1
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Taghvimi P, Mohsenzadeh Golfazani M, Taghvaei MM, Samizadeh Lahiji H. Investigating the effect of drought stress and methanol spraying on the influential genes in the Calvin cycle and photorespiration of rapeseed ( Brassica napus). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23280. [PMID: 38467163 DOI: 10.1071/fp23280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.
Collapse
Affiliation(s)
- Parisa Taghvimi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Mohammad Mahdi Taghvaei
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Habibollah Samizadeh Lahiji
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Chang L, Jin X, Rao Y, Zhang X. Predicting abiotic stress-responsive miRNA in plants based on multi-source features fusion and graph neural network. PLANT METHODS 2024; 20:33. [PMID: 38402152 PMCID: PMC10894500 DOI: 10.1186/s13007-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND More and more studies show that miRNA plays a crucial role in plants' response to different abiotic stresses. However, traditional experimental methods are often expensive and inefficient, so it is important to develop efficient and economical computational methods. Although researchers have developed machine learning-based method, the information of miRNAs and abiotic stresses has not been fully exploited. Therefore, we propose a novel approach based on graph neural networks for predicting potential miRNA-abiotic stress associations. RESULTS In this study, we fully considered the multi-source feature information from miRNAs and abiotic stresses, and calculated and integrated the similarity network of miRNA and abiotic stress from different feature perspectives using multiple similarity measures. Then, the above multi-source similarity network and association information between miRNAs and abiotic stresses are effectively fused through heterogeneous networks. Subsequently, the Restart Random Walk (RWR) algorithm is employed to extract global structural information from heterogeneous networks, providing feature vectors for miRNA and abiotic stress. After that, we utilized the graph autoencoder based on GIN (Graph Isomorphism Networks) to learn and reconstruct a miRNA-abiotic stress association matrix to obtain potential miRNA-abiotic stress associations. The experimental results show that our model is superior to all known methods in predicting potential miRNA-abiotic stress associations, and the AUPR and AUC metrics of our model achieve 98.24% and 97.43%, respectively, under five-fold cross-validation. CONCLUSIONS The robustness and effectiveness of our proposed model position it as a valuable approach for advancing the field of miRNA-abiotic stress association prediction.
Collapse
Affiliation(s)
- Liming Chang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Jin
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuan Rao
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaodan Zhang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Yuan J, Wang X, Qu S, Shen T, Li M, Zhu L. The roles of miR156 in abiotic and biotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108150. [PMID: 37922645 DOI: 10.1016/j.plaphy.2023.108150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs), known as a kind of non-coding RNA, can negatively regulate its target genes. To date, the roles of various miRNAs in plant development and resistance to abiotic and biotic stresses have been widely explored. The present review summarized and discussed the functions of miR156 or miR156-SPL module in abiotic and biotic stresses, such as drought, salt, heat, cold stress, UV-B radiation, heavy mental hazards, nutritional starvation, as well as plant viruses, plant diseases, etc. Based on this, the regulation of miR156-involved stress tolerance was better understood, thus, it would be much easier for plant biologists to carry out suitable strategies to help plants suffer from unfavorable living environments.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Liu J, Wang C, Li H, Gao Y, Yang Y, Lu Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2886. [PMID: 37571039 PMCID: PMC10420646 DOI: 10.3390/plants12152886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Drought, a major stress for crop plants, is expected to increase in frequency due to climate change. Drought can alter crop growth and levels of secondary plant metabolites, which in turn can affect herbivores, but this latter point is still controversial. This study used three different polyethylene glycol (PEG-6000) levels (0%, 1%, and 3%) to simulate drought stress and evaluated their effects on cotton plants and the impacts on the performance of the cotton aphid Aphis gossypii. Cotton plants under drought stress showed decreased water content, above-ground biomass, and nitrogen content and increased soluble protein, soluble sugar, and tannin contents. Based on analysis of the developmental time and fecundity data from individuals and at the population level, a significantly lower fecundity and population abundance of A. gossypii were detected on cotton plants with drought stress, which supports the "plant vigor hypothesis". The poor development of A. gossypii is possibly related to lower xylem sap and phloem ingestion under drought stress. In addition, the increased tannin content of cotton plants induced by drought and lower detoxification enzyme activities of A. gossypii may have affected the responses of aphids to drought-stressed plants. Overall, the results showed that drought stress altered the physiological characteristics of the cotton plants, resulting in adverse bottom-up effects on cotton aphid performances. This implies that the adoption of drip irrigation under plastic film that can help alleviate drought stress may favor the population growth of cotton aphids.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Chen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Huatong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yizhong Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| |
Collapse
|
6
|
Pessoa HP, Dariva FD, Copati MGF, de Paula RG, de Oliveira Dias F, Gomes CN. Uncovering tomato candidate genes associated with drought tolerance using Solanum pennellii introgression lines. PLoS One 2023; 18:e0287178. [PMID: 37319140 PMCID: PMC10270355 DOI: 10.1371/journal.pone.0287178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Tomato plants are sensitive to drought stress throughout their growth cycle. To be considered drought-tolerant, a cultivar should display tolerance at all developmental stages. This study aimed to evaluate whether Solanum pennellii introgression lines (ILs) previously selected as drought-tolerant during germination/seedling growth maintained this tolerance in the vegetative/reproductive stage. We then investigated these ILs to uncover candidate genes. The plants were subjected to two different environmental conditions: well-watered and drought-stressed (water withheld for ≤ 20 d after flowering). Phenotyping for morphological, physiological, fruit quality, and yield-related traits was performed, and the data was analyzed using a mixed-model approach. Using a multi-trait index that relies on factor analysis and genotype-ideotype distance (FAI-BLUP index), the genotypes were ordered based on how far they were from the drought-tolerant ideotype. Afterward, the tomato IL population map furnished by the SOL Genomics Network was utilized to identify introgressed segments of significance for the identification of candidate genes. Significant genotypic differences were found in the yield, water content, mean weight, length, and width of the fruit, the percentage of fruits displaying blossom-end rot, and titratable acidity. The drought-tolerance ideotype was built considering the maximum values for the fruit water content, number of fruits, mean fruit weight, and yield, minimum values for blossom-end rot, and mean values for titratable acidity. IL 1-4-18, IL 7-4-1, IL 7-1, IL 7-5-5, and IL 1-2 were ranked above M-82 and therefore considered drought-tolerant during the vegetative/reproductive stage. IL 1-4-18 and IL1-2 sustained drought tolerance displayed during germination/seedling growth into the vegetative/reproductive stage. The following candidate genes associated with drought tolerance were identified: AHG2, At1g55840, PRXIIF, SAP5, REF4-RELATED 1, PRXQ, CFS1, LCD, CCD1, and SCS. Because they are already associated with genetic markers, they can be transferred to elite tomato cultivars through marker-assisted technology after validation.
Collapse
Affiliation(s)
- Herika Paula Pessoa
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - Carlos Nick Gomes
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Qin X, Li X, Li C, Li Y, Wu Q, Wen H, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. FRONTIERS IN PLANT SCIENCE 2023; 14:1198809. [PMID: 37332718 PMCID: PMC10272429 DOI: 10.3389/fpls.2023.1198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
8
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
9
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Identification of Small RNAs Associated with Salt Stress in Chrysanthemums through High-Throughput Sequencing and Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14030561. [PMID: 36980835 PMCID: PMC10048073 DOI: 10.3390/genes14030561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
The Chrysanthemum variety “Niu 9717” exhibits excellent characteristics as an ornamental plant and has good salt resistance. In this study, this plant was treated with 200 mM NaCl for 12 h followed by high-throughput sequencing of miRNA and degradome. Subsequently, the regulatory patterns of potential miRNAs and their target genes were searched to elucidate how Chrysanthemum miRNAs respond to salt. From the root and leaf samples, we identified a total of 201 known miRNAs belonging to 40 families; furthermore, we identified 79 new miRNAs, of which 18 were significantly differentially expressed (p < 0.05). The expressed miRNAs, which targeted a total of 144 mRNAs in the leaf and 215 mRNAs in the root, formed 144 and 226 miRNA–target pairs in roots and leaves, respectively. Combined with the miRNA expression profile, degradome and transcriptome data were then analyzed to understand the possible effects of the miRNA target genes and their pathways on salt stress. The identified genes were mostly located in pathways related to hormone signaling during plant growth and development. Overall, these findings suggest that conserved and novel miRNAs may improve salt tolerance through the regulation of hormone signal synthesis or expression of genes involved in hormone synthesis.
Collapse
|
11
|
Hu Z, He Z, Li Y, Wang Q, Yi P, Yang J, Yang C, Borovskii G, Cheng X, Hu R, Zhang W. Transcriptomic and metabolic regulatory network characterization of drought responses in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1067076. [PMID: 36743571 PMCID: PMC9891310 DOI: 10.3389/fpls.2022.1067076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Drought stress usually causes huge economic losses for tobacco industries. Drought stress exhibits multifaceted impacts on tobacco systems through inducing changes at different levels, such as physiological and chemical changes, changes of gene transcription and metabolic changes. Understanding how plants respond and adapt to drought stress helps generate engineered plants with enhanced drought resistance. In this study, we conducted multiple time point-related physiological, biochemical,transcriptomic and metabolic assays using K326 and its derived mutant 28 (M28) with contrasting drought tolerance. Through integrative analyses of transcriptome and metabolome,we observed dramatic changes of gene expression and metabolic profiles between M28 and K326 before and after drought treatment. we found that some of DEGs function as key enzymes responsible for ABA biosynthesis and metabolic pathway, thereby mitigating impairment of drought stress through ABA signaling dependent pathways. Four DEGs were involved in nitrogen metabolism, leading to synthesis of glutamate (Glu) starting from NO-3 /NO-2 that serves as an indicator for stress responses. Importantly, through regulatory network analyses, we detected several drought induced TFs that regulate expression of genes responsible for ABA biosynthesis through network, indicating direct and indirect involvement of TFs in drought responses in tobacco. Thus, our study sheds some mechanistic insights into how plant responding to drought stress through transcriptomic and metabolic changes in tobacco. It also provides some key TF or non-TF gene candidates for engineering manipulation for breeding new tobacco varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Yi
- Hu'nan Tobacco Company Changde Company, Changde, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Chenkai Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, Russia
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
13
|
Singh A, Jain D, Pandey J, Yadav M, Bansal KC, Singh IK. Deciphering the role of miRNA in reprogramming plant responses to drought stress. Crit Rev Biotechnol 2022; 43:613-627. [PMID: 35469523 DOI: 10.1080/07388551.2022.2047880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drought is the most prevalent environmental stress that affects plants' growth, development, and crop productivity. However, plants have evolved adaptive mechanisms to respond to the harmful effects of drought. They reprogram their: transcriptome, proteome, and metabolome that alter their cellular and physiological processes and establish cellular homeostasis. One of the crucial regulatory processes that govern this reprogramming is post-transcriptional regulation by microRNAs (miRNAs). miRNAs are small non-coding RNAs, involved in the downregulation of the target mRNA via translation inhibition/mRNA degradation/miRNA-mediated mRNA decay/ribosome drop off/DNA methylation. Many drought-inducible miRNAs have been identified and characterized in plants. Their main targets are regulatory genes that influence growth, development, osmotic stress tolerance, antioxidant defense, phytohormone-mediated signaling, and delayed senescence during drought stress. Overexpression of drought-responsive miRNAs (Osa-miR535, miR160, miR408, Osa-miR393, Osa-miR319, and Gma-miR394) in certain plants has led to tolerance against drought stress indicating their vital role in stress mitigation. Similarly, knock down (miR166/miR398c) or deletion (miR169 and miR827) of miRNAs has also resulted in tolerance to drought stress. Likewise, engineered Arabidopsis plants with miR165, miR166 using short tandem target mimic strategy, exhibited drought tolerance. Since miRNAs regulate the expression of an array of drought-responsive genes, they can act as prospective targets for genetic manipulations to enhance drought tolerance in crops and achieve sustainable agriculture. Further investigations toward functional characterization of diverse miRNAs, and understanding stress-responses regulated by these miRNAs and their utilization in biotechnological applications is highly recommended.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Deepti Jain
- Department of Plant Molecular Biology, Interdisciplinary Centre for Plant Genomics, Delhi University South Campus, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Kailash C Bansal
- The Alliance of Bioversity International and CIAT (CGIAR), New Delhi, India
| | - Indrakant K Singh
- Department of Zoology, Molecular Biology Research Lab, Deshbandhu College, University of Delhi, New Delhi, India.,DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features. Int J Mol Sci 2022; 23:ijms23031612. [PMID: 35163534 PMCID: PMC8835813 DOI: 10.3390/ijms23031612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational method for prediction of miRNAs associated with abiotic stresses. Three types of datasets were used for prediction, i.e., miRNA, Pre-miRNA, and Pre-miRNA + miRNA. The pseudo K-tuple nucleotide compositional features were generated for each sequence to transform the sequence data into numeric feature vectors. Support vector machine (SVM) was employed for prediction. The area under receiver operating characteristics curve (auROC) of 70.21, 69.71, 77.94 and area under precision-recall curve (auPRC) of 69.96, 65.64, 77.32 percentages were obtained for miRNA, Pre-miRNA, and Pre-miRNA + miRNA datasets, respectively. Overall prediction accuracies for the independent test set were 62.33, 64.85, 69.21 percentages, respectively, for the three datasets. The SVM also achieved higher accuracy than other learning methods such as random forest, extreme gradient boosting, and adaptive boosting. To implement our method with ease, an online prediction server “ASRmiRNA” has been developed. The proposed approach is believed to supplement the existing effort for identification of abiotic stress-responsive miRNAs and Pre-miRNAs.
Collapse
|
15
|
Arif MA, Top O, Csicsely E, Lichtenstern M, Beheshti H, Adjabi K, Frank W. DICER-LIKE1a autoregulation based on intronic microRNA processing is required for stress adaptation in Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:227-240. [PMID: 34743365 DOI: 10.1111/tpj.15570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The Physcomitrium patens DICER-LIKE1a (PpDCL1a) mRNA encoding the essential Dicer protein for microRNA (miRNA) biogenesis harbors an intronic miRNA (miR1047). An autoregulatory mechanism to control PpDCL1a abundance that is based on competitive processing of the intronic miRNA and proper PpDCL1a mRNA splicing has previously been proposed. If intron splicing occurs first the mRNA can be translated into the functional PpDCL1a protein, whereas the processing of the intronic miRNA catalyzed by PpDCL1a itself, prior to pre-mRNA splicing, generates a truncated transcript unable to produce a functional protein. This proposed autoregulation of DCL1 has not been functionally analyzed in any plant species, and the existence of this autoregulatory control is expected to have a general impact on the overall miRNA biogenesis pathway and the transcriptome that is under miRNA control. We abolished PpDCL1a autoregulatory feedback control by the precise deletion of the MIR1047-containing intron. The generated line displayed hypersensitivity to salt stress and hyposensitivity to the plant hormone ABA, accompanied by the disturbed expression of miRNAs and mRNAs, revealed by transcriptome analyses. The feedback control together with the phenotypic abnormalities and molecular changes in the intron-less line can be rescued by the re-insertion of a modified intron harboring a sequence-unrelated artificial miRNA. Our findings indicate the physiological importance of miR1047-based feedback control of PpDCL1a transcript abundance, which controls the expression of miRNAs, and their cognate target RNAs during salt stress adaptation, and suggests a key role for this autoregulation in the molecular adaptation of land plants to terrestrial habitats.
Collapse
Affiliation(s)
- M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Erika Csicsely
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Myriam Lichtenstern
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Hossein Beheshti
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Kaoutar Adjabi
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
16
|
Identification and validation of miRNA reference genes in poplar under pathogen stress. Mol Biol Rep 2021; 48:3357-3366. [PMID: 33948852 DOI: 10.1007/s11033-021-06369-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Quantitative real time polymerase chain reaction (qRT-PCR) is a common method to analyze gene expression. Due to differences in RNA quantity, quality, and reverse transcription efficiency between qRT-PCR samples, reference genes are used as internal standards to normalize gene expression. However, few universal genes, especially miRNAs, have been identified as reference so far. Therefore, it is essential to identify reference genes that can be used across various experimental conditions, stress treatments, or tissues. In this study, 14 microRNAs (miRNAs) and 5.8S rRNA were assessed for expression stability in poplar trees infected with canker pathogen. Using geNorm, NormFinder and Bestkeeper reference gene analysis programs, we found that miR156g and miR156a exhibited stable expression throughout the infection process. miR156g, miR156a and 5.8S rRNA were then tested as internal standards to measure the expression of miR1447 and miR171c, and the results were compared to small RNA sequencing (RNA-seq) data. We found that when miR156a and 5.8S rRNA were used as the reference gene, the expression of miR1447 and miR171c were consistent with the small RNA-seq expression profiles. Therefore, miR156a was the most stable miRNAs examined in this study, and could be used as a reference gene in poplar under canker pathogen stress, which should enable comprehensive comparisons of miRNAs expression and avoid the bias caused by different length between detected miRNAs and traditional reference genes. The present study has expanded the miRNA reference genes available for gene expression studies in trees under biotic stress.
Collapse
|
17
|
Su J, Yang X, Shao Y, Chen Z, Shen W. Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:476-490. [PMID: 33103784 DOI: 10.1111/pce.13926] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) plays positive roles in salinity stress tolerance. However, the upstream signalling components that regulate MT are poorly understood. Here, we report that endogenous MT acts downstream of molecular hydrogen (H2 ) in the salinity response in Arabidopsis. The addition of hydrogen-rich water and expression of the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii increased endogenous H2 and MT levels and enhanced salinity tolerance. These results were not observed in the absence of serotonin N-acetyltransferase gene (SNAT). H2 increased the levels of SNAT transcripts in the wild-type and CrHYD1 lines, which had lower Na+ /K+ ratios and higher levels of ion transport-related gene transcripts. These changes were not observed in atsnat/CrHYD1-4 hybrids. The increased MT-dependent Na+ extrusion observed in the CrHYD1 plants resulted, at least in part, from enhanced Na+ /H+ antiport across the plasma membrane. The endogenous H2 -induced MT-dependent regulation of ion and redox homeostasis was impaired in the atsnat/CrHYD1-4 hybrids. Taken together, these results demonstrate that MT-induced salinity tolerance is induced by a H2 signalling cascade that regulates ion and redox homeostasis in response to salinity.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinghao Yang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yudong Shao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Zaynab M, Peng J, Sharif Y, Fatima M, Albaqami M, Al-Yahyai R, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato. FRONTIERS IN PLANT SCIENCE 2021; 12:831140. [PMID: 35251067 PMCID: PMC8891383 DOI: 10.3389/fpls.2021.831140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
Germin and germin-like proteins (GLPs) perform a significant role in plants against biotic and abiotic stress. To understand the role of GLPs in potato, a comprehensive genome-wide analysis was performed in the potato genome. This study identified a total of 70 StGLPs genes in the potato genome, distributed among 11 chromosomes. Phylogenetic analysis exhibited that StGLPs were categorized into six groups with high bootstrap values. StGLPs gene structure and motifs analysis showed a relatively well-maintained intron-exon and motif formation within the cognate group. Additionally, several cis-elements in the promoter regions of GLPs were hormones, and stress-responsive and different families of miRNAs target StGLPs. Gene duplication under selection pressure also exhibited positive and purifying selections in StGLPs. In our results, the StGLP5 gene showed the highest expression in response to salt stress among all expressed StGLPs. Totally 19 StGLPs genes were expressed in response to heat stress. Moreover, three genes, StGLP30, StGLP17, and StGLP14, exhibited a relatively higher expression level in the potato after heat treatment. In total, 22 genes expressed in response to abscisic acid (ABA) treatment indicated that ABA performed an essential role in the plant defense or tolerance mechanism to environmental stress. RNA-Seq data validated by RT-qPCR also confirm that the StGLP5 gene showed maximum expression among selected genes under salt stress. Concisely, our results provide a platform for further functional exploration of the StGLPs against salt and heat stress conditions.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Shuangfei Li,
| |
Collapse
|
19
|
Molecular Manipulation of the miR399/ PHO2 Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. PLANTS 2020; 10:plants10010073. [PMID: 33396498 PMCID: PMC7824465 DOI: 10.3390/plants10010073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
In Arabidopsis thaliana (Arabidopsis), the microRNA399 (miR399)/PHOSPHATE2 (PHO2) expression module is central to the response of Arabidopsis to phosphate (PO4) stress. In addition, miR399 has been demonstrated to also alter in abundance in response to salt stress. We therefore used a molecular modification approach to alter miR399 abundance to investigate the requirement of altered miR399 abundance in Arabidopsis in response to salt stress. The generated transformant lines, MIM399 and MIR399 plants, with reduced and elevated miR399 abundance respectively, displayed differences in their phenotypic and physiological response to those of wild-type Arabidopsis (Col-0) plants following exposure to a 7-day period of salt stress. However, at the molecular level, elevated miR399 abundance, and therefore, altered PHO2 target gene expression in salt-stressed Col-0, MIM399 and MIR399 plants, resulted in significant changes to the expression level of the two PO4 transporter genes, PHOSPHATE TRANSPORTER1;4 (PHT1;4) and PHT1;9. Elevated PHT1;4 and PHT1;9 PO4 transporter levels in salt stressed Arabidopsis would enhance PO4 translocation from the root to the shoot tissue which would supply additional levels of this precious cellular resource that could be utilized by the aerial tissues of salt stressed Arabidopsis to either maintain essential biological processes or to mount an adaptive response to salt stress.
Collapse
|
20
|
Du C, Li H, Liu C, Fan H. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. J Proteomics 2020; 232:104062. [PMID: 33276192 DOI: 10.1016/j.jprot.2020.104062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The postgerminative development is a complex, genetically programmed process, and also the most dangerous period before the developing seedlings reach the autotrophy state. To obtain a comprehensive understanding of postgerminative development mechanism, the study focuses on an integrative analysis on transcriptome, proteome, and microRNA in cucumber seeds under drought and salt stress. Drought and salt stress caused differential expression of 4197 mRNAs, 36 microRNAs and 768 proteins compared with the control, and 827 mRNAs, 364 proteins, and 12 microRNAs were shared by the two stresses. Numerous common differentially expressed genes and proteins participated the signal transduction of plant hormone, photosynthesis, and argine and proline metabolism. We noted the correlation among nitric oxide, polyamine, proline, and ethylene metabolism, thereby helping to elucidate the role of these substances, which are derived either directly or indirectly from arginine, in the regulation of abiotic stress and provide a basis for building better network-based molecular models in further research. Above findings contribute to new and useful information regarding the common molecular mechanisms during cucumber seedling development under drought and salt stress. SIGNIFICANCE: Water scarcity and high salt are two of the most destructive and wide stress factors which limit the growth and progression of plants by affecting a variety of vital physiological and biochemical processes. Our study focuses on an integrative analysis on transcriptome, proteome, and microRNA for confirming the essential regulators as well as pathways using cucumber postgerminative development under drought and salt stress. Arginine metabolism is a vital response to abiotic stress during cucumber seed germination.
Collapse
Affiliation(s)
- Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chen Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
21
|
Seong SY, Shim JS, Bang SW, Kim JK. Overexpression of OsC3H10, a CCCH-Zinc Finger, Improves Drought Tolerance in Rice by Regulating Stress-Related Genes. PLANTS 2020; 9:plants9101298. [PMID: 33019599 PMCID: PMC7599559 DOI: 10.3390/plants9101298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
CCCH zinc finger proteins are members of the zinc finger protein family, and are known to participate in the regulation of development and stress responses via the posttranscriptional regulation of messenger RNA in animals and yeast. However, the molecular mechanism of CCCHZF-mediated drought tolerance is not well understood. We analyzed the functions of OsC3H10, a member of the rice CCCHZF family. OsC3H10 is predominantly expressed in seeds, and its expression levels rapidly declined during seed imbibition. The expression of OsC3H10 was induced by drought, high salinity and abscisic acid (ABA). Subcellular localization analysis revealed that OsC3H10 localized not only in the nucleus but also to the processing bodies and stress granules upon stress treatment. Root-specific overexpression of OsC3H10 was insufficient to induce drought tolerance, while the overexpression of OsC3H10 throughout the entire plant enhanced the drought tolerance of rice plants. Transcriptome analysis revealed that OsC3H10 overexpression elevated the expression levels of genes involved in stress responses, including LATE EMBRYOGENESIS ABUNDANT PROTEINs (LEAs), PATHOGENESIS RELATED GENEs (PRs) and GERMIN-LIKE PROTEINs (GLPs). Our results demonstrated that OsC3H10 is involved in the regulation of the drought tolerance pathway by modulating the expression of stress-related genes.
Collapse
Affiliation(s)
- So Yoon Seong
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
| | - Jae Sung Shim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
- Present address: School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Seung Woon Bang
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.S.S.); (S.W.B.)
- Correspondence:
| |
Collapse
|
22
|
Liu J, Guo X, Zhai T, Shu A, Zhao L, Liu Z, Zhang S. Genome-wide identification and characterization of microRNAs responding to ABA and GA in maize embryos during seed germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:949-957. [PMID: 32526094 DOI: 10.1111/plb.13142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are an important class of non-coding small RNAs that regulate the expression of target genes through mRNA cleavage or translational inhibition. Previous studies have revealed their roles in regulating seed dormancy and germination in model plants such as Arabidopsis thaliana, rice (Oryza sativa) and maize (Zea mays). However, the miRNA response to exogenous gibberellic acid (GA) and abscisic acid (ABA) during seed germination in maize has yet to be explored. In this study, small RNA libraries were generated and sequenced from maize embryos treated with GA, ABA or double-distilled water as control. A total of 247 miRNAs (104 known and 143 novel) were identified, of which 45 known and 53 novel miRNAs were differentially expressed in embryos in the different treatment groups. In total, 74 (37 up-regulated and 37 down-regulated) and 55 (23 up-regulated and 32 down-regulated) miRNAs were expressed in response to GA and to ABA, respectively, and a total of 18 known and 38 novel miRNAs displayed differential expression between the GA- and ABA-treated groups. Using bioinformatics tools, we predicted the target genes of the differentially expressed miRNAs. Using GO enrichment and KEGG pathway analysis of these targets, we showed that miRNAs differentially expressed in our samples affect genes encoding proteins involved in the peroxisome, ribosome and plant hormonal signalling pathways. Our results indicate that miRNA-mediated gene expression influences the GA and ABA signalling pathways during seed germination.
Collapse
Affiliation(s)
- J Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - T Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - A Shu
- Rice Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - L Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Z Liu
- Institute of Soil and Fertilizer & Resource and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - S Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
23
|
Kouhi F, Sorkheh K, Ercisli S. MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLoS One 2020; 15:e0228850. [PMID: 32069300 PMCID: PMC7028267 DOI: 10.1371/journal.pone.0228850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/25/2020] [Indexed: 01/08/2023] Open
Abstract
Environmental stresses influence the growth and development of plants by influencing patterns of gene expression. Different regulators control gene expression, including transcription factors (TFs) and microRNAs. MicroRNAs (miRNAs: ~21 nucleotides long) are encoded by miRNA genes transcribed by RNA polymerase II (RNP-II) and play key roles in plant development and physiology. There is little knowledge currently available on miRNAs and their function in response to environmental stresses in safflower. To obtain more information on safflower miRNAs, we initially used a comparative genomics approach and succeeded in identifying 126 miRNAs belonging to 29 conserved families, along with their target genes. In this study, we investigated the expression profiles of seven conserved miRNAs related to drought, salinity, heat, and Cd stress in the leaf and root organs using qRT-PCR, for the first time. Gene Ontology (GO) analysis found that target genes of miRNAs are often TFs such as AP2/ERF and HD-ZIP as well as NAC domain-containing proteins. Expression analyses confirmed that miRNAs can play a vital role in keeping safflower stress-tolerant. Differential expression of miR156, miR162, miR164, miR166, miR172, miR398, and miR408 regulate the expression of their respective target genes. These genes activate several pathways leading to physiological and biochemical responses to abiotic stresses. Some conserved miRNAs were regulated by abiotic stresses. Our finding provides valuable information to understand miRNAs in relation to different abiotic stresses in safflower.
Collapse
Affiliation(s)
- Farshid Kouhi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Karim Sorkheh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- * E-mail: (SE); , (KS)
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, Turkey
- * E-mail: (SE); , (KS)
| |
Collapse
|
24
|
Wu W, Wu Y, Hu D, Zhou Y, Hu Y, Chen Y, Chen M. PncStress: a manually curated database of experimentally validated stress-responsive non-coding RNAs in plants. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5809233. [PMID: 32185394 PMCID: PMC7078067 DOI: 10.1093/database/baaa001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs (ncRNAs) are recognized as key regulatory molecules in many biological processes. Accumulating evidence indicates that ncRNA-related mechanisms play important roles in plant stress responses. Although abundant plant stress-responsive ncRNAs have been identified, these experimentally validated results have not been gathered into a single public domain archive. Therefore, we established PncStress by curating experimentally validated stress-responsive ncRNAs in plants, including microRNAs, long non-coding RNAs and circular RNAs. The current version of PncStress contains 4227 entries from 114 plants covering 48 biotic and 91 abiotic stresses. For each entry, PncStress has biological information and network visualization. Serving as a manually curated database, PncStress will become a valuable resource in support of plant stress response research.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dahui Hu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yincong Zhou
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,College of Life Sciences and Food Engineering, Inner Mongolia University for the Nationalities, Tongliao 028043, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,College of Life Sciences and Food Engineering, Inner Mongolia University for the Nationalities, Tongliao 028043, China
| |
Collapse
|
25
|
Schwember AR, Schulze J, Del Pozo A, Cabeza RA. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. PLANTS (BASEL, SWITZERLAND) 2019; 8:E333. [PMID: 31489914 PMCID: PMC6784058 DOI: 10.3390/plants8090333] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.
Collapse
Affiliation(s)
- Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 306-22, Chile.
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| | - Ricardo A Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| |
Collapse
|
26
|
Zheng D, Wang L, Chen L, Pan X, Lin K, Fang Y, Wang XE, Zhang W. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:1790-1803. [PMID: 31111914 DOI: 10.1093/pcp/pcz095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment. Our study indicated that among six of individual mark examined (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac and H3K36me3), a positive association between salt-related changes in histone marks and the expression of differentially expressed genes (DEGs) was observed only for H3K9ac and H4K12ac in seedlings and H3K36me3 in roots. In contrast, chromatin states (CSs) with combinations of six histone modification marks played crucial roles in the differential expression of salt-responsive genes between seedlings and roots. Most importantly, CS7 containing the bivalent marks H3K4me3 and H3K27me3, with a mutual exclusion of functions with each other, displayed distinct functions in the expression of DEGs in both tissues. Specifically, H3K27me3 in CS7 mainly suppressed the expression of DEGs in roots, while H3K4me3 affected the expression of down- and up-regulated genes, possibly by antagonizing the repressive role of H3K27me3 in seedlings. Our findings indicate distinct impacts of the CSs on the differential expression of salt-responsive genes between seedlings and roots in rice, which provides an important background for understanding chromatin-based epigenetic mechanisms that might confer salt tolerance in plants.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
27
|
Liu JY, Shang J, Mu XD, Gao ZY. RETRACTED: Protective effect of down-regulated microRNA-27a mediating high thoracic epidural block on myocardial ischemia-reperfusion injury in mice through regulating ABCA1 and NF-κB signaling pathway. Biomed Pharmacother 2019; 112:108606. [PMID: 30802823 DOI: 10.1016/j.biopha.2019.108606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the heart images shown in Figure 1A, which appear to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/108A0BE9F52724D6879E23FAE7F361; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Concerns over the provenance of the flow cytometry data in Figure 7A were also raised. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jin-Yu Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Jie Shang
- Department of Electrocardiogram, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Xiao-Dong Mu
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Zhi-Yong Gao
- Department of Rehabilitation, Yantai Yuhuangding Hospital, Yantai, 264000, PR China.
| |
Collapse
|
28
|
Liang L, Chang Y, Lu J, Wu X, Liu Q, Zhang W, Su X, Zhang B. Global Methylomic and Transcriptomic Analyses Reveal the Broad Participation of DNA Methylation in Daily Gene Expression Regulation of Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:243. [PMID: 30873202 PMCID: PMC6403135 DOI: 10.3389/fpls.2019.00243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/13/2019] [Indexed: 05/24/2023]
Abstract
Changes in DNA methylation patterns in different tissues, at various developmental stages, and under environmental stimuli have been investigated in plants. However, the involvement of DNA methylation in daily gene expression regulation and the plant circadian clock have not been reported. Here, we investigated DNA methylomes and mRNA transcriptomes from leaves of P. trichocarpa over 24 h by high-throughput sequencing. We found that approximately 15.63-19.50% of the genomic cytosine positions were methylated in mature poplar leaves, with approximately half being in the form of asymmetric CHH sites. Repetitive sequences and transposable elements (TEs) were heavily methylated, and the hAT and CMC-EnSpm transposons were more heavily methylated than other TEs. High methylation levels were observed upstream and downstream of the transcribed region, medium in exon and intron, low in untranslated region (5'-UTR and 3'-UTR) of genic regions. In total, about 53,689 differentially methylated regions (DMRs) were identified and CHH context was the most abundant type among daily DNA methylation changes. The DMRs overlapped with over one third of the total poplar genes, including plant defense genes. In addition, a positive correlation between expression levels and DNA methylation levels in the gene body region were observed in DMR overlapping genes. About 1,895 circadian regulated genes overlapped with DMRs, with 871 hypermethylated genes with down-regulated expression levels and 881 hypomethylated genes with up-regulated expression levels, indicating the possible regulation of DNA methylation on the daily rhythmic expression of these genes. But rhythmic DNA methylation changes were not detected in any oscillator component genes controlling the plant circadian clock. Our results suggest that DNA methylation participates widely in daily gene expression regulation, but is not the main mechanism modulating the plant circadian clock.
Collapse
Affiliation(s)
- Lixiong Liang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yingying Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junqian Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaojuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qi Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
29
|
Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int J Mol Sci 2019; 20:E799. [PMID: 30781763 PMCID: PMC6412900 DOI: 10.3390/ijms20040799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Salinity is an ever-present major constraint and a major threat to legume crops, particularly in areas with irrigated agriculture. Legumes demonstrate high sensitivity, especially during vegetative and reproductive phases. This review gives an overview of legumes sensitivity to salt stress (SS) and mechanisms to cope with salinity stress under unfavorable conditions. It also focuses on the promising management approaches, i.e., agronomic practices, breeding approaches, and genome editing techniques to improve performance of legumes under SS. Now, the onus is on researchers to comprehend the plants physiological and molecular mechanisms, in addition to various responses as part of their stress tolerance strategy. Due to their ability to fix biological nitrogen, high protein contents, dietary fiber, and essential mineral contents, legumes have become a fascinating group of plants. There is an immense need to develop SS tolerant legume varieties to meet growing demand of protein worldwide. This review covering crucial areas ranging from effects, mechanisms, and management strategies, may elucidate further the ways to develop SS-tolerant varieties and to produce legume crops in unfavorable environments.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Andong Cheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
30
|
De la Rosa C, Covarrubias AA, Reyes JL. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. PLANT, CELL & ENVIRONMENT 2019; 42:133-144. [PMID: 29626361 DOI: 10.1111/pce.13209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.
Collapse
Affiliation(s)
- Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra Alicia Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
31
|
Fang Q, Wang Q, Mao H, Xu J, Wang Y, Hu H, He S, Tu J, Cheng C, Tian G, Wang X, Liu X, Zhang C, Luo K. AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. PLANT CELL REPORTS 2018; 37:1499-1511. [PMID: 30014159 DOI: 10.1007/s00299-018-2321-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 05/15/2023]
Abstract
AtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis. AmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, our results suggest that the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China.
| | - Qiong Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hui Mao
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Jing Xu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Ying Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hao Hu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Shuai He
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Junchu Tu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chao Cheng
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Guozheng Tian
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaopeng Liu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chi Zhang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Keming Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Multiple Regression Analysis Reveals MicroRNA Regulatory Networks in Oryza sativa under Drought Stress. Int J Genomics 2018; 2018:9395261. [PMID: 30402456 PMCID: PMC6196795 DOI: 10.1155/2018/9395261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5' RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.
Collapse
|
33
|
Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 2018; 19:730. [PMID: 30286715 PMCID: PMC6172812 DOI: 10.1186/s12864-018-5103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of eukaryote genomes can be actively transcribed into non-coding RNAs (ncRNAs), which are functionally important in development and evolution. In the study of maize, an important crop for both humans and animals, aside from microRNAs and long non-coding RNAs, few studies have been conducted on intermediate-size ncRNAs. RESULTS We constructed a homogenized cDNA library of 50-500 nt RNAs in the maize inbred line Chang 7-2. Sequencing revealed 169 ncRNAs, which contained 58 known and 111 novel ncRNAs (including 70 snoRNAs, 27 snRNAs, 13 unclassified ncRNAs and one tRNA). Forty of the novel ncRNAs were specific to the Panicoideae, and 24% of them are located on sense-strand of the 5' or 3' terminus of protein coding genes on chromosome. Target site analysis found that 22 snoRNAs can guide to 38 2'-O-methylation and pseudouridylation modification sites of ribosomal RNAs and small nuclear RNAs. Expression analysis showed that 43 ncRNAs exhibited significantly altered expression in different tissues or developmental stages of maize seedlings, eight ncRNAs had tissue-specific expression and five ncRNAs were strictly accumulated in the early stage of leaf development. Further analysis showed that 3 of the 5 stage-specific ncRNAs (Zm-3, Zm-18, and Zm-73) can be highly induced under drought and salt stress, while one snoRNA Zm-8 can be repressed under PEG-simulated drought condition. CONCLUSIONS We provided a genome-wide identification and functional analysis of ncRNAs with a size range of 50-500 nt in maize. 111 novel ncRNAs were cloned and 40 ncRNAs were determined to be specific to Panicoideae. 43 ncRNAs changed significantly during maize development, three ncRNAs can be strongly induced under drought and salt stress, suggesting their roles in maize stress response. This work set a foundation for further study of intermediate-size ncRNAs in maize.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xin Xu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Tiemei Liu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qianling Jiang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Kun Zhang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lijun Bi
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
34
|
Moradi K, Khalili F. Assessment of pattern expression of miR172 and miR169 in response to drought stress in Echinacea purpurea L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Fard EM, Bakhshi B, Farsi M, Kakhki AM, Nikpay N, Ebrahimi MA, Mardi M, Salekdeh GH. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. MOLECULAR BIOSYSTEMS 2018; 13:2289-2302. [PMID: 28872648 DOI: 10.1039/c7mb00298j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.
Collapse
Affiliation(s)
- Ehsan Mohseni Fard
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tan W, Zhang D, Zhou H, Zheng T, Yin Y, Lin H. Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genet 2018; 14:e1007336. [PMID: 29659577 PMCID: PMC5919683 DOI: 10.1371/journal.pgen.1007336] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/26/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.
Collapse
Affiliation(s)
- Wenrong Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Dawei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
- * E-mail: (DZ); (HL)
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
- * E-mail: (DZ); (HL)
| |
Collapse
|
37
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
38
|
Abstract
Grapevine is among the fruit crops with high economic value, and because of the economic losses caused by abiotic stresses, the stress resistance of Vitis vinifera has become an increasingly important research area. Among the mechanisms responding to environmental stresses, the role of miRNA has received much attention recently. qRT-PCR is a powerful method for miRNA quantitation, but the accuracy of the method strongly depends on the appropriate reference genes. To determine the most suitable reference genes for grapevine miRNA qRT-PCR, 15 genes were chosen as candidate reference genes. After eliminating 6 candidate reference genes with unsatisfactory amplification efficiency, the expression stability of the remaining candidate reference genes under salinity, cold and drought was analysed using four algorithms, geNorm, NormFinder, deltaCt and Bestkeeper. The results indicated that U6 snRNA was the most suitable reference gene under salinity and cold stresses; whereas miR168 was the best for drought stress. The best reference gene sets for salinity, cold and drought stresses were miR160e + miR164a, miR160e + miR168 and ACT + UBQ + GAPDH, respectively. The selected reference genes or gene sets were verified using miR319 or miR408 as the target gene.
Collapse
|
39
|
|
40
|
Genome-Wide Analysis of Gene and microRNA Expression in Diploid and Autotetraploid Paulownia fortunei (Seem) Hemsl. under Drought Stress by Transcriptome, microRNA, and Degradome Sequencing. FORESTS 2018. [DOI: 10.3390/f9020088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Liu W, Ma R, Yuan Y. Post-transcriptional Regulation of Genes Related to Biological Behaviors of Gastric Cancer by Long Noncoding RNAs and MicroRNAs. J Cancer 2017; 8:4141-4154. [PMID: 29187891 PMCID: PMC5706018 DOI: 10.7150/jca.22076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Noncoding RNAs play critical roles in regulating protein-coding genes and comprise two major classes: long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs regulate gene expression at transcriptional, post-transcriptional, and epigenetic levels via multiple action modes. LncRNAs can also function as endogenous competitive RNAs for miRNAs and indirectly regulate gene expression post-transcriptionally. By binding to the 3'-untranslated regions (3'-UTR) of target genes, miRNAs post-transcriptionally regulate gene expression. Herein, we conducted a review of post-transcriptional regulation by lncRNAs and miRNAs of genes associated with biological behaviors of gastric cancer.
Collapse
Affiliation(s)
- Wenjing Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning Province, P R China.,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, P R China
| | - Rui Ma
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, P R China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning Province, P R China.,National Clinical Research Center for Digestive Diseases, Xi'an, 110001 China
| |
Collapse
|
42
|
Chen XY, Yang Y, Ran LP, Dong ZD, Zhang EJ, Yu XR, Xiong F. Novel Insights into miRNA Regulation of Storage Protein Biosynthesis during Wheat Caryopsis Development under Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1707. [PMID: 29046684 PMCID: PMC5632728 DOI: 10.3389/fpls.2017.01707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/19/2017] [Indexed: 05/02/2023]
Abstract
Drought stress is a significant abiotic stress factor that affects wheat yield and quality. MicroRNA (miRNA) plays an important role in regulating caryopsis development in response to drought stress. However, little is known about the expression characteristics of miRNAs and how they regulate protein accumulation in wheat caryopsis under drought stress. To address this, two small RNA libraries of wheat caryopsis under control and drought stress conditions were constructed and sequenced. A total of 125 miRNAs were identified in the two samples, of which 110 were known and 15 were novel. A total of 1,981 miRNA target genes were predicted and functional annotations were obtained from various databases for 1,641 of them. Four miRNAs were identified as differential expression under drought stress, and the expression patterns of three of them were consistent with results obtained by reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, three miRNA-target pairs showed negative regulation tendency, as revealed by RT-qPCR. Functional enrichment and pathway analysis revealed that four pathways might be involved in storage protein biosynthesis. Furthermore, drought stress significantly increased the accumulation of protein bodies and protein content in wheat endosperm. In summary, our findings suggest that drought stress may enhance storage protein by regulating the expression of miRNAs and their target genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E8528-E8536. [PMID: 28923951 DOI: 10.1073/pnas.1704189114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A) acts as a key transcription factor in both drought and heat stress tolerance in Arabidopsis and induces the expression of many drought- and heat stress-inducible genes. Although DREB2A expression itself is induced by stress, the posttranslational regulation of DREB2A, including protein stabilization, is required for its transcriptional activity. The deletion of a 30-aa central region of DREB2A known as the negative regulatory domain (NRD) transforms DREB2A into a stable and constitutively active form referred to as DREB2A CA. However, the molecular basis of this stabilization and activation has remained unknown for a decade. Here we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the Cullin3 (CUL3)-based E3 ligase, as DREB2A-interacting proteins. We observed that DREB2A and BPMs interact in the nuclei, and that the NRD of DREB2A is sufficient for its interaction with BPMs. BPM-knockdown plants exhibited increased DREB2A accumulation and induction of DREB2A target genes under heat and drought stress conditions. Genetic analysis indicated that the depletion of BPM expression conferred enhanced thermotolerance via DREB2A stabilization. Thus, the BPM-CUL3 E3 ligase is likely the long-sought factor responsible for NRD-dependent DREB2A degradation. Through the negative regulation of DREB2A stability, BPMs modulate the heat stress response and prevent an adverse effect of excess DREB2A on plant growth. Furthermore, we found the BPM recognition motif in various transcription factors, implying a general contribution of BPM-mediated proteolysis to divergent cellular responses via an accelerated turnover of transcription factors.
Collapse
|
44
|
Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM. Effects, tolerance mechanisms and management of salt stress in grain legumes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:199-217. [PMID: 28648997 DOI: 10.1016/j.plaphy.2017.06.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/23/2023]
Abstract
Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia; College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nirmali Gogoi
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University Multan, Pakistan
| | - Sharmistha Barthakur
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Sreyashi Paul
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Nandita Bharadwaj
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Hussein M Migdadi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem S Alghamdi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
45
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 2017; 18:481. [PMID: 28651543 PMCID: PMC5485680 DOI: 10.1186/s12864-017-3869-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. RESULTS Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H2O2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. CONCLUSION In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
46
|
Shin SJ, Lee JH, Kwon HB. Genome-wide identification and characterization of drought responsive MicroRNAs in Solanum tuberosum L. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0586-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2013-2026. [PMID: 28338719 PMCID: PMC5429018 DOI: 10.1093/jxb/erw380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit.
Collapse
Affiliation(s)
- Guadalupe Sosa-Valencia
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| |
Collapse
|
48
|
Noman A, Fahad S, Aqeel M, Ali U, Amanullah, Anwar S, Baloch SK, Zainab M. miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 2017; 39:685-700. [PMID: 28238061 DOI: 10.1007/s10529-017-2302-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Cumulatively, biotic and abiotic stresses of various magnitudes can decrease the production of crops by 70%. miRNAs have emerged as a genetic tool with enormous potential that can be exploited to understand stress tolerance at the molecular level and eventually regulate stress in crops. Plant miRNA targets frequently fit into diverse families of TFs that control the expression of genes related to a certain trait. As key machinery in gene regulatory networks, it is agreed that a broad understanding of miRNAs will greatly increase our understanding of plant responses to environmental stresses. miRNA-led stress regulatory networks are being considered as novel tools for the development of abiotic stress tolerance in crops. At this time, we need to expand our knowledge about the modulatory role of miRNAs during environmental fluctuations. It has become exceedingly clear that with increased understanding of the role of miRNAs during stress, the techniques for using miRNA-mediated gene regulation to enhance plant stress tolerance will become more effective and reliable. In this review we present: (1) miRNAs as a potential avenue for the modulation of abiotic stresses, and (2) summarize the research progress regarding plant responses to stress. Current progress is explained through discussion of the identification and validation of several miRNAs that enhance crop tolerance of salinity, drought, etc., while missing links on different aspects of miRNAs related to abiotic stress tolerance are noted.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Muhammad Aqeel
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Ali
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amanullah
- Department of Agronomy, Faculty of Crop Production, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Sumera Anwar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shahbaz Khan Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Madiha Zainab
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| |
Collapse
|
49
|
Chen Q, Li M, Zhang Z, Tie W, Chen X, Jin L, Zhai N, Zheng Q, Zhang J, Wang R, Xu G, Zhang H, Liu P, Zhou H. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco. BMC Genomics 2017; 18:62. [PMID: 28068898 PMCID: PMC5223433 DOI: 10.1186/s12864-016-3372-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/02/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). RESULTS In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed miRNAs (DEMs) and DEGs revealed 92 mRNA-miRNA interactions between CL and DL plants, and 32 mRNA-miRNA interactions between DL and WL plants. CONCLUSIONS This study provides a global view of the transcriptional and the post-transcriptional responses of tobacco under drought stress and re-watering conditions. Our results establish an empirical foundation that should prove valuable for further investigations into the molecular mechanisms through which tobacco, and plants more generally, respond to drought stress at multiple molecular genetic levels.
Collapse
Affiliation(s)
- Qiansi Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Meng Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410000, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410000, China
| | - Zhongchun Zhang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hui Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| |
Collapse
|
50
|
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize ( Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:864. [PMID: 28603532 PMCID: PMC5445174 DOI: 10.3389/fpls.2017.00864] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2017] [Indexed: 05/23/2023]
Abstract
To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA and degradome sequences. A total of 1040 previously known miRNAs were identified from four maize libraries, with 762 and 726 miRNAs derived from leaves and roots, respectively, and 448 miRNAs that were common between the leaves and roots. A total of 37 potential new miRNAs were selected based on the same criteria in response to salt stress. In addition to known miR167 and miR164 species, novel putative miR167 and miR164 species were also identified. Deep sequencing of miRNAs and the degradome [with quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of their targets] showed that more than one species of novel miRNA may play key roles in the response to salinity in maize. Furthermore, the interaction between miRNAs and their targets may play various roles in different parts of maize in response to salinity.
Collapse
Affiliation(s)
- Rong Fu
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Mi Zhang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yinchuan Zhao
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xuechuan He
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Chenyun Ding
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Shuangkuai Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yan Feng
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Ping Li
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Baohua Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| |
Collapse
|