.1111/1462-2920.13559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces. Functional characterisation of Yad fimbriae were undertook, and YadN was identified as the most abundant and potential major pilin, and YadC as the potential tip-protein of Yad fimbriae. It was showed that Yad production participates to binding of E. coli K-12 to human eukaryotic cells (Caco-2) and inhibits macrophage phagocytosis, but also enhances E. coli K-12 binding to xylose, a major component of the plant cell wall, through its tip-lectin YadC. Consistently, it was demonstrated that Yad production provides E. coli with a competitive advantage in colonising corn seed rhizospheres. The latter phenotype is correlated with induction of Yad expression at temperatures below 37°C, and under anaerobic conditions, through a complex regulatory network. Taken together, these results suggest that Yad fimbriae are versatile adhesins that beyond potential capacities to modulate host-pathogen interactions might contribute to E. coli environmental persistence.
Collapse
Affiliation(s)
- Fanny Larsonneur
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France.,Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC), Université Paris Diderot, Cellule Pasteur, rue du Dr. Roux 75724, Paris cedex, France
| | - Fernando A Martin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Adeline Mallet
- Institut Pasteur, Ultrapole, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Vincent Semetey
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, Paris, 75005, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux 75724, Paris cedex, France
| |
Collapse
|
48
|
Breddermann H, Schnetz K. Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli. Front Cell Infect Microbiol 2016; 6:106. [PMID: 27695690 PMCID: PMC5025477 DOI: 10.3389/fcimb.2016.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive feedback network, which theoretically can result in bi-stability and heterogeneity, or be maintained in a stable OFF or ON states by an additional signal. Here we performed quantitative and single-cell expression analyses to address the antagonistic regulation and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids. The data revealed uniform regulation of leuO expression in the population that correlates with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a straightforward model of antagonistic regulation of leuO expression by the two regulators, LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at standard laboratory growth conditions feedback regulation of leuO is of minor relevance and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state.
Collapse
Affiliation(s)
- Hannes Breddermann
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| | - Karin Schnetz
- Department of Biology, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
49
|
Shimada T, Tanaka K, Ishihama A. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli. Microbiology (Reading) 2016; 162:1698-1707. [DOI: 10.1099/mic.0.000337] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, 4259-R1-29, Yokohama 226-8503, Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, 4259-R1-29, Yokohama 226-8503, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
50
|
Yamanaka Y, Shimada T, Yamamoto K, Ishihama A. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Microbiology (Reading) 2016; 162:1253-1264. [DOI: 10.1099/mic.0.000292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yuki Yamanaka
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|