1
|
Nagahawatte ND, Avci R, Cheng LK. High-resolution mapping of gastric slow wave uncoupling induced by glucagon. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039181 DOI: 10.1109/embc53108.2024.10782810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Gastrointestinal (GI) motility is in part governed by the rhythmic myoelectrical waves of the GI tract, also known as slow waves. Disordered slow wave rhythms and patterns are associated with functional motility disorders. Various drugs have been used to simulate disease states to develop and investigate the efficacy of novel therapies for treating GI disorders. Slow wave dysrhythmias associated with GI conditions are commonly characterized based on their frequency, but this metric has also been shown to be unreliable. This study induced slow wave dysrhythmias in the stomach and quantified the slow wave spatial response using high resolution mapping techniques (128 electrodes at 5 mm inter-electrode spacing). Glucagon (0.0125 mg/kg) was infused to induce hyperglycemia in pigs (n=6, 42.8 ± 8.1 kg). The resultant slow wave dysrhythmias were mapped and quantified by determining the frequency of slow wave activity and the prevalence of regions of uncoupled activity compared to the baseline recordings. At baseline, slow waves were fully entrained and propagated at a regular frequency of 3.4 ± 1.0 cycles per minute (cpm) with no presence of disordered activity. However, after the infusion of glucagon, slow wave activity was uncoupled in 3.2 - 10.9 % of the mapped region, with slow waves occurring during every alternate slow wave cycle compared to other regions. Therefore, slow wave activity in regular and uncoupled regions occurred in a 2:1 frequency ratio in the ranges between 2.1 - 3.1 cpm and 1.0 - 1.6 cpm. The findings highlighted the importance of high-resolution mapping techniques to define electrical dysrhythmias of the stomach which otherwise would have been undetected with a few sparse electrodes due to spatial aliasing. This study defined the response of gastric slow wave activity resulting from glucagon-induced hyperglycemia for the first time in pigs. In the future, the developed framework can be used to simulate disease states and assess the effectiveness of novel therapies such as pacing in treating GI disorders.
Collapse
|
2
|
Nagahawatte ND, Avci R, Paskaranandavadivel N, Cheng LK. High-energy pacing inhibits slow-wave dysrhythmias in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G676-G686. [PMID: 38591131 DOI: 10.1152/ajpgi.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The motility of the gastrointestinal tract is coordinated in part by rhythmic slow waves, and disrupted slow-wave patterns are linked to functional motility disorders. At present, there are no treatment strategies that primarily target slow-wave activity. This study assessed the use of pacing to suppress glucagon-induced slow-wave dysrhythmias in the small intestine. Slow waves in the jejunum were mapped in vivo using a high-resolution surface-contact electrode array in pigs (n = 7). Glucagon was intravenously administered to induce hyperglycemia. Slow-wave propagation patterns were categorized into antegrade, retrograde, collision, pacemaker, and uncoupled activity. Slow-wave characteristics such as period, amplitude, and speed were also quantified. Postglucagon infusion, pacing was applied at 4 mA and 8 mA and the resulting slow waves were quantified spatiotemporally. Antegrade propagation was dominant throughout all stages with a prevalence of 55 ± 38% at baseline. However, glucagon infusion resulted in a substantial and significant increase in uncoupled slow waves from 10 ± 8% to 30 ± 12% (P = 0.004) without significantly altering the prevalence of other slow-wave patterns. Slow-wave frequency, amplitude, and speed remained unchanged. Pacing, particularly at 8 mA, significantly suppressed dysrhythmic slow-wave patterns and achieved more effective spatial entrainment (85%) compared with 4 mA (46%, P = 0.039). This study defined the effect of glucagon on jejunal slow waves and identified uncoupling as a key dysrhythmia signature. Pacing effectively entrained rhythmic activity and suppressed dysrhythmias, highlighting the potential of pacing for gastrointestinal disorders associated with slow-wave abnormalities.NEW & NOTEWORTHY Glucagon was infused in pigs to induce hyperglycemia and the resulting slow-wave response in the intact jejunum was defined in high resolution for the first time. Subsequently, with pacing, the glucagon-induced dysrhythmias were suppressed and spatially entrained for the first time with a success rate of 85%. The ability to suppress slow-wave dysrhythmias through pacing is promising in treating motility disorders that are associated with intestinal dysrhythmias.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States
- Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
3
|
Han N, Jiang W, Li G, Lu L, Shan J, Feng L, Jin L. Low-intensity pulsed ultrasound at ST36 improves the gastric motility by TNF-α/IKKβ/NF-κB signaling pathway in diabetic rats. J Gastroenterol Hepatol 2023; 38:2018-2026. [PMID: 37581362 DOI: 10.1111/jgh.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND AND AIM Low-intensity pulsed ultrasound (LIPUS) can effectively regulate the central and peripheral nervous system. However, whether LIPUS could act on acupuncture points to modulate the activity of peripheral nervous has rarely been studied. Our study aimed to investigate whether LIPUS at ST36 could improve gastric emptying in diabetic gastroparesis rats. METHODS Sprague-Dawley male rats were divided into three groups: control group (CON), diabetic gastroparesis group (DM), and diabetic gastroparesis LIPUS treated group (LIPUS). The body weight and blood glucose were recorded every week. Glucose tolerance, gastric emptying rate, and gastric motility were measured before and after treatment. Gastric motility was assessed by ultrasonic examination and Muscle strip experiment. The expression level of c-Kit was assessed by immunohistochemistry staining. Levels of TNF-α, p-NF-κB p-65, NF-κB p-65, and p-IKKβ, IKKβ were measured by western blot. RESULTS We reported LIPUS at an intensity of 0.88 W/cm2 exhibited significant differences in functional recovery of gastric delayed emptying in diabetic rats. Through ultrasound gastric motility functional testing and analysis of gastric antral smooth muscle strips indirectly and directly proved the effectiveness of LIPUS for the recovery of gastric delayed emptying. Pathological analysis and western blot indicated that the mechanism by which LIPUS applied to ST36 improved gastric motility may be partially attributed to the inhibition of the TNF-α/IKKβ/NF-κB signaling pathway, thereby rescuing the damaged interstitial cells of Cajal network. CONCLUSION LIPUS at ST36 improved the gastric motility and rescued the damaged networks of interstitial cells of Cajal. LIPUS may have a promising therapeutic potential for diabetic gastroparesis.
Collapse
Affiliation(s)
- Nie Han
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijun Jiang
- Department of Gastroenterology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanheng Li
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Lu
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Shan
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lan Feng
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lin Jin
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
O'Grady G, Varghese C, Schamberg G, Calder S, Du P, Xu W, Tack J, Daker C, Mousa H, Abell TL, Parkman HP, Ho V, Bradshaw LA, Hobson A, Andrews CN, Gharibans AA. Principles and clinical methods of body surface gastric mapping: Technical review. Neurogastroenterol Motil 2023; 35:e14556. [PMID: 36989183 PMCID: PMC10524901 DOI: 10.1111/nmo.14556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND PURPOSE Chronic gastric symptoms are common, however differentiating specific contributing mechanisms in individual patients remains challenging. Abnormal gastric motility is present in a significant subgroup, but reliable methods for assessing gastric motor function in clinical practice are lacking. Body surface gastric mapping (BSGM) is a new diagnostic aid, employs multi-electrode arrays to measure and map gastric myoelectrical activity non-invasively in high resolution. Clinical adoption of BSGM is currently expanding following studies demonstrating the ability to achieve specific patient subgrouping, and subsequent regulatory clearances. An international working group was formed in order to standardize clinical BSGM methods, encompassing a technical group developing BSGM methods and a clinical advisory group. The working group performed a technical literature review and synthesis focusing on the rationale, principles, methods, and clinical applications of BSGM, with secondary review by the clinical group. The principles and validation of BSGM were evaluated, including key advances achieved over legacy electrogastrography (EGG). Methods for BSGM were reviewed, including device design considerations, patient preparation, test conduct, and data processing steps. Recent advances in BSGM test metrics and reference intervals are discussed, including four novel metrics, being the 'principal gastric frequency', BMI-adjusted amplitude, Gastric Alimetry Rhythm Index™, and fed: fasted amplitude ratio. An additional essential element of BSGM has been the introduction of validated digital tools for standardized symptom profiling, performed simultaneously during testing. Specific phenotypes identifiable by BSGM and the associated symptom profiles were codified with reference to pathophysiology. Finally, knowledge gaps and priority areas for future BSGM research were also identified by the working group.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Gabriel Schamberg
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | | | - Peng Du
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - William Xu
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Jan Tack
- Department of Gastroenterology, University Hospitals, Leuven, Belgium
| | | | - Hayat Mousa
- Division of Gastroenterology, Lustgarten Motility Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas L Abell
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Henry P Parkman
- Department of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Vincent Ho
- Western Sydney University, Sydney, New South Wales, Australia
| | | | | | - Christopher N Andrews
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Xu W, Gharibans AA, Calder S, Schamberg G, Walters A, Jang J, Varghese C, Carson D, Daker C, Waite S, Andrews CN, Cundy T, O’Grady G. Defining and Phenotyping Gastric Abnormalities in Long-Term Type 1 Diabetes Using a Novel Body Surface Gastric Mapping Device. GASTRO HEP ADVANCES 2023; 2:1120-1132. [PMID: 39131562 PMCID: PMC11307485 DOI: 10.1016/j.gastha.2023.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Diabetic gastroenteropathy is associated with poor glycemic control and morbidity in people with type 1 diabetes (T1D). There is a lack of noninvasive techniques to assess and monitor gastric abnormalities. We aimed to define phenotypes of gastric myoelectrical abnormalities in people with longstanding T1D with and without symptoms using a novel noninvasive body surface gastric mapping (BSGM) device. Methods BSGM was performed on people with T1D of >10 years duration and matched controls, employing Gastric Alimetry (Alimetry, New Zealand), comprising of a high-resolution 64-channel array, validated symptom-logging App, and wearable reader. Results Thirty-two people with T1D were recruited (15 with a high symptom burden), and 32 controls. Those with symptoms showed more unstable gastric myoelectrical activity (Gastric Alimetry Rhythm Index 0.39 vs 0.51, P = .017; and lower average spatial covariance 0.48 vs 0.51, P = .009) compared with controls. Symptomatic patients also had a higher prevalence of peripheral neuropathy (67% vs 6%, P = .001), anxiety/depression diagnoses (27% vs 0%, P = .001), and higher mean hemoglobin A1C levels (76 vs 56 mmol/mol, P < .001). BSGM defined distinct phenotypes in T1D participants including those with markedly unstable gastric rhythms (4/32, 12.5%) and abnormally high gastric frequencies (9/32, 28%). Deviation in gastric frequency was positively correlated with symptoms of bloating, upper gut pain, nausea and vomiting, and fullness (R > 0.35, P < .05). Conclusion Gastric symptoms in people with longstanding T1D correlate with myoelectrical abnormalities on BSGM evaluation, in addition to glycemic control, psychological comorbidities, and peripheral neuropathy. BSGM using Gastric Alimetry identified a range of myoelectrical phenotypes, presenting targets for diagnosis, monitoring, and therapy.
Collapse
Affiliation(s)
- William Xu
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Armen A. Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Gabriel Schamberg
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Anthony Walters
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jia Jang
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Daniel Carson
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Charlotte Daker
- Alimetry Ltd, Auckland, New Zealand
- Department of Gastroenterology, North Shore Hospital, Te Whatu Ora Waitemata, New Zealand
| | | | - Christopher N. Andrews
- Alimetry Ltd, Auckland, New Zealand
- Department of Gastroenterology, University of Calgary, Calgary, Canada
| | - Tim Cundy
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Gregory O’Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Han X, Zhu H. Endoscopic mucosal electrodes: New directions for recording and regulating gastric myoelectric activity. Front Surg 2023; 9:1035723. [PMID: 36684308 PMCID: PMC9852521 DOI: 10.3389/fsurg.2022.1035723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023] Open
Abstract
With the gradual deepening of the study of gastric motility disorders, people increasingly realize that gastric myoelectric activity plays an important role in coordinating gastric function. This article introduces the advantages of endoscopic mucosal electrodes compared with traditional electrodes. Several different types of mucosal electrodes and how to fix the electrodes by endoscope are introduced. Endoscopic mucosal electrodes can record and regulate gastric myoelectric activity, which has great value in the study of gastric motility. Endoscopic mucosal electrode technique refers to the fixation of the electrode in the designated part of the gastric mucosa by endoscope. Through endoscopic mucosal electrodes, on the one hand, we can record gastric myoelectric activity, on the other hand, we can carry out gastric electrical stimulation to interfere with gastric rhythm. Endoscopic mucosal electrodes have higher accuracy than traditional cutaneous electrodes, less trauma and lower cost than serosal electrodes. Endoscopic mucosal electrodes have a good application prospect for diseases such as gastroparesis and obesity.
Collapse
|
7
|
Gharibans AA, Calder S, Varghese C, Waite S, Schamberg G, Daker C, Du P, Alighaleh S, Carson D, Woodhead J, Farrugia G, Windsor JA, Andrews CN, O'Grady G. Gastric dysfunction in patients with chronic nausea and vomiting syndromes defined by a noninvasive gastric mapping device. Sci Transl Med 2022; 14:eabq3544. [PMID: 36130019 PMCID: PMC10042458 DOI: 10.1126/scitranslmed.abq3544] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic nausea and vomiting syndromes (NVSs) are prevalent and debilitating disorders. Putative mechanisms include gastric neuromuscular disease and dysregulation of brain-gut interaction, but clinical tests for objectively defining gastric motor function are lacking. A medical device enabling noninvasive body surface gastric mapping (BSGM) was developed and applied to evaluate NVS pathophysiology. BSGM was performed in 43 patients with NVS and 43 matched controls using Gastric Alimetry (Alimetry), a conformable high-resolution array (8 × 8 electrodes; 20-mm interelectrode spacing), wearable reader, and validated symptom-logging app. Continuous measurement encompassed a fasting baseline (30 minutes), 482-kilocalorie meal, and 4-hour postprandial recording, followed by spectral and spatial biomarker analyses. Meal responses were impaired in NVS, with reduced amplitudes compared to controls (median, 23.3 microvolts versus 38.0 microvolts, P < 0.001), impaired fed-fasting power ratios (1.1 versus 1.6, P = 0.02), and disorganized slow waves (spatial frequency stability, 13.6 versus 49.5; P < 0.001). Two distinct NVS subgroups were evident with indistinguishable symptoms (all P > 0.05). Most patients (62%) had normal BSGM studies with increased psychological comorbidities (43.5% versus 7.7%; P = 0.03) and anxiety scores (median, 16.5 versus 13.0; P = 0.035). A smaller subgroup (31%) had markedly abnormal BSGM, with biomarkers correlating with symptoms (nausea, pain, excessive fullness, early satiety, and bloating; all r > 0.35, P < 0.05). Patients with NVS share overlapping symptoms but comprise distinct underlying phenotypes as revealed by a BSGM device. These phenotypes correlate with symptoms, which should inform clinical management and therapeutic trial design.
Collapse
Affiliation(s)
- Armen A Gharibans
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Stefan Calder
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand
| | - Chris Varghese
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | | | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland 0620, New Zealand
| | - Peng Du
- Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | | | - Daniel Carson
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | | | - John A Windsor
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Christopher N Andrews
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Greg O'Grady
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Ahmed MA, Venugopal S, Jung R. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis. PLoS Comput Biol 2021; 17:e1009644. [PMID: 34871315 PMCID: PMC8675931 DOI: 10.1371/journal.pcbi.1009644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/16/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
Peristalsis, the coordinated contraction—relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. Understanding of the integrative role of neurotransmission and intercellular coupling in the propagation of an entrained gastric slow-wave, important for understanding motility disorders, however, remains incomplete. Using a computational framework constituted of a novel gastric motility network (GMN) model we address the hypothesis that engaging biological oscillators (i.e., ICCs) by constitutive gap junction coupling mechanisms and enteric neural innervation activated signals can confer a robust entrained gastric slow-wave. We demonstrate that while a decreasing enteric neural innervation gradient that modulates the intracellular IP3 concentration in the ICCs can guide the aboral slow-wave propagation essential for peristalsis, engaging ICCs by recruiting the exchange of second messengers (inositol trisphosphate (IP3) and Ca2+) ensures a robust entrained longitudinal slow-wave, even in the presence of biological variability in electrical coupling strengths. Our GMN with the distinct intercellular coupling in conjunction with the intracellular feedback pathways and a rostrocaudal enteric neural innervation gradient allows gastric slow waves to oscillate with a moderate range of frequencies and to propagate with a broad range of velocities, thus preventing decoupling observed in motility disorders. Overall, the findings provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach, offer directions for future experiments and theoretical work, and can potentially aid in the design of new interventional pharmacological and neuromodulation device treatments for addressing gastric motility disorders. The coordinated contraction and relaxation of the muscles of the stomach, known as peristalsis is important for normal gastric motility and primarily governed by electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICCs) and smooth muscle cells of the stomach wall as a slow-wave. Under normal conditions, a gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. However, the understanding of intrinsic and extrinsic mechanisms that ensure propagation of a robust entrained slow-wave remains incomplete. Here, using a computational framework, we show that in conjunction with an enteric neural innervation gradient along the rostrocaudal ICC chain, and intercellular electrical coupling, the intercellular exchange of inositol trisphosphate between ICCs prevents decoupling by extending the longitudinal entrainment range along the stomach wall, even when variability in intercellular coupling exists. The findings from our study indicate ways that ensure the rostrocaudal spread of a robust gastric slow-wave and provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach.
Collapse
Affiliation(s)
- Md Ashfaq Ahmed
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Sharmila Venugopal
- Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SV); (RJ)
| | - Ranu Jung
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
- * E-mail: (SV); (RJ)
| |
Collapse
|
9
|
O'Grady G, Gharibans AA, Du P, Huizinga JD. The gastric conduction system in health and disease: a translational review. Am J Physiol Gastrointest Liver Physiol 2021; 321:G527-G542. [PMID: 34549598 DOI: 10.1152/ajpgi.00065.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric peristalsis is critically dependent on an underlying electrical conduction system. Recent years have witnessed substantial progress in clarifying the operations of this system, including its pacemaking units, its cellular architecture, and slow-wave propagation patterns. Advanced techniques have been developed for assessing its functions at high spatiotemporal resolutions. This review synthesizes and evaluates this progress, with a focus on human and translational physiology. A current conception of the initiation and conduction of slow-wave activity in the human stomach is provided first, followed by a detailed discussion of its organization at the cellular and tissue level. Particular emphasis is then given to how gastric electrical disorders may contribute to disease states. Gastric dysfunction continues to grow in their prevalence and impact, and while gastric dysrhythmia is established as a clear and pervasive feature in several major gastric disorders, its role in explaining pathophysiology and informing therapy is still emerging. New insights from high-resolution gastric mapping are evaluated, together with historical data from electrogastrography, and the physiological relevance of emerging biomarkers from body surface mapping such as retrograde propagating slow waves. Knowledge gaps requiring further physiological research are highlighted.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Raj K Goyal
- From the Division of Gastroenterology, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, and the Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston - both in Massachusetts
| |
Collapse
|
11
|
Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coordinated contractions and motility patterns unique to each gastrointestinal organ facilitate the digestive process. These motor activities are coordinated by bioelectrical events, sensory and motor nerves, and hormones. The motility problems in the gastrointestinal tract known as functional gastrointestinal disorders (FGIDs) are generally caused by impaired neuromuscular activity and are highly prevalent. Their diagnosis is challenging as symptoms are often vague and difficult to localize. Therefore, the underlying pathophysiological factors remain unknown. However, there is an increasing level of research and clinical evidence suggesting a link between FGIDs and altered bioelectrical activity. In addition, electroceuticals (bioelectrical therapies to treat diseases) have recently gained significant interest. This paper gives an overview of bioelectrical signatures of gastrointestinal organs with normal and/or impaired motility patterns and bioelectrical therapies that have been developed for treating FGIDs. The existing research evidence suggests that bioelectrical activities could potentially help to identify the diverse etiologies of FGIDs and overcome the drawbacks of the current clinically adapted methods. Moreover, electroceuticals could potentially be effective in the treatment of FGIDs and replace the limited existing conventional therapies which often attempt to treat the symptoms rather than the underlying condition.
Collapse
|
12
|
Wang S, Wang R, Zhang Y, Zhang X, Cai B, Lu Y, Xia Y, Chen Q. Therapies for diabetic gastroparesis: A protocol for a systematic review and network meta-analysis. Medicine (Baltimore) 2020; 99:e20461. [PMID: 32481350 PMCID: PMC7249871 DOI: 10.1097/md.0000000000020461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic gastroparesis (DG) is a common autonomic neuropathy which impacts on nutritional state and quality of life in diabetic patients, and it also adversely affects glycemic control in diabetes. The prevalence of DG is growing with the number of patients with diabetes continues to increase. However, there is no definitive answer as to which of the current therapies is the best for the clinical treatment of the different manifestations of DG. The subject of this study is to answer the following question: what is the best intervention for diabetic patients with gastroparesis? METHODS Comprehensive searches of the Cochrane Library, PubMed, Embase, Medline, Central and Web of Science, and 4 Chinese databases, including China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals, Chinese Biomedical Literature Database, and WanFang will be completed using the following keywords DG and therapies and related entry terms. Studies will be included, according to the eligibility criteria (randomized controlled trials and controlled clinical trials, considering specific outcome measures for DG). The reference lists of included studies will be manual searched. Relevant data will be extracted from included studies using a specially designed data extraction sheet. Risk of bias of the included studies will be assessed, and the overall strength of the evidence will be summarized through GRADE. A random effects model will be used for all pairwise meta-analyses (with a 95% confidence interval). A Bayesian network meta-analysis will explore the relative benefits between the various therapies. The review will be reported using the Preferred Reporting Items for Systematic Reviews incorporating Network Meta-Analyses statement. Network meta-analysis will be performed using a Bayesian framework through the Winbugs software. RESULTS This network meta-analysis will identify the best effective therapy for DG. CONCLUSION This study will compare and evaluate current therapies for DG, and find the best treatment of DG.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Ruili Wang
- Diabetes Department, Jintang County Traditional Chinese Medicine Hospital, Chengdu
| | - Yanli Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xu Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Baochao Cai
- Endocrinology Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing
| | - Yan Lu
- Department of Endocrinology, Third Affiliated Hospital of Chengdu University of TCM, Chengdu, China
| | - Yuguo Xia
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
13
|
Liu Y, Ye F, Zhang S, Li S, Chen J. Characteristics of myoelectrical activities along the small intestine and their responses to test meals of different glycemic index in rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R997-R1003. [PMID: 32320266 DOI: 10.1152/ajpregu.00282.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to characterize intestinal myoelectrical activity along the small intestine and investigate its responses to test meals with different glycemic index at different locations. Sixteen rats were implanted with electrodes in the serosal surface of the duodenum, jejunum, and ileum. Intestinal myoelectrical activities were recorded from these electrodes for 30 min in the fasting state and 3 h after four kinds of meals with different glycemic index, together with the assessment of blood glucose. The results were as follows: 1) in the fasting state, the percentage of normal intestinal slow waves (%NISW) showed no difference; however, the dominant frequency (DF), power (DP), and percentage of spike activity superimposed on the intestinal slow wave (NS/M) were progressively decreased along the entire small intestine; 2) regular solid meal and Ensure solicited no changes in any parameters of intestinal myoelectrical activity; whereas glucose and glucose + glucagon significantly altered the %NISW, DF, DP, and NS/M, and the effects on the proximal intestine were opposite to those in the distal intestine; and 3) postprandial blood glucose level was significantly correlated with %NISW along the entire small intestine. We found that that, in addition to the well-known frequency gradient, there is also a gradual decrease in the DP and spikes along the small intestine in the fasting state. Glucose and hyperglycemic meals inhibit myoelectrical activities in the proximal small intestine but result in enhanced but more dysrhythmic intestinal myoelectrical activities. There is a significant negative correlation between the normality of intestinal slow waves and blood glucose.
Collapse
Affiliation(s)
- Yi Liu
- Veterans Research and Education Foundation, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma.,The 1st Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China.,Department of Physiology, University of Oklahoma, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Feng Ye
- Veterans Research and Education Foundation, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma.,The 1st Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China.,Department of Physiology, University of Oklahoma, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Sujuan Zhang
- Veterans Research and Education Foundation, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland.,Department of Gastroenterology, Tianjin No. 254 Hospital, Tianjin, China
| | - Shiying Li
- Veterans Research and Education Foundation, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Jiande Chen
- Veterans Research and Education Foundation, Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| |
Collapse
|
14
|
Du P, Liu JYH, Sukasem A, Qian A, Calder S, Rudd JA. Recent progress in electrophysiology and motility mapping of the gastrointestinal tract using multi-channel devices. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1735455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Julia Y. H. Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Atchariya Sukasem
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Anna Qian
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - John A. Rudd
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
15
|
Koch KL, Hasler WL, Van Natta M, Calles-Escandon J, Grover M, Pasricha PJ, Snape WJ, Parkman HP, Abell TL, McCallum RW, Nguyen LA, Sarosiek I, Farrugia G, Tonascia J, Lee L, Miriel L, Hamilton F. Satiety testing in diabetic gastroparesis: Effects of insulin pump therapy with continuous glucose monitoring on upper gastrointestinal symptoms and gastric myoelectrical activity. Neurogastroenterol Motil 2020; 32:e13720. [PMID: 31574209 PMCID: PMC7382784 DOI: 10.1111/nmo.13720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Symptoms induced by caloric or non-caloric satiety test meals and gastric myoelectrical activity (GMA) have not been studied in patients with diabetic gastroparesis (DGP) before and after intense glucose management. AIMS We determined the effects of continuous subcutaneous insulin infusion (CSII) with continuous glucose monitoring (CGM) on GI symptoms, volume consumed, and GMA induced by the caloric meal satiety test (CMST) and water load satiety test (WLST) in DGP. METHODS Forty-five patients with DGP underwent CMST and WLST at baseline and 24 weeks after CSII with CGM. Subjects ingested the test meals until they were completely full. Visual analog scales were used to quantify pre- and postmeal symptoms, and GMA was recorded with cutaneous electrodes and analyzed visually and by computer. KEY RESULTS: At baseline and 24-week visits, nausea, bloating, abdominal discomfort, and fullness were immediately increased after CMST and WLST (Ps < 0.01). The meal volumes ingested were significantly less than normal controls at both visits in almost one-third of the subjects. After the CMST, the percentage 3 cycle per minute GMA increased and bradygastria decreased compared with WLST (Ps < 0.05). After treatment for 24 weeks meal volumes ingested, postmeal symptoms and GMA were no different than baseline. CONCLUSIONS AND INFERENCES: (a) Satiety test meals elicited symptoms of nausea, bloating, and abdominal discomfort; (b) CMST stimulated more symptoms and changes in GMA than WLST; and (c) CSII with CGM for 24 weeks did not improve symptoms, volumes ingested, or GMA elicited by the two satiety test meals in these patients with diabetic GP. Satiety tests in diabetic gastropresis are useful to study acute postprandial symptoms and GMA, but these measures were not improved by intensive insulin therapy.
Collapse
Affiliation(s)
- Kenneth L Koch
- Section on Gastroenterology, Wake Forest University, Winston-Salem, North Carolina
| | - William L Hasler
- Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Mark Van Natta
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | - Pankaj J Pasricha
- Center for Neurogastroenterology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - William J Snape
- California Pacific Medical Center, San Francisco, California
| | - Henry P Parkman
- Section of Gastroenterology, Temple University, Philadelphia, Pennsylvania
| | - Thomas L Abell
- Digestive and Liver Health, University of Louisville, Louisville, Kentucky
| | | | - Linda A Nguyen
- Division of Gastroenterology, Stanford University, Palo Alto, California
| | - Irene Sarosiek
- Division of Gastroenterology, Texas Tech University, El Paso, Texas
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Linda Lee
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura Miriel
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Frank Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|
16
|
Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, Mitri J, Pereira RF, Rawlings K, Robinson S, Saslow L, Uelmen S, Urbanski PB, Yancy WS. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42:731-754. [PMID: 31000505 PMCID: PMC7011201 DOI: 10.2337/dci19-0014] [Citation(s) in RCA: 727] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alison B Evert
- UW Neighborhood Clinics, UW Medicine, University of Washington, Seattle, WA
| | | | - Christopher D Gardner
- Stanford Diabetes Research Center and Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA
| | - W Timothy Garvey
- Diabetes Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | | | | | - Joanna Mitri
- Section on Clinical, Behavioral and Outcomes Research Lipid Clinic, Adult Diabetes Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | | | | | - Laura Saslow
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI
| | | | | | - William S Yancy
- Duke Diet and Fitness Center, Department of Medicine, Duke University Health System, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
17
|
Du P, Grady GO, Paskaranandavadivel N, Tang SJ, Abell T, Cheng LK. High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias. J Neurogastroenterol Motil 2019; 25:276-285. [PMID: 30870879 PMCID: PMC6474709 DOI: 10.5056/jnm18192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims It is now recognised that gastric dysrhythmias are best characterised by their spatial propagation pattern. Hyperglycemia is an important cause of gastric slow wave dysrhythmia, however, the spatiotemporal patterns of dysrhythmias in this context have not been investigated. This study aims to investigate the relationship between hyperglycemia and the patterns of dysrhythmias by employing high-resolution (multi-electrode) mapping simultaneously at the anterior and posterior gastric serosa. Methods High-resolution mapping (8 × 16 electrodes per serosal) was performed in 4 anesthetized hounds. Baseline recordings (21 ± 8 minutes) were followed by intravenous injection of glucagon (0.5 mg per dose) and further recordings (59 ± 15 minutes). Blood glucose levels were monitored manually using a glucose sensing kit at regular 5-minute intervals. Slow wave activation maps, amplitudes, velocity, anisotropic ratio, and frequency were calculated. Differences were compared between baseline and post glucagon injection. Results Baseline slow waves propagated symmetrically and antegrade. The blood glucose levels were increased by an average of 112% compared to the baseline by the end of the recordings. All subjects demonstrated elevated incidence of slow wave dysrhythmias following injection compared to the baseline (48 ± 23% vs 6 ± 4%, P < 0.05). Dysrhythmias arose simultaneously or independently on anterior and posterior serosa. Spatial dysrhythmias occurred before and persisted after the onset and disappearance of temporal dysrhythmias. Conclusions Infusion of glucagon induced gastric slow wave dysrhythmias, which occurred across a heterogeneous range of patterns and frequencies. The spatial dysrhythmias of gastric slow waves were shown to be more prevalent and persisted over a longer period of time compared to the temporal dysrhythmias.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gregory O' Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | | | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Paskaranandavadivel N, Angeli TR, Manson T, Stocker A, McElmurray L, O'Grady G, Abell T, Cheng LK. Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity. Physiol Meas 2019; 40:025011. [PMID: 30754026 DOI: 10.1088/1361-6579/ab0668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Bioelectrial signals known as slow waves play a key role in coordinating gastric motility. Slow wave dysrhythmias have been associated with a number of functional motility disorders. However, there have been limited human recordings obtained in the consious state or over an extended period of time. This study aimed to evaluate a robust ambulatory recording platform. APPROACH A commercially available multi-sensor recording system (Shimmer3, ShimmerSensing) was applied to acquire slow wave information from the stomach of six humans and four pigs. First, acute experiments were conducted in pigs to verify the accuracy of the recording module by comparing to a standard widely employed electrophysiological mapping system (ActiveTwo, BioSemi). Then, patients with medically refractory gastroparesis undergoing temporary gastric stimulator implantation were enrolled and gastric slow waves were recorded from mucosally-implanted electrodes for 5 d continuously. Accelerometer data was also collected to exclude data segments containing excessive patient motion artefact. MAIN RESULTS Slow wave signals and activation times from the Shimmer3 module were closely comparable to a standard electrophysiological mapping system. Slow waves were able to be recorded continuously for 5 d in human subjects. Over the 5 d, slow wave frequency was 2.8 ± 0.6 cpm and amplitude was 0.2 ± 0.3 mV. SIGNIFICANCE A commercial multi-sensor recording module was validated for recording electrophysiological slow waves for 5 d, including in ambulatory patients. Multiple modules could be used simultaneously in the future to track the spatio-temporal propagation of slow waves. This framework can now allow for patho-electrophysiological studies to be undertaken to allow symptom correlation with dysrhythmic slow wave events.
Collapse
Affiliation(s)
- Niranchan Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Camilleri M, Chedid V, Ford AC, Haruma K, Horowitz M, Jones KL, Low PA, Park SY, Parkman HP, Stanghellini V. Gastroparesis. Nat Rev Dis Primers 2018; 4:41. [PMID: 30385743 DOI: 10.1038/s41572-018-0038-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastroparesis is a disorder characterized by delayed gastric emptying of solid food in the absence of a mechanical obstruction of the stomach, resulting in the cardinal symptoms of early satiety, postprandial fullness, nausea, vomiting, belching and bloating. Gastroparesis is now recognized as part of a broader spectrum of gastric neuromuscular dysfunction that includes impaired gastric accommodation. The overlap between upper gastrointestinal symptoms makes the distinction between gastroparesis and other disorders, such as functional dyspepsia, challenging. Thus, a confirmed diagnosis of gastroparesis requires measurement of delayed gastric emptying via an appropriate test, such as gastric scintigraphy or breath testing. Gastroparesis can have idiopathic, diabetic, iatrogenic, post-surgical or post-viral aetiologies. The management of gastroparesis involves: correcting fluid, electrolyte and nutritional deficiencies; identifying and treating the cause of delayed gastric emptying (for example, diabetes mellitus); and suppressing or eliminating symptoms with pharmacological agents as first-line therapies. Several novel pharmacologic agents and interventions are currently in the pipeline and show promise to help tailor individualized therapy for patients with gastroparesis.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| | - Victor Chedid
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander C Ford
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ken Haruma
- Department of Internal Medicine 2, General Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Seon-Young Park
- Division of Gastroenterology, Chonnam National University School of Medicine, Gwangju, Republic of Korea
| | - Henry P Parkman
- GI Section, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Vincenzo Stanghellini
- Department of Digestive Diseases, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
O'Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, Cheng LK, Du P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng 2018; 12:287-302. [PMID: 30176605 DOI: 10.1109/rbme.2018.2867555] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
Collapse
|
21
|
Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping. Obes Surg 2018; 27:1929-1937. [PMID: 28213666 DOI: 10.1007/s11695-017-2597-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Laparoscopic sleeve gastrectomy (LSG) is increasingly being applied to treat obesity. LSG includes excision of the normal gastric pacemaker, which could induce electrical dysrhythmias impacting on post-operative symptoms and recovery, but these implications have not been adequately investigated. This study aimed to define the effects of LSG on gastric slow-wave pacemaking using laparoscopic high-resolution (HR) electrical mapping. METHODS Laparoscopic HR mapping was performed before and after LSG using flexible printed circuit arrays (64-96 electrodes; 8-12 cm2; n = 8 patients) deployed through a 12 mm trocar and positioned on the gastric serosa. An additional patient with chronic reflux, nausea, and dysmotility 6 months after LSG also underwent gastric mapping while undergoing conversion to gastric bypass. Slow-wave activity was quantified by propagation pattern, frequency, velocity, and amplitude. RESULTS Baseline activity showed exclusively normal propagation. Acutely after LSG, all patients developed either a distal unifocal ectopic pacemaker with retrograde propagation (50%) or bioelectrical quiescence (50%). Propagation velocity was abnormally rapid after LSG (12.5 ± 0.8 vs baseline 3.8 ± 0.8 mm s-1; p = 0.01), whereas frequency and amplitude were unchanged (2.7 ± 0.3 vs 2.8 ± 0.3 cpm, p = 0.7; 1.7 ± 0.2 vs 1.6 ± 0.6 mV, p = 0.7). In the patient with chronic dysmotility after LSG, mapping also revealed a stable antral ectopic pacemaker with retrograde rapid propagation (12.6 ± 4.8 mm s-1). CONCLUSION Resection of the gastric pacemaker during LSG acutely resulted in aberrant distal ectopic pacemaking or bioelectrical quiescence. Ectopic pacemaking can persist long after LSG, inducing chronic dysmotility. The clinical and therapeutic significance of these findings now require further investigation.
Collapse
|
22
|
Angeli TR, O'Grady G. Challenges in defining, diagnosing, and treating diabetic gastroparesis. J Diabetes Complications 2018; 32:127-128. [PMID: 29198995 DOI: 10.1016/j.jdiacomp.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, New Zealand; Department of Surgery, University of Auckland, New Zealand
| |
Collapse
|
23
|
He XD, Guo YM, Goyal RK. Effect of Hyperglycemia on Purinergic and Nitrergic Inhibitory Neuromuscular Transmission in the Antrum of the Stomach: Implications for Fast Gastric Emptying. Front Med (Lausanne) 2018; 5:1. [PMID: 29410956 PMCID: PMC5787141 DOI: 10.3389/fmed.2018.00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022] Open
Abstract
Background Hyperglycemia has been reported to enhance vagovagal reflex that causes the release of inhibitory neurotransmitter, nitric oxide (NO), at the neuromuscular junction in the antrum to relax the antrum and slow gastric emptying by stimulating glucose-sensitive afferent neurons. However, hyperglycemia has also been reported to cause fast gastric emptying that may be due to suppression of the inhibitory motor neurons. Aims The purpose of the present study was to investigate changes in inhibitory neuromuscular transmission in the gastric antrum due to hyperglycemia. Methods Inhibitory electrical junction potentials were recorded from gastric antral muscle strips, using intracellular electrodes under non-adrenergic, non-cholinergic conditions. Studies were performed in non-hyperglycemic NOD (NH-NOD), NOD mice as they develop hyperglycemia (H-NOD) and their age-matched controls. The purinergic inhibitory junction potential (pIJP) and nitrergic IJP (nIJP) were isolated pharmacologically. Results The control pIJP was large, around −18 mV and nIJP was small, around −9 mV. In NH-NOD the IJPs were not affected, but in H-NOD pIJP was nearly abolished and nIJP was significantly reduced. In H-NOD mice, membrane hyperpolarization caused by exogenous α,β-MeATP or diethylenetriamine NO adduct was similar to that in wild-type controls (P > 0.05). H-NOD smooth muscles were significantly depolarized as compared to NH-NOD smooth muscles. Conclusion These observations show that hyperglycemia causes suppression of purinergic and nitrergic transmission by acting on the motor neurons that form the last neuron in the vagovagal circuit. Moreover, the loss the neurotransmission is due to a defect in neurotransmitter release rather than a defect in signal transduction. Hyperglycemia also causes depolarization of smooth muscles that may increase their excitability.
Collapse
Affiliation(s)
- Xue-Dao He
- Department of Medicine VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Yan-Mei Guo
- Department of Medicine VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Raj K Goyal
- Department of Medicine VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Du P, Calder S, Angeli TR, Sathar S, Paskaranandavadivel N, O'Grady G, Cheng LK. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities. Front Physiol 2018; 8:1136. [PMID: 29379448 PMCID: PMC5775268 DOI: 10.3389/fphys.2017.01136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Angeli TR, Du P, Paskaranandavadivel N, Sathar S, Hall A, Asirvatham SJ, Farrugia G, Windsor JA, Cheng LK, O'Grady G. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13010. [PMID: 28035728 PMCID: PMC5393964 DOI: 10.1111/nmo.13010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. METHODS Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. KEY RESULTS Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. CONCLUSIONS & INFERENCES High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool.
Collapse
Affiliation(s)
- Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | | | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Andrew Hall
- Department of Surgery, University of Auckland, New Zealand
| | | | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand., Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, New Zealand., Department of Surgery, University of Auckland, New Zealand
| |
Collapse
|
26
|
Du P, O'Grady G, Paskaranandavadivel N, Tang SJ, Abell T, Cheng LK. Simultaneous anterior and posterior serosal mapping of gastric slow-wave dysrhythmias induced by vasopressin. Exp Physiol 2016; 101:1206-1217. [PMID: 27265885 PMCID: PMC5140776 DOI: 10.1113/ep085697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/31/2016] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? This study aimed to provide the first comparison of simultaneous high-resolution mapping of anterior and posterior gastric serosa over sustained periods. What is the main finding and its importance? Episodes of spontaneous gastric slow-wave dysrhythmias increased significantly following intravenous infusion of vasopressin compared with the baseline state. A number of persistent dysrhythmias were defined, including ectopic activation, conduction block, rotor, retrograde and collision/merger of wavefronts. Slow-wave dysrhythmias could occur either simultaneously or independently on the anterior and posterior gastric serosa, and interacted depending on activation-repolarization and frequency dynamics. High-resolution mapping enables mechanistic insights into gastric slow-wave dysrhythmias and is now achieving clinical translation. However, previous studies have focused mainly on dysrhythmias occurring on the anterior gastric wall. The present study simultaneously mapped the anterior and posterior gastric serosa during episodes of dysrhythmias induced by vasopressin to aid understanding of dysrhythmia initiation, maintenance and termination. High-resolution mapping (8 × 16 electrodes on each serosa; 20-74 cm2 ) was performed in anaesthetized dogs. Baseline recordings (21 ± 8 min) were followed by intravenous infusion of vasopressin (0.1-0.5 IU ml-1 at 60-190 ml h-1 ) and further recordings (22 ± 13 min). Slow-wave activation maps, amplitudes, velocity, interval and frequency were calculated, and differences compared between baseline and postinfusion. All dogs demonstrated an increased prevalence of dysrhythmic events following infusion of vasopressin (17 versus 51%). Both amplitude and velocity demonstrated significant differences (baseline versus postinfusion: 3.6 versus 2.2 mV; 7.7 versus 6.5 mm s-1 ; P < 0.05 for both). Dysrhythmias occurred simultaneously or independently on the anterior and posterior serosa, and then interacted according to frequency dynamics. A number of persistent dysrhythmias were compared, including the following: ectopic activation (n = 2 animals), conduction block (n = 1), rotor (n = 2), retrograde (n = 3) and collision/merger of wavefronts (n = 2). We conclude that infusion of vasopressin induces gastric dysrhythmias, which occur across a heterogeneous range of frequencies and patterns. The results demonstrate that different classes of gastric dysrhythmias may arise simultaneously or independently in one or both surfaces of the serosa, then interact according to their relative frequencies. These results will help to inform interpretation of clinical dysrhythmia.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Greg O'Grady
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Surgery, University of Auckland, New Zealand
| | | | | | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Marathe CS, Rayner CK, Jones KL, Horowitz M. Novel insights into the effects of diabetes on gastric motility. Expert Rev Gastroenterol Hepatol 2016; 10:581-593. [PMID: 26647088 DOI: 10.1586/17474124.2016.1129898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent data from the Diabetes Control and Complications Trial/Epidemiology of Diabetic Interventions and Complications cohort indicate that the disease burden of gastroparesis in diabetes remains high, consistent with the outcome of cross-sectional studies in type 1 and 2 diabetes. An improved understanding of the pathogenesis of diabetic gastroparesis at the cellular level has emerged in the last decade, particularly as a result of initiatives such as the National Institute of Health funded Gastroparesis Clinical Research Consortium in the US. Management of diabetic gastroparesis involves dietary and psychological support, attention to glycaemic control, and the use of prokinetic agents. Given that the relationship between upper gastrointestinal symptoms and the rate of gastric emptying is weak, therapies targeted specifically at symptoms, such as nausea or pain, are important. The relationship between gastric emptying and postprandial glycaemia is complex and inter-dependent. Short-acting glucagon-like peptide-1 agonists, that slow gastric emptying, can be used to reduce postprandial glycaemic excursions and, in combination with basal insulin, result in substantial reductions in glycated haemoglobin in type 2 patients.
Collapse
Affiliation(s)
- Chinmay S Marathe
- a Discipline of Medicine , The University of Adelaide, Royal Adelaide Hospital , Adelaide , Australia
- b Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| | - Christopher K Rayner
- a Discipline of Medicine , The University of Adelaide, Royal Adelaide Hospital , Adelaide , Australia
- b Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| | - Karen L Jones
- a Discipline of Medicine , The University of Adelaide, Royal Adelaide Hospital , Adelaide , Australia
- b Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| | - Michael Horowitz
- a Discipline of Medicine , The University of Adelaide, Royal Adelaide Hospital , Adelaide , Australia
- b Centre of Research Excellence in Translating Nutritional Science to Good Health , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
28
|
Abstract
The sensation of nausea is a common occurrence with diverse causes and a significant disease burden. Nausea is considered to function as a protective mechanism, warning the organism to avoid potential toxic ingestion. Less adaptive circumstances are also associated with nausea, including post-operative nausea, chemotherapy-induced nausea, and motion sickness. A common definition of nausea identifies the symptom as a precursor to the act of vomiting. The interaction, though present, does not appear to be a simple relationship. Nausea is unfortunately the 'neglected symptom', with current accepted therapy generally directed at improving gastrointestinal motility or acting to relieve emesis. Improved understanding of the pathophysiological basis of nausea has important implications for exploiting novel mechanisms or developing novel therapies for nausea relief.
Collapse
Affiliation(s)
- Prashant Singh
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sonia S. Yoon
- Division of Gastroenterology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- W J Lammers
- Physiology, College of Medicine & Health Sciences, Al Ain, Abu Dhabi, United Arab Emirates.
| | - B S Stephen
- Physiology, College of Medicine & Health Sciences, Al Ain, Abu Dhabi, United Arab Emirates
| | - S M Karam
- Anatomy, College of Medicine & Health Sciences, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
O'Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2015; 41:854-62. [PMID: 25115692 DOI: 10.1111/1440-1681.12288] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Gastric arrhythmia continues to be of uncertain diagnostic and therapeutic significance. However, recent progress has been substantial, with technical advances, theoretical insights and experimental discoveries offering new translational opportunities. The discoveries that interstitial cells of Cajal (ICC) generate slow waves and that ICC defects are associated with dysmotility have reinvigorated gastric arrhythmia research. Increasing evidence now suggests that ICC depletion and damage, network disruption and channelopathies may lead to aberrant slow wave initiation and conduction. Histological and high-resolution (HR) electrical mapping studies have now redefined the human 'gastric conduction system', providing an improved baseline for arrhythmia research. The application of HR mapping to arrhythmia has also generated important new insights into the spatiotemporal dynamics of arrhythmia onset and maintenance, resulting in the emergence of new provisional classification schemes. Meanwhile, the strong associations between gastric functional disorders and electrogastrography (EGG) abnormalities (e.g. in gastroparesis, unexplained nausea and vomiting and functional dyspepsia) continue to motivate deeper inquiries into the nature and causes of gastrointestinal arrhythmias. In future, technical progress in EGG methods, new HR mapping devices and software, wireless slow wave acquisition systems and improved gastric pacing devices may achieve validated applications in clinical practice. Neurohormonal factors in arrhythmogenesis also continue to be elucidated and a deepening understanding of these mechanisms may open opportunities for drug design for treating arrhythmias. However, for all translational goals, it remains to be seen whether arrhythmia can be corrected in a way that meaningfully improves organ function and symptoms in patients.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
O'Grady G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. Gastroenterol Clin North Am 2015; 44:169-84. [PMID: 25667031 PMCID: PMC4323584 DOI: 10.1016/j.gtc.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gastric arrhythmias occur in gastroparesis but their significance is debated. An improved understanding is currently emerging, including newly-defined histopathologic abnormalities in gastroparesis. In particular, the observation that interstitial cells of Cajal are depleted and injured provides mechanisms for arrhythmogenesis in gastroparesis. Electrogastrography has been the dominant clinical method of arrhythmia analysis, but is limited by summative nature, low signal quality, and incomplete sensitivity and specificity. Recently, high-resolution (HR; multi-electrode) mapping has emerged, providing superior spatial data on arrhythmic patterns and mechanisms. However, HR mapping is invasive, and low-resolution approaches are being assessed as bridging techniques until endoscopic mapping is achieved.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas L Abell
- Division of Gastroenterology, GI Motility Clinic, University of Louisville, 220 Abraham Flexner Way, Suite 300, Louisville, KY 40202, USA.
| |
Collapse
|
32
|
Ouyang X, Li S, Foreman R, Farber J, Lin L, Yin J, Chen JDZ. Hyperglycemia-induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil 2015; 27:406-15. [PMID: 25630445 DOI: 10.1111/nmo.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/07/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperglycemia is known to induce dysrhythmias in the stomach; however, it is unknown whether they are also induced in the small intestine. Autonomic dysfunction is commonly noted in diabetes but the role it plays in hyperglycemia-induced dysrhythmias remains unknown. This study aimed to explore the effects of hyperglycemia on intestinal myoelectrical activity and the role of autonomic functions in hyperglycemia. METHODS Small intestinal myoelectrical activity (slow wave and spike activity) and autonomic functions (assessed by the spectral analysis of heart rate variability) were measured in Goto-Kakizaki diabetic rats and control rats treated with acute glucagon. Blood glucose was measured and its correlation with intestinal slow waves was determined. KEY RESULTS (1) The diabetic rats showed reduced regularity in intestinal slow waves in fasting and fed states (p < 0.001 for both), and increased sympathovagal balance (p < 0.05) in comparison with the control rats. The regularity in intestinal slow waves was negatively correlated with the HbA1c level in all rats (r = -0.663, p = 0.000). (2) Glucagon injection in the control rats induced transient hyperglycemia, intestinal slow wave dysrhythmias and impaired autonomic functions, similar to those observed in the diabetic rats. The increase in blood glucose was correlated with the decrease in the regularity of intestinal slow waves (r = -0.739, p = 0.015). CONCLUSIONS & INFERENCES Both spontaneous and glucagon-induced hyperglycemia results in slow wave dysrhythmias in the small intestine. Impairment in autonomic functions (increased sympathovagal balance) may play a role in hyperglycemia-induced dysrhythmias.
Collapse
Affiliation(s)
- X Ouyang
- Nanjing Medical University, Nanjing, Jiangsu, China; Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA; Diabetes Care & Research Center, Jiangsu Province Institute of Geriatrics, Nanjing, Jiangsu, China; Department of Physiology, University of Oklahoma, Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Gastroparesis is a complication of long-standing type 1 and type 2 diabetes mellitus. Symptoms associated with gastroparesis include early satiety, prolonged postprandial fullness, bloating, nausea and vomiting, and abdominal pain. Mortality is increased in patients with diabetic gastroparesis. A subset of patients with diabetic gastroparesis have pylorospasm that results in obstructive gastroparesis. Current treatment approaches include improving glucose control with insulin and prescribing antinauseant drugs, prokinetic agents, and gastric electric stimulation. Future directions include improved diet counseling based on gastric emptying rate, continuous insulin delivery systems with glucose sensor-augmented monitoring, and drugs for correcting gastric neural and electric abnormalities.
Collapse
Affiliation(s)
- Kenneth L Koch
- Section on Gastroenterology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Jorge Calles-Escandón
- Section on Endocrinology, MetroHealth Regional, Case Western Reserve University School of Medicine, 2500 Metrohealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
34
|
Cheng LK. Slow wave conduction patterns in the stomach: from Waller's foundations to current challenges. Acta Physiol (Oxf) 2015; 213:384-93. [PMID: 25313679 DOI: 10.1111/apha.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
This review provides an overview of our understanding of motility and slow wave propagation in the stomach. It begins by reviewing seminal studies conducted by Walter Cannon and Augustus Waller on in vivo motility and slow wave patterns. Then our current understanding of slow wave patterns in common laboratory animals and humans is presented. The implications of slow wave arrhythmic patterns that have been recorded in animals and patients suffering from gastroparesis are discussed. Finally, current challenges in experimental methods and techniques, slow wave modulation and the use of mathematical models are discussed.
Collapse
Affiliation(s)
- L. K. Cheng
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
- Department of Surgery; Vanderbilt University; Nashville TN USA
| |
Collapse
|
35
|
Marques RG, Americo MF, Spadella CT, Corá LA, Oliveira RB, Miranda JRA. Different patterns between mechanical and electrical activities: an approach to investigate gastric motility in a model of long-term diabetic rats. Physiol Meas 2013; 35:69-81. [PMID: 24345922 DOI: 10.1088/0967-3334/35/1/69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The relationship between time-courses of mechanical and electrical events in longstanding diabetes was investigated in rats. Magnetic markers and electrodes were surgically implanted in the gastric serosa of male rats. Simultaneous recordings were obtained by AC biosusceptometry, electromyography and electrogastrography one, three and six months after injections of saline (control) or alloxan (diabetic). Frequency and amplitude of contraction, abnormal rhythmic index and half-bandwidth were obtained (ANOVA P < 0.05). Antral hypomotility and gastric motility instability were observed in the signal waveform of diabetic rats at the three time points of study. The mean frequency (4.4 ± 0.4 cpm) was strictly similar, but the mechanical and electrical correlation was lowest for diabetics groups. Decreases in mechanical amplitude were observed for all diabetic groups compared with control; also the ranges of frequency were much wider in diabetes. The half-bandwidth increased since the first month in mechanical recordings and only after the third month in electrical. In diabetic animals, about 40% of gastric activity was abnormal (against 12% in control) and may reach 60% in the sixth month of mechanical recordings. The multi-instrumental approach showed a more substantial deterioration in mechanical activity and created an integrative view of gastric motility for longstanding diabetic model.
Collapse
Affiliation(s)
- Rozemeire G Marques
- Faculdade de Medicina de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Cheng LK, Du P, O'Grady G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda) 2013; 28:310-7. [PMID: 23997190 PMCID: PMC3768093 DOI: 10.1152/physiol.00022.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A key discovery in gastrointestinal motility has been the central role played by interstitial cells of Cajal (ICC) in generating electrical slow waves that coordinate contractions. Multielectrode mapping and multiscale modeling are two emerging interdisciplinary strategies now showing translational promise to investigate ICC function, electrophysiology, and contractions in the human gut.
Collapse
Affiliation(s)
- L K Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
37
|
The Principles and Practice of Gastrointestinal High-Resolution Electrical Mapping. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-6561-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Farajidavar A, O'Grady G, Rao SMN, Cheng LK, Abell T, Chiao JC. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings. Physiol Meas 2012; 33:N29-37. [PMID: 22635054 DOI: 10.1088/0967-3334/33/6/n29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
Collapse
Affiliation(s)
- Aydin Farajidavar
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med 2012; 23:499-505. [PMID: 22863425 DOI: 10.1016/j.ejim.2012.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Gastrointestinal symptoms occur frequently among patients with diabetes mellitus and are associated with considerable morbidity. Diabetic gastrointestinal autonomic neuropathy represents a complex disorder with multifactorial pathogenesis, which is still not well understood. It appears to involve a spectrum of metabolic and cellular changes that affect gastrointestinal motor and sensory control. It may affect any organ in the digestive system. Clinical manifestations are often underestimated, and therefore autonomic neuropathy should be suspected in all diabetic patients with unexplained gastrointestinal symptoms. Advances in technology have now enabled assessment of gastrointestinal motor function. Moreover, novel pharmacological approaches, along with endoscopic and surgical treatment options, contribute to improved outcomes. This review summarises the progress achieved in diabetic gastrointestinal autonomic neuropathy during the last years, focusing on clinical issues of practical importance to the everyday clinician.
Collapse
Affiliation(s)
- A Gatopoulou
- Second Department of Internal Medicine, Democritus University of Thrace, Greece.
| | | | | |
Collapse
|
40
|
O'Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Asirvatham SJ, Windsor JA, Farrugia G, Pullan AJ, Cheng LK. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 2012; 24:e299-312. [PMID: 22709238 PMCID: PMC3383091 DOI: 10.1111/j.1365-2982.2012.01932.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric slow waves propagate aborally as rings of excitation. Circumferential propagation does not normally occur, except at the pacemaker region. We hypothesized that (i) the unexplained high-velocity, high-amplitude activity associated with the pacemaker region is a consequence of circumferential propagation; (ii) rapid, high-amplitude circumferential propagation emerges during gastric dysrhythmias; (iii) the driving network conductance might switch between interstitial cells of Cajal myenteric plexus (ICC-MP) and circular interstitial cells of Cajal intramuscular (ICC-IM) during circumferential propagation; and (iv) extracellular amplitudes and velocities are correlated. METHODS An experimental-theoretical study was performed. High-resolution gastric mapping was performed in pigs during normal activation, pacing, and dysrhythmia. Activation profiles, velocities, and amplitudes were quantified. ICC pathways were theoretically evaluated in a bidomain model. Extracellular potentials were modeled as a function of membrane potentials. KEY RESULTS High-velocity, high-amplitude activation was only recorded in the pacemaker region when circumferential conduction occurred. Circumferential propagation accompanied dysrhythmia in 8/8 experiments was faster than longitudinal propagation (8.9 vs 6.9 mm s(-1) ; P = 0.004) and of higher amplitude (739 vs 528 μV; P = 0.007). Simulations predicted that ICC-MP could be the driving network during longitudinal propagation, whereas during ectopic pacemaking, ICC-IM could outpace and activate ICC-MP in the circumferential axis. Experimental and modeling data demonstrated a linear relationship between velocities and amplitudes (P < 0.001). CONCLUSIONS & INFERENCES The high-velocity and high-amplitude profile of the normal pacemaker region is due to localized circumferential propagation. Rapid circumferential propagation also emerges during a range of gastric dysrhythmias, elevating extracellular amplitudes and organizing transverse wavefronts. One possible explanation for these findings is bidirectional coupling between ICC-MP and circular ICC-IM networks.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, New Zealand,Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | | | - Timothy R. Angeli
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Wim JEP Lammers
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Dept of Physiology, United Arab Emirates University, Al Ain, UAE
| | | | - John A. Windsor
- Department of Surgery, The University of Auckland, New Zealand
| | | | - Andrew J. Pullan
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Department of Engineering Science, The University of Auckland, New Zealand,Department of Surgery, Vanderbilt University, TN, USA
| | - Leo K. Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Department of Surgery, Vanderbilt University, TN, USA
| |
Collapse
|
41
|
Abstract
Extracellular electrical recordings underpin an important literature of basic and clinical motility science. In the November 2011 edition of Neurogastroenterology and Motility, Sanders and colleagues reported that contraction artifacts could be recorded from in vitro murine gastric tissues using extracellular electrodes, and that true extracellular bioelectrical activity could not be detected when the contractions were suppressed. The authors interpret their findings to mean that previous extracellular studies have generally assayed contraction artifacts, rather than bioelectrical activity, and suggest that movement suppression is an obligatory control for extracellular experiments. If their interpretation is correct, these claims would be significant, requiring a reinterpretation of many studies, and posing major challenges for future in vivo and especially clinical work. However, a demonstration that motion artifacts can be recorded from murine in vitro tissue does not necessarily mean that other extracellular studies also represented artifacts. This viewpoint evaluates a recently published by Sanders and colleagues in light of the competing literature, and finds a considerable volume of evidence to support the veracity of GI extracellular electrical recordings. It is reasoned from biophysical principles, technical considerations, and experimental studies that motion artifacts cannot explain GI extracellular electrical recordings in general, and that bioelectrical fact and artifact can be readily and reliably distinguished in most contexts. Calls for obligatory motion suppression for extracellular studies are therefore not supported. However, the artifacts recorded by Sanders and colleagues nevertheless serve as a reminder that educated caution is needed when recording, filtering and interpreting extracellular data.
Collapse
Affiliation(s)
- Gregory O’Grady
- Dept of Surgery, The University of Auckland, Auckland New Zealand,Auckland Bioengineering Institute, The University of Auckland, New Zealand
| |
Collapse
|
42
|
O’Grady G, Egbuji JU, Du P, Lammers WJ, Cheng LK, Windsor JA, Pullan AJ. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 2011; 23:e345-55. [PMID: 21714831 PMCID: PMC3156377 DOI: 10.1111/j.1365-2982.2011.01739.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The significance of gastric dysrhythmias remains uncertain. Progress requires a better understanding of dysrhythmic behaviors, including the slow wave patterns that accompany or promote them. The aim of this study was to use high-resolution spatiotemporal mapping to characterize and quantify the initiation and conduction of porcine gastric dysrhythmias. METHODS High-resolution mapping was performed on healthy fasted weaner pigs under general anesthesia. Recordings were made from the gastric serosa using flexible arrays (160-192 electrodes; 7.6mm spacing). Dysrhythmias were observed to occur in 14 of 97 individual recordings (from 8 of 16 pigs), and these events were characterized, quantified and classified using isochronal mapping and animation. KEY RESULTS All observed dysrhythmias originated in the corpus and fundus. The range of dysrhythmias included incomplete conduction block (n=3 pigs; 3.9±0.5cpm; normal range: 3.2±0.2cpm) complete conduction block (n=3; 3.7±0.4cpm), escape rhythm (n=5; 2.0±0.3cpm), competing ectopic pacemakers (n=5, 3.7±0.1cpm) and functional re-entry (n=3, 4.1±0.4cpm). Incomplete conduction block was observed to self-perpetuate due to retrograde propagation of wave fragments. Functional re-entry occurred in the corpus around a line of unidirectional block. 'Double potentials' were observed in electrograms at sites of re-entry and at wave collisions. CONCLUSIONS & INFERENCES Intraoperative multi-electrode mapping of fasted weaner healthy pigs detected dysrhythmias in 15% of recordings (from 50% of animals), including patterns not previously reported. The techniques and findings described here offer new opportunities to understand the nature of human gastric dysrhythmias.
Collapse
Affiliation(s)
- Gregory O’Grady
- Department of Surgery, The University of Auckland, New Zealand, Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - John U. Egbuji
- Department of Surgery, The University of Auckland, New Zealand, Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Wim J.E.P. Lammers
- Auckland Bioengineering Institute, The University of Auckland, New Zealand, Department of Physiology, United Arab Emirates University, Al Ain, UAE
| | - Leo K. Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - John A. Windsor
- Department of Surgery, The University of Auckland, New Zealand
| | - Andrew J. Pullan
- Auckland Bioengineering Institute, The University of Auckland, New Zealand, Department of Engineering Science, The University of Auckland, New Zealand, Department of Surgery, Vanderbilt University, USA
| |
Collapse
|
43
|
Camilleri M, Breen M, Ryks M, Burton D. Proximal and overall gastric emptying of solids in patients with reduced gastric volume accommodation compared to matched controls. Dig Dis Sci 2011; 56:1729-34. [PMID: 21327917 PMCID: PMC3220925 DOI: 10.1007/s10620-011-1615-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interventions such as gastric surgery and erythromycin result in displacement of solids to the distal stomach and acceleration of overall and proximal gastric emptying. The effect of non-surgical impairment of gastric accommodation on gastric emptying is unclear. Non-surgical impairment of gastric accommodation is associated with accelerated gastric emptying. AIM To compare measurements of proximal and overall gastric emptying in patients with reduced postprandial gastric volume accommodation with the emptying rates in age- and gender-matched controls with normal postprandial gastric volume accommodation. METHODS We evaluated overall and proximal gastric emptying in nine patients with impaired gastric accommodation and age-equivalent and gender-matched controls. Gastric volumes and emptying were measured using validated SPECT and dual gamma camera scintigraphy, respectively. We compared group differences in overall and proximal gastric emptying t (1/2) by t test. RESULTS Patients with impaired postprandial gastric volume accommodation had greater fasting gastric volume. The proportion of food emptied from the proximal stomach immediately after meal ingestion was lower and t (1/2) of proximal gastric emptying correspondingly longer in the group with reduced postprandial gastric accommodation. In contrast, differences were not detected in overall gastric emptying in the two groups, and the ratio of overall to proximal gastric emptying t (1/2) was greater in the group with impaired volume accommodation. CONCLUSIONS Proximal stomach emptying is reduced in patients with impaired postprandial volume accommodation; this difference occurs predominantly during the time of meal ingestion. Compensatory mechanisms that result in normal overall gastric emptying require further elucidation.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Abnormalities of gastroduodenal motility are considered key players in the pathogenesis of upper gastrointestinal symptoms in disorders such as functional dyspepsia and gastroparesis. Abnormalities of sensory control are considered another important factor that contributes to symptom generation. This review summarizes recent progress in our understanding of gastroduodenal motility and sensitivity in health and in disease. RECENT FINDINGS Although gastric and small intestinal motility remain an important focus of research, including the application of the SmartPill (SmartPill Corp., Buffalo, New York, USA) wireless motility monitoring capsule, duodenal sensitivity and low-grade duodenal inflammation are new areas of interest in the pathogenesis of functional dyspepsia. A number of genetic polymorphisms associated with functional dyspepsia are being investigated, but large-scale studies are still lacking. Central processing of visceral stimuli, and its role in the pathogenesis of functional dyspepsia, is another important emerging topic. Therapeutic studies have reported on novel pharmacological approaches in functional dyspepsia and gastroparesis, as well as gastric electrical stimulation in the treatment of refractory gastroparesis. SUMMARY There is gradual progress in our understanding of the pathogenesis of gastroduodenal symptoms. Areas of recent advances including the recognition of low-grade duodenal inflammation, the role of central nervous system processing in visceral hypersensitivity and the exploration of novel pharmacotherapeutic approaches.
Collapse
|