1
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Laksono BM, Tran DN, Kondova I, van Engelen HGH, Michels S, Nambulli S, de Vries RD, Duprex WP, Verjans GMGM, de Swart RL. Comparable Infection Level and Tropism of Measles Virus and Canine Distemper Virus in Organotypic Brain Slice Cultures Obtained from Natural Host Species. Viruses 2021; 13:1582. [PMID: 34452447 PMCID: PMC8402773 DOI: 10.3390/v13081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Measles virus (MV) and canine distemper virus (CDV) are closely related members of the family Paramyxoviridae, genus Morbillivirus. MV infection of humans and non-human primates (NHPs) results in a self-limiting disease, which rarely involves central nervous system (CNS) complications. In contrast, infection of carnivores with CDV usually results in severe disease, in which CNS complications are common and the case-fatality rate is high. To compare the neurovirulence and neurotropism of MV and CDV, we established a short-term organotypic brain slice culture system of the olfactory bulb, hippocampus, or cortex obtained from NHPs, dogs, and ferrets. Slices were inoculated ex vivo with wild-type-based recombinant CDV or MV expressing a fluorescent reporter protein. The infection level of both morbilliviruses was determined at different times post-infection. We observed equivalent infection levels and identified microglia as main target cells in CDV-inoculated carnivore and MV-inoculated NHP brain tissue slices. Neurons were also susceptible to MV infection in NHP brain slice cultures. Our findings suggest that MV and CDV have comparable neurotropism and intrinsic capacity to infect CNS-resident cells of their natural host species.
Collapse
Affiliation(s)
- Brigitta M. Laksono
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Diana N. Tran
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Ivanela Kondova
- Division of Pathology, Animal Science Department, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands;
| | - Harry G. H. van Engelen
- Department of Clinical Sciences of Companion Animals, Veterinary Medicine, Universiteit Utrecht, 3584 CM Utrecht, The Netherlands;
| | - Samira Michels
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Sham Nambulli
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (S.N.); (W.P.D.)
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - W. Paul Duprex
- Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (S.N.); (W.P.D.)
| | - Georges M. G. M. Verjans
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (B.M.L.); (D.N.T.); (S.M.); (R.D.d.V.); (G.M.G.M.V.)
| |
Collapse
|
3
|
Welsch JC, Charvet B, Dussurgey S, Allatif O, Aurine N, Horvat B, Gerlier D, Mathieu C. Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. J Virol 2019; 93:e00618-19. [PMID: 31019048 PMCID: PMC6580971 DOI: 10.1128/jvi.00618-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Fatal neurological syndromes can occur after measles virus (MeV) infection of the brain. The mechanisms controlling MeV spread within the central nervous system (CNS) remain poorly understood. We analyzed the role of type I interferon (IFN-I) receptor (IFNAR) signaling in the control of MeV infection in a murine model of brain infection. Using organotypic brain cultures (OBC) from wild-type and IFNAR-knockout (IFNARKO) transgenic mice ubiquitously expressing the human SLAM (CD150) receptor, the heterogeneity of the permissiveness of different CNS cell types to MeV infection was characterized. In the absence of IFNAR signaling, MeV propagated significantly better in explant slices. In OBC from IFNAR-competent mice, while astrocytes and microglia were infected on the day of explant preparation, they became refractory to infection with time, in contrast to neurons and oligodendrocytes, which remained permissive to infection. This selective loss of permissiveness to MeV infection was not observed in IFNARKO mouse OBC. Accordingly, the development of astrogliosis related to the OBC procedure was exacerbated in the presence of IFNAR signaling. In the hippocampus, this astrogliosis was characterized by a change in the astrocyte phenotype and by an increase of IFN-I transcripts. A proteome analysis showed the upregulation of 84 out of 111 secreted proteins. In the absence of IFNAR, only 27 secreted proteins were upregulated, and none of these were associated with antiviral activities. Our results highlight the essential role of the IFN-I response in astrogliosis and in the permissiveness of astrocytes and microglia that could control MeV propagation throughout the CNS.IMPORTANCE Measles virus (MeV) can infect the central nervous system (CNS), with dramatic consequences. The mechanisms controlling MeV invasion of the CNS remain ill-defined since most previous data were obtained from postmortem analysis. Here, we highlight for the first time the crucial role of the type I interferon (IFN-I) response not only in the control of CNS invasion but also in the early permissiveness of glial cells to measles virus infection.
Collapse
Affiliation(s)
- Jeremy Charles Welsch
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Benjamin Charvet
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sebastien Dussurgey
- SFR BioSciences, INSERM, CNRS, UMS3444/US8, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Noemie Aurine
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N. Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+Conventional versus Foxp3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3130-3141. [DOI: 10.4049/jimmunol.1600691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023]
|
5
|
Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 2016; 131:159-184. [PMID: 26659576 PMCID: PMC4713712 DOI: 10.1007/s00401-015-1511-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
A wide range of viruses from different virus families in different geographical areas, may cause immediate or delayed neuropathological changes and neurological manifestations in humans and animals. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the central nervous system, frequently leaving the patient or affected animal with a poor or fatal prognosis. Mechanisms that govern neuropathogenesis and immunopathogenesis of viral infections are highlighted, using examples of well-studied virus infections that are associated with these alterations in different populations throughout the world. A better understanding of the molecular, epidemiological and biological characteristics of these infections and in particular of mechanisms that underlie their clinical manifestations may be expected to provide tools for the development of more effective intervention strategies and treatment regimens.
Collapse
|
6
|
Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 2015; 21:129-47. [PMID: 25604497 DOI: 10.1007/s13365-014-0312-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023]
Abstract
Herpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce. Here, we investigated the olfactory infection as a model of infection and tropism of herpes simplex virus 1 (HSV-1), the causative agent of HSE, in the CNS of rats. Rats were instilled with HSV-1 in the right nostril and sacrificed 1-6 days post-infection, and tissues were analysed for viral spread using immunohistochemistry and quantitative PCR (qPCR). After nasal instillation, HSV-1 infected mitral cells of the olfactory bulb (OB) on the right side only, followed by limbic encephalitis. As a novel finding, the anterior commissure (AC) conveyed a rapid transmission of virus between the right and the left OB, acting as a shortcut also between the olfactory cortices. The neuronal cell population that conveyed the viral infection via the AC was positive for the water channel protein aquaporin 9 (AQP9) by immunohistochemistry. Quantification of AQP9 in cerebrospinal fluid samples of HSE patients showed increment as compared to controls. We conclude that the olfactory route and the AC are important for the spread of HSV-1 within the olfactory/limbic system of rats and furthermore, we suggest that AQP9 is involved in viral tropism and pathogenesis of HSE.
Collapse
Affiliation(s)
- Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
7
|
Ludlow M, Nguyen DT, Silin D, Lyubomska O, de Vries RD, von Messling V, McQuaid S, De Swart RL, Duprex WP. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol 2012; 86:7508-19. [PMID: 22553334 PMCID: PMC3416283 DOI: 10.1128/jvi.06725-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/25/2012] [Indexed: 12/17/2022] Open
Abstract
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Collapse
Affiliation(s)
- M. Ludlow
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - D. T. Nguyen
- Department of Virology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - D. Silin
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - O. Lyubomska
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - R. D. de Vries
- Department of Virology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - V. von Messling
- INRS—Institut Armand-Frappier, University of Quebec, Laval, QC, Canada
| | - S. McQuaid
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
- Tissue Pathology Laboratories, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - R. L. De Swart
- Department of Virology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - W. P. Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
8
|
de Vries RD, Mesman AW, Geijtenbeek TBH, Duprex WP, de Swart RL. The pathogenesis of measles. Curr Opin Virol 2012; 2:248-55. [DOI: 10.1016/j.coviro.2012.03.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/09/2012] [Indexed: 02/02/2023]
|
9
|
Foxp3+ regulatory T cells control persistence of viral CNS infection. PLoS One 2012; 7:e33989. [PMID: 22448284 PMCID: PMC3309005 DOI: 10.1371/journal.pone.0033989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified) mice and recombinant measles virus (MV). Using this model infection we investigated the role of regulatory T cells (Tregs) as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4+ CD25+ Foxp3+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8+ T cells predominantly recognising the H-2Db-presented viral hemagglutinin epitope MV-H22–30 (RIVINREHL) were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p.) application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT) in DEREG (depletion of regulatory T cells)-mice induced an increase of virus-specific CD8+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.
Collapse
|
10
|
Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 2010; 199:261-71. [PMID: 20390298 DOI: 10.1007/s00430-010-0153-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 01/13/2023]
Abstract
Viral infections of the central nervous system(CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-gamma are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. Inspite of obvious hurdles, these treatments are the most promising approaches to future therapies.
Collapse
|
11
|
O'Donnell LA, Rall GF. Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin. J Neuroimmune Pharmacol 2010; 5:443-55. [PMID: 20419352 DOI: 10.1007/s11481-010-9200-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
Abstract
While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis. In recent years, the emergence of powerful in vitro systems, novel animal models, and reverse genetics has enabled insights into the basis of MV persistence, the complexity of MV interactions with neurons and the immune system, and the role of immune and CNS development in virus-triggered disease. In this review, we highlight some key advances, link relevant measles-based studies to the broader disciplines of neurovirology and viral pathogenesis, and propose future areas of study for the field of measles-mediated neurological disease.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Program in Immune Cell Development and Host Defense, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
12
|
Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol 2010; 119:55-73. [PMID: 20024659 DOI: 10.1007/s00401-009-0624-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The literature was reviewed to summarize the current understanding of the role of ciliated ependymal cells in the mammalian brain. Previous reviews were summarized. Publications from the past 10 years highlight interactions between ependymal cells and the subventricular zone and the possible role of restricted ependymal populations in neurogenesis. Ependymal cells provide trophic support and possibly metabolic support for progenitor cells. Channel proteins such as aquaporins may be important for determining water fluxes at the ventricle wall. The junctional and anchoring proteins are now fairly well understood, as are proteins related to cilia function. Defects in ependymal adhesion and cilia function can cause hydrocephalus through several different mechanisms, one possibility being loss of patency of the cerebral aqueduct. Ependymal cells are susceptible to infection by a wide range of common viruses; while they may act as a line of first defense, they eventually succumb to repeated attacks in long-lived organisms. Ciliated ependymal cells are almost certainly important during brain development. However, the widespread absence of ependymal cells from the adult human lateral ventricles suggests that they may have only regionally restricted value in the mature brain of large size.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Abdullah H, Earle JAP, Gardiner TA, Tangy F, Cosby SL. Persistent measles virus infection of mouse neural cells lacking known human entry receptors. Neuropathol Appl Neurobiol 2009; 35:473-86. [PMID: 19490430 DOI: 10.1111/j.1365-2990.2009.01023.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Infection of the mouse central nervous system with wild type (WT) and vaccine strains of measles virus (MV) results in lack of clinical signs and limited antigen detection. It is considered that cell entry receptors for these viruses are not present on murine neural cells and infection is restricted at cell entry. METHODS To examine this hypothesis, virus antigen and caspase 3 expression (for apoptosis) was compared in primary mixed, neural cell cultures infected in vitro or prepared from mice infected intracerebrally with WT, vaccine or rodent neuroadapted viruses. Viral RNA levels were examined in mouse brain by nested and real-time reverse transcriptase polymerase chain reaction. RESULTS WT and vaccine strains were demonstrated for the first time to infect murine oligodendrocytes in addition to neurones despite a lack of the known MV cell receptors. Unexpectedly, the percentage of cells positive for viral antigen was higher for WT MV than neuroadapted virus in both in vitro and ex vivo cultures. In the latter the percentage of positive cells increased with time after mouse infection. Viral RNA (total and mRNA) was detected in brain for up to 20 days, while cultures were negative for caspase 3 in WT and vaccine virus infections. CONCLUSIONS WT and vaccine MV strains can use an endogenous cell entry receptor(s) or alternative virus uptake mechanism in murine neural cells. However, viral replication occurs at a low level and is associated with limited apoptosis. WT MV mouse infection may provide a model for the initial stages of persistent MV human central nervous system infections.
Collapse
Affiliation(s)
- H Abdullah
- Queen's University Belfast, School of Medicine, Dentistry and Biomedical Sciences, Centre for Infection and Immunity, Belfast, UK
| | | | | | | | | |
Collapse
|
14
|
Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 2009; 179:63-7. [DOI: 10.1016/j.jneumeth.2009.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
|
15
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
16
|
Making it to the synapse: measles virus spread in and among neurons. Curr Top Microbiol Immunol 2009; 330:3-30. [PMID: 19203102 DOI: 10.1007/978-3-540-70617-5_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Measles virus (MV) is one of the most transmissible microorganisms known, continuing to result in extensive morbidity and mortality worldwide. While rare, MV can infect the human central nervous system, triggering fatal CNS diseases weeks to years after exposure. The advent of crucial laboratory tools to dissect MV neuropathogenesis, including permissive transgenic mouse models, the capacity to manipulate the viral genome using reverse genetics, and cell biology advances in understanding the processes that govern intracellular trafficking of viral components, have substantially clarified how MV infects, spreads, and persists in this unique cell population. This review highlights some of these technical advances, followed by a discussion of our present understanding of MV neuronal infection and transport. Because some of these processes may be shared among diverse viruses, comparisons are made to parallel studies with other neurotropic viruses. While a crystallized view of how the unique environment of the neuron affects MV replication, spread, and, ultimately, neuropathogenesis is not fully realized, the tools and ideas are in place for exciting advances in the coming years.
Collapse
|
17
|
Fragkoudis R, Tamberg N, Siu R, Kiiver K, Kohl A, Merits A, Fazakerley JK. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J Neurovirol 2008; 15:57-70. [PMID: 19115134 DOI: 10.1080/13550280802482583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Semliki Forest virus (SFV) provides an experimental model of acute virus encephalitis and virus-induced demyelinating disease. Two marker viruses expressing fluorescent proteins as part of the replicase or the structural open reading frame were used to evaluate virus replication in cells of the adult mouse brain. Both marker viruses established a high-titer infection in the adult mouse brain. As determined by location, morphology, and immunostaining with neural cell type-specific phenotypic markers, both viruses infected neurons and oligodendrocytes but not astrocytes. Determination of eGFP expression from either the replicase or the structural open-reading frame coupled with immunostaining for either the virus structural protein or the virus nonstructural protein-3 readily distinguished cells at early and late stages of infection. Neurons but not oligodendrocytes rapidly down-regulated virus replication. Rapid down-regulation of virus replication was also observed in mature but not immature primary cultures of rat hippocampal neurons. This study demonstrates for the first time that in vivo central nervous system (CNS) cells differ in their ability to suppress alphavirus replication.
Collapse
Affiliation(s)
- Rennos Fragkoudis
- The Roslin Institute and Royal School of Veterinary Studies College of Medicine and Veterinary Medicine, University of Edinburgh, Summerhall, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|