1
|
Yang F, Shen H, Huang T, Yao Q, Hu J, Tang J, Zhang R, Tong H, Wu Q, Zhang Y, Su Q. Flavonoid production in tomato mediates both direct and indirect plant defences against whiteflies in tritrophic interactions. PEST MANAGEMENT SCIENCE 2023; 79:4644-4654. [PMID: 37442806 DOI: 10.1002/ps.7667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The role of plant flavonoids in direct defences against chewing and sap-sucking herbivorous insects has been extensively characterized. However, little is known about flavonoid-mediated tritrophic interactions between plants, herbivorous insects and natural enemies. In this study, we investigated how flavonoids modulate plant-insect interactions in a tritrophic system involving near-isogenic lines (NILs) of cultivated tomato (Solanum lycopersicum) with high (line NIL-purple hypocotyl [PH]) and low (line NIL-green hypocotyl [GH]) flavonoid levels, with a generalist herbivore whitefly (Bemisia tabaci) and its predatory bug (Orius sauteri). RESULTS By contrasting levels of tomato flavonoids (direct defence) while manipulating the presence of predators (indirect defence), we found that high production of flavonoids in tomato was associated with a higher inducibility of direct defences and a stronger plant resistance to whitefly infestation and stimulated the emissions of induced volatile organic compounds, thereby increasing the attractiveness of B. tabaci-infested plants to the predator O. sauteri. Furthermore, suppression of B. tabaci population growth and enhancement of plant growth were mediated directly by the high production of flavonoids and indirectly by the attraction of O. sauteri, and the combined effects were larger than each effect individually. CONCLUSION Our results show that high flavonoid production in tomato enhances herbivore-induced direct and indirect defences to better defend against herbivores in tritrophic interactions. Thus, the development of transgenic plants may present an opportunity to utilize the beneficial role of flavonoids in integrated pest management, while simultaneously maintaining or improving resistance against other pests and pathogens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Haowei Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qixi Yao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Binama B, Behrendt M, Müller C. Responses of Bunias orientalis to Short-term Fungal Infection and Insect Herbivory are Independent of Nutrient Supply. J Chem Ecol 2022; 48:827-840. [PMID: 36401688 PMCID: PMC9840571 DOI: 10.1007/s10886-022-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Plants have to allocate their resources in both growth and defense under different environmental challenges. Several plant species have become invasive particularly in disturbed fertile habitats, which may influence their resource allocation. We studied the effects of nitrate fertilization (low versus high) on various plant responses towards a pathogenic fungus, Alternaria brassicae, and a herbivorous insect species, Mamestra brassicae, in a population of Bunias orientalis, which is invasive in parts of central Europe. Aboveground biomass and leaf trichome density were enhanced in plants under high fertilization. In contrast, the short-term fungal infection and herbivory had no effect on aboveground biomass. Leaf water, nitrogen content and glucosinolate concentrations were neither affected by fertilization nor in response to antagonist attack. The total soluble sugar content, especially fructose, as well as leaf peroxidase activity increased significantly in leaves upon fungal infection, but independent of fertilization. Larval biomass gain and herbivore survival were likewise unaffected by fertilization. Our findings highlight that under conditions of high fertilization, B. orientalis plants allocate more resources into growth and morphological defenses than chemical defenses. In contrast, induced responses to short-term antagonist attack seem independent of nitrate availability in this population.
Collapse
Affiliation(s)
- Blaise Binama
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Miriam Behrendt
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Ren J, Peng ZK, Yang ZZ, Tian LX, Liu SN, Wang SL, Wu QJ, Xie W, Zhang YJ. Genome-wide identification and analysis of sulfatase and sulfatase modifying factor genes in Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1541-1552. [PMID: 33399267 DOI: 10.1111/1744-7917.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.
Collapse
Affiliation(s)
- Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng-Ke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Zhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li-Xia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Nan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Li Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Jun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Commun Biol 2020; 3:404. [PMID: 32732974 PMCID: PMC7393091 DOI: 10.1038/s42003-020-01130-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Plants rely on innate immunity to perceive and ward off microbes and pests, and are able to overcome the majority of invading microorganisms. Even so, specialized pathogens overcome plant defenses, posing a persistent threat to crop and food security worldwide, raising the need for agricultural products with broad, efficient resistance. Here we report a specific mutation in a tomato (S. lycopersicum) helper nucleotide-binding domain leucine-rich repeat H-NLR, SlNRC4a, which results in gain of function constitutive basal defense activation, in absence of PRR activation. Knockout of the entire NRC4 clade in tomato was reported to compromise Rpi-blb2 mediated immunity. The SlNRC4a mutant reported here possesses enhanced immunity and disease resistance to a broad-spectrum of pathogenic fungi, bacteria and pests, while lacking auto-activated HR or negative effects on plant growth and crop yield, providing promising prospects for agricultural adaptation in the war against plant pathogens that decrease productivity. Lorena Pizarro, Meirav Leibman-Markus et al. explore the genetic mechanisms for plant innate immunity. They functionally characterize a gain of function mutation in SlNRC4a in tomato. They characterize the structure of the mutant protein and functionally demonstrate that it confers broad-spectrum resistance without triggering a hypersensitive response or negatively impacting plant growth and crop yield.
Collapse
|
5
|
Gollan PJ, Aro EM. Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190406. [PMID: 32362249 DOI: 10.1098/rstb.2019.0406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The photosynthetic apparatus is one of the major primary sensors of the plant's external environment. Changes in environmental conditions affect the balance between harvested light energy and the capacity to deal with excited electrons in the stroma, which alters the redox homeostasis of the photosynthetic electron transport chain. Disturbances to redox balance activate photosynthetic regulation mechanisms and trigger signalling cascades that can modify the transcription of nuclear genes. H2O2 and oxylipins have been identified as especially prominent regulators of gene expression in response to excess light stress. This paper explores the hypothesis that photosynthetic imbalance triggers specific signals that target discrete gene profiles and biological processes. Analysis of the major retrograde signalling pathways engaged during high light stress and recovery demonstrates both specificity and overlap in gene targets. This work reveals distinct, time-resolved profiles of gene expression that suggest a regulatory interaction between rapidly activated abiotic stress response and induction of secondary metabolism and detoxification processes during recovery. The findings of this study show that photosynthetic electron transport provides a finely tuned sensor for detecting and responding to the environment through chloroplast retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
Yu Y, Wan Y, Jiao Z, Bian L, Yu K, Zhang G, Guo D. Functional Characterization of Resistance to Powdery Mildew of VvTIFY9 from Vitis vinifera. Int J Mol Sci 2019; 20:ijms20174286. [PMID: 31480584 PMCID: PMC6747219 DOI: 10.3390/ijms20174286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/03/2022] Open
Abstract
Powdery mildew is a disease caused by fungal pathogens that harms grape leaves and fruits. The TIFY gene family is a plant-specific super-family involved in the process of plants’ development and their biotic and abiotic stress responses. This study aimed to learn the function of the VvTIFY9 gene to investigate molecular mechanisms of grape resistance to powdery mildew. A VvTIFY9 protein encoding a conserved motif (TIF[F/Y]XG) was characterized in grape (Vitis vinifera). Sequence analysis confirmed that VvTIFY9 contained this conserved motif (TIF[F/Y]XG). Quantitative PCR analysis of VvTIFY9 in various grape tissues demonstrated that the expression of VvTIFY9 was higher in grape leaves. VvTIFY9 was induced by salicylic acid (SA) and methyl jasmonate (MeJA) and it also quickly responded to infection with Erysiphe necator in grape. Analysis of the subcellular localization and transcriptional activation activity of VvTIFY9 showed that VvTIFY9 located to the nucleus and had transcriptional activity. Arabidopsis that overexpressed VvTIFY9 were more resistant to Golovinomyces cichoracearum, and quantitative PCR revealed that two defense-related genes, AtPR1 and AtPDF1.2, were up-regulated in the overexpressing lines. These results indicate that VvTIFY9 is intimately involved in SA-mediated resistance to grape powdery mildew. This study provides the basis for exploring the molecular mechanism of grape resistance to disease resistance and candidate genes for transgenic disease resistance breeding of grape plants.
Collapse
Affiliation(s)
- Yihe Yu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Yutong Wan
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Zeling Jiao
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Lu Bian
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Keke Yu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Guohai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China.
| |
Collapse
|
7
|
Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc Natl Acad Sci U S A 2019; 116:7387-7396. [PMID: 30910967 PMCID: PMC6462071 DOI: 10.1073/pnas.1818599116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The whitefly Bemisia tabaci is one of the world's most important invasive crop pests, possibly because it manipulates plant defense signaling. Upon infestation by whiteflies, plants mobilize salicylic acid (SA)-dependent defenses, which mainly target pathogens. In contrast, jasmonic acid (JA)-dependent defenses are gradually suppressed in whitefly-infested plants. The down-regulation of JA defenses make plants more susceptible to insects, including whiteflies. Here, we report that this host-plant manipulation extends to neighboring plants via airborne signals. Plants respond to insect attack with the release of a blend of inducible volatiles. Perception of these volatiles by neighboring plants usually primes them to prepare for an imminent attack. Here, however, we show that whitefly-induced tomato plant volatiles prime SA-dependent defenses and suppress JA-dependent defenses, thus rendering neighboring tomato plants more susceptible to whiteflies. Experiments with volatiles from caterpillar-damaged and pathogen-infected plants, as well as with synthetic volatiles, confirm that whiteflies modify the quality of neighboring plants for their offspring via whitefly-inducible plant volatiles.
Collapse
|
8
|
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L. A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife 2019; 8:e41362. [PMID: 30616714 PMCID: PMC6324882 DOI: 10.7554/elife.41362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023] Open
Abstract
Changes of body color have important effects for animals in adapting to variable environments. The migratory locust exhibits body color polyphenism between solitary and gregarious individuals, with the former displaying a uniform green coloration and the latter having a prominent pattern of black dorsal and brown ventral surface. However, the molecular mechanism underlying the density-dependent body color changes of conspecific locusts remain largely unknown. Here, we found that upregulation of β-carotene-binding protein promotes the accumulation of red pigment, which added to the green color palette present in solitary locusts changes it from green to black, and that downregulation of this protein led to the reverse, changing the color of gregarious locusts from black to green. Our results provide insight that color changes of locusts are dependent on variation in the red β-carotene pigment binding to βCBP. This finding of animal coloration corresponds with trichromatic theory of color vision.
Collapse
Affiliation(s)
- Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yanli Wang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhikang Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jianzhen Zhang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Silva FEL, Costa EM, Araújo EL. Does the high density of trichomes influence the parasitism of Liriomyza sativae by Opius scabriventris on melon cultivars? ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Opius scabriventris (Hymenoptera: Braconidae) is considered an important parasitoid of the leafminer Liriomyza sativae (Diptera: Agromyzidae) in the main melon (Cucumis melo L.) producing areas in Brazil. However, there is no information on the influence of trichomes on melon plant leaves on the parasitoids’ actions. Therefore, the aim of this investigation was to relate the influence of columnar trichome density on melon cultivars in the parasitism of L. sativae larvae by O. scabriventris. The study was conducted in laboratory conditions, in which melon cultivars were infested and the leafminer larvae were subjected to the parasitism. The results demonstrated that trichome density can influence the parasitism of L. sativae larvae by O. scabriventris. Among the studied materials, Piel de Sapo cultivar showed the highest density of trichomes in the leaves (534 trichomes/cm2) and the lowest parasitism (20%).
Collapse
|
10
|
López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM. A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. FRONTIERS IN PLANT SCIENCE 2017; 8:1188. [PMID: 28725238 PMCID: PMC5495837 DOI: 10.3389/fpls.2017.01188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plants are secondary metabolites that mediate the plant interaction with pathogens and herbivores. These compounds may perform direct defensive functions, i.e., acting as antioxidant, antibacterial, or antifungal agents, or indirectly by signaling the activation of the plant's defensive responses. Using a non-targeted GC-MS metabolomics approach, we identified the profile of the VOCs associated with the differential immune response of the Rio Grande tomato leaves infected with either virulent or avirulent strains of Pseudomonas syringae DC3000 pv. tomato. The VOC profile of the tomato leaves infected with avirulent bacteria is characterized by esters of (Z)-3-hexenol with acetic, propionic, isobutyric or butyric acids, and several hydroxylated monoterpenes, e.g., linalool, α-terpineol, and 4-terpineol, which defines the profile of an immunized plant response. In contrast, the same tomato cultivar infected with the virulent bacteria strain produced a VOC profile characterized by monoterpenes and SA derivatives. Interestingly, the differential VOCs emission correlated statistically with the induction of the genes involved in their biosynthetic pathway. Our results extend plant defense system knowledge and suggest the possibility for generating plants engineered to over-produce these VOCs as a complementary strategy for resistance.
Collapse
|
11
|
Cui H, Guo L, Wang S, Xie W, Jiao X, Wu Q, Zhang Y. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants. Ecol Evol 2017; 7:6141-6150. [PMID: 28861220 PMCID: PMC5574797 DOI: 10.1002/ece3.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Litao Guo
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Xiaoguo Jiao
- College of Life Science Hubei University Wuhan China
| | - Qingjun Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
12
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
13
|
Cui H, Wei J, Su J, Li C, Ge F. Elevated O 3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:243-250. [PMID: 27968993 DOI: 10.1016/j.plantsci.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The elevated atmospheric O3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O3 and O3+ herbivory treatments. Our results suggest that under elevated O3, the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted.
Collapse
Affiliation(s)
- Hongying Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianwei Su
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
14
|
Ataide LMS, Pappas ML, Schimmel BCJ, Lopez-Orenes A, Alba JM, Duarte MVA, Pallini A, Schuurink RC, Kant MR. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:300-310. [PMID: 27717467 DOI: 10.1016/j.plantsci.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 05/20/2023]
Abstract
Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.
Collapse
Affiliation(s)
- Livia M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria L Pappas
- Department of Agricultural Development, Laboratory of Agricultural Entomology and Zoology, Democritus University of Thrace, Pantazidou 193, 68 200, Orestiada, Greece
| | - Bernardus C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Antonio Lopez-Orenes
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marcus V A Duarte
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Mitchell C, Brennan RM, Graham J, Karley AJ. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. FRONTIERS IN PLANT SCIENCE 2016; 7:1132. [PMID: 27524994 PMCID: PMC4965446 DOI: 10.3389/fpls.2016.01132] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/15/2016] [Indexed: 05/03/2023]
Abstract
Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.
Collapse
Affiliation(s)
| | - Rex M. Brennan
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | |
Collapse
|
16
|
Kaplan I, Carrillo J, Garvey M, Ode PJ. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:112-119. [PMID: 27436656 DOI: 10.1016/j.cois.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, Purdue University, United States.
| | - Juli Carrillo
- Department of Entomology, Purdue University, United States
| | - Michael Garvey
- Department of Entomology, Purdue University, United States
| | - Paul J Ode
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, United States
| |
Collapse
|
17
|
Fatouros NE, Paniagua Voirol LR, Drizou F, Doan QT, Pineda A, Frago E, van Loon JJA. Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. FRONTIERS IN PLANT SCIENCE 2015; 6:794. [PMID: 26483811 PMCID: PMC4586945 DOI: 10.3389/fpls.2015.00794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/13/2015] [Indexed: 05/04/2023]
Abstract
To successfully exert defenses against herbivores and pathogens plants need to recognize reliable cues produced by their attackers. Up to now, few elicitors associated with herbivorous insects have been identified. We have previously shown that accessory reproductive gland secretions associated with eggs of Cabbage White butterflies (Pieris spp.) induce chemical changes in Brussels sprouts plants recruiting egg-killing parasitoids. Only secretions of mated female butterflies contain minute amounts of male-derived anti-aphrodisiac compounds that elicit this indirect plant defense. Here, we used the black mustard (Brassica nigra) to investigate how eggs of the Large Cabbage White butterfly (Pieris brassicae) induce, either an egg-killing direct [i.e., hypersensitive response (HR)-like necrosis] or indirect defense (i.e., oviposition-induced plant volatiles attracting Trichogramma egg parasitoids). Plants induced by P. brassicae egg-associated secretions expressed both traits and previous mating enhanced elicitation. Treatment with the anti-aphrodisiac compound of P. brassicae, benzyl cyanide (BC), induced stronger HR when compared to controls. Expression of the salicylic (SA) pathway- and HR-marker PATHOGENESIS-RELATED GENE1 was induced only in plants showing an HR-like necrosis. Trichogramma wasps were attracted to volatiles induced by secretion of mated P. brassicae females but application of BC did not elicit the parasitoid-attracting volatiles. We conclude that egg-associated secretions of Pieris butterflies contain specific elicitors of the different plant defense traits against eggs in Brassica plants. While in Brussels sprouts plants anti-aphrodisiac compounds in Pieris egg-associated secretions were clearly shown to elicit indirect defense, the wild relative B. nigra, recognizes different herbivore cues that mediate the defensive responses. These results add another level of specificity to the mechanisms by which plants recognize their attackers.
Collapse
Affiliation(s)
- Nina E. Fatouros
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Luis R. Paniagua Voirol
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Fryni Drizou
- Division of Plant and Crop Sciences, School of Biosciences, Sutton Bonington Campus, The University of NottinghamNottingham, UK
| | - Quyen T. Doan
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Enric Frago
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | | |
Collapse
|
18
|
Zhang PJ, Huang F, Zhang JM, Wei JN, Lu YB. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk. Sci Rep 2015; 5:9354. [PMID: 25790868 PMCID: PMC4366759 DOI: 10.1038/srep09354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023] Open
Abstract
Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses.
Collapse
Affiliation(s)
- Peng-Jun Zhang
- 1] Zhejiang Provincial Key Laboratory of Biometrology and Inspection &Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China [2] State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Huang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jin-Ming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yao-Bin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
19
|
Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S A 2014; 111:7144-9. [PMID: 24778218 DOI: 10.1073/pnas.1320660111] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.
Collapse
|
20
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1536] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
21
|
Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 2012; 13:17077-103. [PMID: 23235331 PMCID: PMC3546740 DOI: 10.3390/ijms131217077] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant's secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant's resistance to pests.
Collapse
Affiliation(s)
- Joris J. Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Bernardus C. J. Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Rocío Escobar-Bravo
- Department of Plant Breeding, Subtropical and Mediterranean Horticulture Institute “La Mayora” (IHSM), Spanish Council for Scientific Research (CSIC), Experimental Station “La Mayora”, E-29750, Algarrobo-Costa, Málaga, Spain; E-Mail:
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, 1098 XH, Science Park 904, Amsterdam, The Netherlands; E-Mail:
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| |
Collapse
|