1
|
Sisto M, Lisi S. Epigenetic Modulations of Non-Coding RNAs: A Novel Therapeutic Perspective in Sjӧgren's Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:403. [PMID: 39735974 DOI: 10.31083/j.fbl2912403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/31/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that can be classified as an epithelitis based on the immune-mediated attack directed specifically at epithelial cells. SS predominantly affects women, is characterized by the production of highly specific circulating autoantibodies, and the major targets are the salivary and lachrymal glands. Although a genetic predisposition has been amply demonstrated for SS, the etiology remains unclear. The recent integration of epigenetic data relating to autoimmune diseases opens new therapeutic perspectives based on a better understanding of the molecular processes implicated. In the autoimmune field, non-coding RNA molecules (nc-RNA), which regulate gene expression by binding to mRNAs and could have a therapeutic value, have aroused great interest. The focus of this review is to summarize the biological functions of nc-RNAs in the pathogenesis of SS and decode molecular pathways implicated in the disease, in order to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
2
|
Punnanitinont A, Kramer JM. Sex-specific differences in primary Sjögren's disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1168645. [PMID: 39916928 PMCID: PMC11797869 DOI: 10.3389/fdmed.2023.1168645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/28/2023] [Indexed: 02/09/2025] Open
Abstract
Many autoimmune diseases show a striking female sex predilection, including primary Sjögren's disease (pSD). Patients with pSD display exocrine gland pathology, such as salivary hypofunction and salivary and lacrimal gland inflammation. Moreover, many serious systemic disease manifestations are well-documented, including interstitial nephritis, hypergammaglobulinemia and neuropathies. Of note, women and men with pSD display distinct clinical phenotypes. While the underlying reasons for these clinical observations were poorly understood for many years, recent studies provide mechanistic insights into the specific regulatory landscapes that mediate female susceptibility to autoimmunity. We will review factors that contribute to the female sex bias, with an emphasis on those that are most relevant to pSD pathogenesis. Specifically, we will focus on sex hormones in disease, genetic alterations that likely contribute to the significant disease prevalence in females, and studies that provide evidence for the role of the gut microbiota in disease. Lastly, we will discuss therapeutics that are in clinical trials for pSD that may be particularly efficacious in targeting signaling networks that mediate inflammation in a sex-specific manner.
Collapse
Affiliation(s)
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
3
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
4
|
Jung YH, Ryu JS, Yoon CH, Kim MK. Age-Dependent Distinct Distributions of Dendritic Cells in Autoimmune Dry Eye Murine Model. Cells 2021; 10:1857. [PMID: 34440626 PMCID: PMC8392312 DOI: 10.3390/cells10081857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023] Open
Abstract
We investigated whether aging-dependent changes in dendritic cell (DC) distributions are distinct in autoimmune dry eye compared with an aging-related murine model. Corneal staining and tear secretion were evaluated in young and aged C57BL/6 (B6) and NOD.B10.H2b mice (NOD). In the corneolimbus, lacrimal gland (LG), and mesenteric lymph node (MLN), CD11b- and CD11b+ DCs, CD103+ DCs and MHC-IIhi B cells were compared between young and aged B6 and NOD mice. With increased corneal staining, tear secretion decreased in both aged B6 and NOD mice (p < 0.001). In both aged B6 and NOD mice, the percentages of corneolimbal CD11b+ DCs were higher (p < 0.05) than those in young mice. While, the percentages of lymph nodal CD103+ DCs were higher in aged B6 and NOD mice (p < 0.05), the percentages of corneolimbal CD103+ DCs were only higher in aged NOD mice (p < 0.05). In aged NOD mice, the proportions of lacrimal glandial and lymph nodal MHC-IIhi B cells were also higher than those in young mice (p < 0.05). It indicates that corneolimbal or lacrimal glandial distribution of CD103+ DCs or MHC-IIhi B cells may be distinct in aged autoimmune dry eye models compared to those in aged immune competent murine models.
Collapse
Affiliation(s)
- Young-Ho Jung
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Jin-Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Chang-Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Mee-Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-H.J.); (C.-H.Y.)
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
- Transplantation Research Institute, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
5
|
Effect of the Chinese Herbal Medicine SS-1 on a Sjögren's Syndrome-Like Disease in Mice. Life (Basel) 2021; 11:life11060530. [PMID: 34200223 PMCID: PMC8229783 DOI: 10.3390/life11060530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SS) is an inflammatory autoimmune disease primarily affecting the exocrine glands; it has a major impact on patients’ lives. The Chinese herbal formula SS-1 is composed of Gan Lu Yin, Sang Ju Yin, and Xuefu Zhuyu decoction, which exerts anti-inflammatory, immunomodulatory, and antifibrotic effects. Our previous study demonstrated that SS-1 alleviates clinical SS. This study aimed to evaluate the efficacy and mechanism of the Chinese herbal formula SS-1 for salivary gland protein-induced experimental Sjögren’s syndrome (ESS). These results showed that ESS treatment with the Chinese herbal formula SS-1 (1500 mg/kg) significantly alleviated the severity of ESS. We found that SS-1 substantially improved saliva flow rates in SS mice and ameliorated lymphocytic infiltrations in submandibular glands. In addition, salivary gland protein-induced SS in mice treated with SS-1 significantly lowered proinflammatory cytokines (including IFN-γ, IL-6, and IL-17A) in mouse salivary glands and decreased serum anti-M3R autoantibody levels. In addition, we found that CD4+ T cells isolated from SS-1-treated SS mice significantly reduced the percentages of IFN-γ-producing CD4+ T cells (Th1) and IL-17A-producing CD4+ T cells (Th17). Our data show that SS-1 alleviates ESS through anti-inflammatory and immunomodulatory effects, which provides new insight into the clinical treatment of SS.
Collapse
|
6
|
Baer AN, Gottenberg JE, St Clair EW, Sumida T, Takeuchi T, Seror R, Foulks G, Nys M, Mukherjee S, Wong R, Ray N, Bootsma H. Efficacy and safety of abatacept in active primary Sjögren's syndrome: results of a phase III, randomised, placebo-controlled trial. Ann Rheum Dis 2021; 80:339-348. [PMID: 33168545 PMCID: PMC7892395 DOI: 10.1136/annrheumdis-2020-218599] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate efficacy and safety of abatacept in adults with active primary Sjögren's syndrome (pSS) in a phase III, randomised, double-blind, placebo-controlled trial. METHODS Eligible patients (moderate-to-severe pSS [2016 ACR/European League Against Rheumatism (EULAR) criteria], EULAR Sjögren's Syndrome Disease Activity Index [ESSDAI] ≥5, anti-SS-related antigen A/anti-Ro antibody positive) received weekly subcutaneous abatacept 125 mg or placebo for 169 days followed by an open-label extension to day 365. Primary endpoint was mean change from baseline in ESSDAI at day 169. Key secondary endpoints were mean change from baseline in EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI) and stimulated whole salivary flow (SWSF) at day 169. Other secondary clinical endpoints included glandular functions and patient-reported outcomes. Selected biomarkers and immune cell phenotypes were examined. Safety was monitored. RESULTS Of 187 patients randomised, 168 completed double-blind period and 165 continued into open-label period. Mean (SD) baseline ESSDAI and ESSPRI total scores were 9.4 (4.3) and 6.5 (2.0), respectively. Statistical significance was not reached for primary (ESSDAI -3.2 abatacept vs -3.7 placebo, p=0.442) or key secondary endpoints (ESSPRI, p=0.337; SWSF, p=0.584). No clinical benefit of abatacept over placebo at day 169 was seen with other clinical and PRO endpoints. Relative to baseline, abatacept was associated with significant differences vs placebo in some disease-relevant biomarkers (including IgG, IgA, IgM-rheumatoid factor) and pathogenic cell subpopulations (post hoc analyses). No new safety signals were identified. CONCLUSIONS Abatacept treatment did not result in significant clinical efficacy compared with placebo in patients with moderate-to-severe pSS, despite evidence of biological activity.
Collapse
Affiliation(s)
- Alan N Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, Strasbourg University Hospitals, National Reference Center for Rare Systemic Autoimmune Diseases, IBMC, CNRS, UPR3572, Strasbourg, France
| | - E William St Clair
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsutomu Takeuchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Raphaèle Seror
- Department of Rheumatology and National Reference Center for Sjögren Syndrome and Rare Autoimmune Diseases, AP-HP Université Paris-Saclay, INSERM UMR1184, Le Kremlin Bicêtre, Paris, France
| | - Gary Foulks
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Marleen Nys
- Global Biometric Sciences, Bristol Myers Squibb, Braine L'Alleud, Belgium
| | - Sumanta Mukherjee
- Innovative Medicines and Development - Clinical Biomarkers, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| | - Robert Wong
- Immunology and Fibrosis, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| | - Neelanjana Ray
- Global Drug Development - Immunology, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
8
|
Pathogenetic Mechanisms Implicated in Sjögren's Syndrome Lymphomagenesis: A Review of the Literature. J Clin Med 2020; 9:jcm9123794. [PMID: 33255258 PMCID: PMC7759999 DOI: 10.3390/jcm9123794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023] Open
Abstract
Sjögren's Syndrome (SS) is a chronic autoimmune disorder characterized by focal mononuclear cell infiltrates that surround the ducts of the exocrine glands, impairing the function of their secretory units. Compared to other autoimmune disorders, SS is associated with a notably high incidence of non-Hodgkin lymphoma (NHL) and more frequently mucosa associated lymphoid tissue (MALT) lymphoma, leading to increased morbidity and mortality rates. High risk features of lymphoma development include systemic extraepithelial manifestations, low serum levels of complement component C4 and mixed type II cryoglobulinemia. The discrimination between reactive and neoplastic lymphoepithelial lesion (LEL) is challenging, probably reflecting a continuum in the evolution from purely inflammatory lymphoid infiltration to the clonal neoplastic evolution. Early lesions display a predominance of activated T cells, while B cells prevail in severe histologic lesions. This strong B cell infiltration is not only a morphologic phenomenon, but it is also progressively associated with the presence of ectopic germinal centers (GCs). Ectopic formation of GCs in SS represents a complex process regulated by an array of cytokines, adhesion molecules and chemokines. Chronic antigenic stimulation is the major driver of specific B cell proliferation and increases the frequency of their transformation in the ectopic GCs and marginal zone (MZ) equivalents. B cells expressing cell surface rheumatoid factor (RF) are frequently detected in the salivary glands, suggesting that clonal expansion might arise from antigen selection of RF-expressing B cells. Abnormal stimulation and incomplete control mechanisms within ectopic lymphoid structures predispose RF MZ like cells to lymphoma development. Immunoglobulin recombination, somatic mutation and isotype switching during B cell development are events that may increase the translocation of oncogenes to immunoglobulin loci or tumor suppressor gene inactivation, leading to monoclonal B cell proliferation and lymphoma development. Concerning chronic antigenic stimulation, conclusive data is so far lacking. However immune complexes containing DNA or RNA are the most likely candidates. Whether additional molecular oncogenic events contribute to the malignant overgrowth remains to be proved.
Collapse
|
9
|
Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology 2020; 28:1421-1438. [DOI: 10.1007/s10787-020-00762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
10
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
11
|
Kiripolsky J, McCabe LG, Kramer JM. Innate immunity in Sjögren's syndrome. Clin Immunol 2017; 182:4-13. [PMID: 28396235 PMCID: PMC6025757 DOI: 10.1016/j.clim.2017.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease of exocrine tissue that primarily affects women. Although patients typically experience xerostomia and xerophthalmia, numerous systemic disease manifestations are seen. Innate immune hyperactivity is integral to many autoimmune diseases, including SS. Results from SS mouse models suggest that innate immune dysregulation drives disease and this is a seminal event in SS pathogenesis. Findings in SS patients corroborate those in mouse models, as innate immune cells and pathways are dysregulated both in exocrine tissue and in peripheral blood. We will review the role of the innate immune system in SS pathogenesis. We will discuss the etiology of SS with an emphasis on innate immune dysfunction. Moreover, we will review the innate cells that mediate inflammation in SS, the pathways implicated in disease, and the potential mechanisms governing their dysregulation. Finally, we will discuss emerging therapeutic approaches to target dysregulated innate immune signaling in SS.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Liam G McCabe
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States; Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
12
|
Is it Sjögren's syndrome or burning mouth syndrome? Distinct pathoses with similar oral symptoms. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:482-495. [PMID: 28283095 DOI: 10.1016/j.oooo.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Sjögren's syndrome (SS) and burning mouth syndrome (BMS) typically occur in postmenopausal women. Although these conditions have significantly different etiopathogeneses, patients with SS or BMS often present with analogous oral complaints. The similarities between the two conditions have led to considerable confusion on the part of medical and dental practitioners, and those with BMS or SS often wait years to receive a diagnosis. Therefore, it is imperative for clinicians to understand the characteristic subjective and objective features of each disease and how these can be used to distinguish them. This review will discuss the proposed etiology, clinical manifestations, histopathology, diagnostic criteria, and patient management of SS and BMS. We also identify key differences between the two pathoses that aid in establishing the correct diagnosis. Recognition of the defining features of each condition will lead to reduced time to diagnosis and improved patient management for these poorly understood conditions.
Collapse
|
13
|
Narkeviciute I, Sudzius G, Mieliauskaite D, Mackiewicz Z, Butrimiene I, Viliene R, Dumalakiene I. Are cytotoxic effector cells changes in peripheral blood of patients with Sjögren's syndrome related to persistent virus infection: Suggestions and conundrums. Cell Immunol 2016; 310:123-130. [PMID: 27592028 DOI: 10.1016/j.cellimm.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
Etiology of Sjögren's syndrome (SS) is still unknown, but there is strong evidence that certain pathogens of bacterial or viral origin can incite autoimmune response. The aim of this study was to quantitatively evaluate changes of the main cell populations (dendritic cells, natural killer, natural killer T and cytotoxic T lymphocytes) presumably participating in virus clearance in peripheral blood of patients with primary SS (pSS). In analyzing cytotoxic T lymphocytes (CTL) populations we observed alterations in the frequency of highly cytotoxic effector CD8high/57+/27-/45RA+, less cytotoxic CD8high/57-/27-/45RA+ effector cells and cytotoxic memory CD8high/57+/27+/45RA- effector cells. We found a decrease of conventional dendritic cells (cDC) population in peripheral blood of pSS patients. It is possible that, a decrease of effector CTL and cDC, accompanied by increase of transitory phenotype memory CTL in peripheral blood of pSS patients may be associated with viral etiopathogenesis of Sjögren's syndrome.
Collapse
Affiliation(s)
- Ieva Narkeviciute
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Gintaras Sudzius
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Diana Mieliauskaite
- Department of Innovative Diagnostic, Treatment and Health Monitoring Technology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Zygmunt Mackiewicz
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Irena Butrimiene
- Department of Innovative Diagnostic, Treatment and Health Monitoring Technology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania; Center of Rheumatology, Vilnius University, Santariskiu st. 2, LT-08406 Vilnius, Lithuania
| | - Rita Viliene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Irena Dumalakiene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
14
|
Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VSF, Lau CS, Cao X, Lu L. Th17 cells play a critical role in the development of experimental Sjögren's syndrome. Ann Rheum Dis 2015; 74:1302-10. [PMID: 24573745 DOI: 10.1136/annrheumdis-2013-204584] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/16/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although Th17 cells have been increasingly recognised as an important effector in various autoimmune diseases, their function in the pathogenesis of Sjögren's syndrome (SS) remains largely uncharacterised. This study aims to determine the role of Th17 cells in the development of experimental SS (ESS). METHODS The ESS was induced in wildtype and IL-17A knockout (IL-17 KO) C57BL/6 mice immunised with salivary glands (SG) proteins. Phenotypic analysis of immune cells in the draining cervical lymph nodes (CLN) and SG was performed by flow cytometry and immunofluorescence microscopy. To determine the role of Th17 cells in ESS, immunised IL-17 KO mice were adoptively transferred with in vitro-generated Th17 cells and monitored for SS development. The salivary flow rate was measured, whereas inflammatory infiltration and tissue destruction in SG were assessed by histopathology. RESULTS SG protein-immunised mice developed overt SS symptoms with increased Th17 cells detected in CLN and within lymphocytic foci in inflamed SG. Notably, immunised IL-17 KO mice were completely resistant for SS induction, showing no evidence of disease symptoms and histopathological changes in SG. Adoptive transfer of Th17 cells rapidly induced the onset of ESS in immunised IL-17 KO mice with markedly reduced saliva secretion, elevated autoantibody production and pronounced inflammation and tissue damage in SG. CONCLUSIONS Our findings have defined a critical role of Th17 cells in the pathogenesis of ESS. Further studies may validate Th17 cell as a potential target for treating SS.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Ke Rui
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Deng
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Jie Tian
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaohui Wang
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Shengjun Wang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - King-Hung Ko
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Zhijun Jiao
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | - Chak Sing Lau
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Vogelsang P, Karlsen M, Brun JG, Jonsson R, Appel S. Altered phenotype and Stat1 expression in Toll-like receptor 7/8 stimulated monocyte-derived dendritic cells from patients with primary Sjögren's syndrome. Arthritis Res Ther 2014; 16:R166. [PMID: 25113744 PMCID: PMC4261979 DOI: 10.1186/ar4682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Introduction Dendritic cells (DC) are the most potent antigen-presenting cells of the immune system, involved in both initiating immune responses and maintaining tolerance. Dysfunctional and via toll-like receptor (TLR) ligands activated DC have been implicated in the development of autoimmune diseases, but their role in the etiology of Sjögren’s syndrome, a chronic inflammatory autoimmune disease characterized by progressive mononuclear cell infiltration in the exocrine glands, has not been revealed yet. Therefore, the aim of this study was to investigate phenotype and functional properties of immature and TLR7/8 stimulated monocyte-derived DC (moDC) of patients with primary Sjögren’s syndrome (pSS) and compare them to healthy controls. Methods The phenotype, apoptosis susceptibility and endocytic capacity of moDC were analyzed by flow cytometry. Secretion of cytokines was measured by enzyme-linked immunosorbent assay (ELISA) and multiplex Luminex analyses in moDC cell culture supernatants. The expression of TLR7 was analyzed by flow cytometry and real-time quantitative polymerase chain reaction (qPCR). Expression of Ro/Sjögren’s syndrome-associated autoantigen A (Ro52/SSA), interferon regulatory factor 8 (IRF-8), Bim, signal transduction and activators of transcription (Stat) 1, p-Stat1 (Tyrosin 701), p-Stat1 (Serin 727), Stat3, pStat3 (Tyrosin 705) and glyceraldehyde 3-phosphatase dehydrogenase (GAPDH) was measured by Western blotting. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family members were quantified using the ELISA-based TransAM NF-κB family kit. Results We could not detect differences in expression of co-stimulatory molecules and maturation markers such as cluster of differentiation (CD) 86, CD80, CD40 or CD83 on moDC from patients compared to healthy controls. Moreover, we could not observe variations in apoptosis susceptibility, Bim and Ro52/SSA expression and the endocytic capacity of the moDC. However, we found that moDC from pSS patients expressed increased levels of the major histocompatibility complex (MHC) class II molecule human leukocyte antigen (HLA)-DR. We also found significant differences in cytokine production by moDC, where increased interleukin (IL)-12p40 secretion in mature pSS moDC correlated with increased RelB expression. Strikingly, moDC from pSS patients matured for 48 hours with TLR7/8 ligand CL097 expressed significantly less Stat1. Conclusion Our results suggest a role for moDC in the pathogenesis of Sjögren’s syndrome.
Collapse
|
16
|
Voulgarelis M, Tzioufas AG. Current Aspects of Pathogenesis in Sjögren's Syndrome. Ther Adv Musculoskelet Dis 2012; 2:325-34. [PMID: 22870458 DOI: 10.1177/1759720x10381431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome is a chronic autoimmune process that primarily affects the exocrine glands and leads to their functional impairment. The exocrine gland involvement is characterized by a focal, mononuclear cell infiltrate which is accumulated around ducts and, in some patients, extends and replaces the secretory functional units. The mechanisms of this autoimmune 'exocrinopathy' are not fully understood. The immune attack that follows activation or apoptosis of glandular epithelial cells exposing autoantigens in genetically predisposed individuals may drive the immune-mediated tissue injury. Abnormalities related to the upregulation of type I interferon-regulated genes (interferon signature), abnormal expression of B-cell-activating factor (BAFF) and activation of the IL-23/TH17 pathway are among the immune mediators implicated in the pathogenesis of autoimmune lesions within the salivary glands. Such abnormalities demonstrate the complex interplay between innate and adaptive immunity that contributes to autoimmune 'exocrinopathy'.
Collapse
Affiliation(s)
- Michael Voulgarelis
- Department of Pathophysiology, Medical School, National University of Athens, Greece
| | | |
Collapse
|
17
|
Volchenkov R, Sprater F, Vogelsang P, Appel S. The 2011 Nobel Prize in Physiology or Medicine. Scand J Immunol 2011; 75:1-4. [DOI: 10.1111/j.1365-3083.2011.02663.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Le A, Saverin M, Hand AR. Distribution of dendritic cells in normal human salivary glands. Acta Histochem Cytochem 2011; 44:165-73. [PMID: 21927515 PMCID: PMC3168762 DOI: 10.1267/ahc.11010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/13/2011] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4–11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins.
Collapse
Affiliation(s)
- An Le
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| | - Michele Saverin
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| | - Arthur R. Hand
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine
| |
Collapse
|
19
|
The complexity of Sjögren's syndrome: novel aspects on pathogenesis. Immunol Lett 2011; 141:1-9. [PMID: 21777618 DOI: 10.1016/j.imlet.2011.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 01/22/2023]
Abstract
In Sjögren's syndrome, like in most other autoimmune diseases, the enigma leading to a pathogenic attack against self has not yet been solved. By definition, the disease must be mediated by specific immune reactions against endogenous tissues to qualify as an autoimmune disease. In Sjögren's syndrome the autoimmune response is directed against the exocrine glands, which, as histopathological hallmark of the disease, display persistent and progressive focal mononuclear cell infiltrates. Clinically, the disease in most patients is manifested by two severe symptoms: dryness of the mouth (xerostomia) and the eyes (keratoconjunctivitis sicca). A number of systemic features have also been described and the presence of autoantibodies against the ubiquitously expressed ribonucleoprotein particles Ro (Sjögren's-syndrome-related antigen A - SSA) and La (SSB) further underline the systemic nature of Sjögren's syndrome. The original explanatory concept for the pathogenesis of Sjögren's syndrome proposed a specific, self-perpetuating, immune mediated loss of acinar and ductal cells as the principal cause of salivary gland hypofunction. Although straightforward and plausible, the hypothesis, however, falls short of accommodating several Sjögren's syndrome-related phenomena and experimental findings. Consequently, researchers considered immune-mediated salivary gland dysfunction prior to glandular destruction and atrophy as potential molecular mechanisms underlying the symptoms of dryness in Sjögren's syndrome. Accordingly, apoptosis, fibrosis and atrophy of the salivary glands would represent consequences of salivary gland hypofunction. The emergence of advanced bio-analytical platforms further enabled the identification of potential biomarkers with the intent to improve Sjögren's syndrome diagnosis, promote the development of prognostic tools for Sjögren's syndrome and the long-term goal to identify possible processes for therapeutic treatment interventions. In addition, such approaches allowed us to glimpse at the apparent complexity of Sjögren's syndrome.
Collapse
|
20
|
Abstract
Sjögren's syndrome (SS), a chronic autoimmune disorder, particularly compromises the function of exocrine glands. The involvement of these glands is characterized by focal, mononuclear cell infiltrates that surround the ducts and replace the secretory units. The pathogenetic mechanisms of this autoimmune exocrinopathy have not been fully elucidated. Immunologically-activated or apoptotic glandular epithelial cells that expose autoantigens in genetically predisposed individuals might drive autoimmune-mediated tissue injury. Alterations in several immune mediators, such as upregulation of type I interferon-regulated genes, abnormal expression of B-cell-activating factor and activation of the interleukin-23-type 17 T-helper cell pathway, have been reported. Extension of the pathological process that affects the exocrine glands into periepithelial and extraepithelial tissue can cause a considerable percentage of patients to exhibit systemic findings that involve the lungs, liver or kidneys. These manifestations develop as a result of lymphocytic invasion or an immune-complex-mediated process, or both, and present as skin vasculitis coupled with peripheral neuropathy or glomerulonephritis (or both). Patients with systemic extraepithelial manifestations display low serum levels of the complement component C4 and mixed type II cryoglobulins, and show an increased risk of developing non-Hodgkin lymphoma, thereby reflecting an overall worse prognosis with higher mortality rates than those without extraepithelial manifestations.
Collapse
|
21
|
Vogelsang P, Brun JG, Oijordsbakken G, Skarstein K, Jonsson R, Appel S. Levels of plasmacytoid dendritic cells and type-2 myeloid dendritic cells are reduced in peripheral blood of patients with primary Sjogren's syndrome. Ann Rheum Dis 2010; 69:1235-8. [PMID: 19914903 DOI: 10.1136/ard.2009.118158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is a lymphoproliferative autoimmune disease, characterised by dryness of the mouth and eyes. Dendritic cells (DC) are potent antigen-presenting cells crucial for initiating and maintaining primary immune responses. This study quantified interferon-producing plasmacytoid DC (pDC) and two myeloid DC subsets (mDC1 and mDC2) in peripheral blood (PB) from primary SS (pSS) patients and healthy controls. METHODS Blood samples from 31 pSS patients and 28 gender and age-matched healthy controls were analysed by flow cytometry using the Miltenyi Blood DC enumeration kit. The presence of pDC in salivary glands (SG) from pSS patients was analysed by immunohistochemistry. RESULTS Patients with pSS had significantly less pDC and mDC2 in PB compared with healthy controls. Moreover, pDC are present in SG from patients with pSS. CONCLUSION Patients with pSS have alterations among DC populations in PB, and pDC are present in the SG, suggesting a potential role of these cells in SS.
Collapse
Affiliation(s)
- Petra Vogelsang
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Laboratory building, 5th floor, N-5021 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Turpie B, Yoshimura T, Gulati A, Rios JD, Dartt DA, Masli S. Sjögren's syndrome-like ocular surface disease in thrombospondin-1 deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1136-47. [PMID: 19700744 DOI: 10.2353/ajpath.2009.081058] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thrombospondin-1 (TSP-1) is a major activator of latent transforming growth factor-beta in vitro as well as in vivo. Mice deficient in TSP-1, despite appearing normal at birth, develop a chronic form of ocular surface disease that is marked by increased apoptosis and deterioration in the lacrimal gland, associated dysfunction, and development of inflammatory infiltrates that result in abnormal tears. The increase in CD4(+) T cells in the inflammatory infiltrates of the lacrimal gland, and the presence of anti-Sjögren's syndrome antigen A and anti-Sjögren's syndrome antigen B antibodies in the serum resemble autoimmune Sjögren's syndrome. These mice develop an ocular surface disorder dry eye that includes disruption of the corneal epithelial layer, corneal edema, and a significant decline in conjuctival goblet cells. Externally, several mice develop dry crusty eyes that eventually close. The inflammatory CD4(+) T cells detected in the lacrimal gland, as well as those in the periphery of older TSP-1 null mice, secrete interleukin-17A, a cytokine associated with chronic inflammatory diseases. Antigen-presenting cells, derived from TSP-1 null, but not from wild-type mice, activate T cells to promote the Th17 response. Together, these results indicate that TSP-1 deficiency results in a spontaneous form of chronic dry eye and aberrant histopathology associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Bruce Turpie
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Delaleu N, Jonsson MV, Appel S, Jonsson R. New Concepts in the Pathogenesis of Sjögren's Syndrome. Rheum Dis Clin North Am 2008; 34:833-45, vii. [DOI: 10.1016/j.rdc.2008.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Chang SK, Mihalcik SA, Jelinek DF. B lymphocyte stimulator regulates adaptive immune responses by directly promoting dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2008; 180:7394-403. [PMID: 18490739 DOI: 10.4049/jimmunol.180.11.7394] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B lymphocyte stimulator (BLyS) is a well-known direct costimulator of adaptive immune cells, particularly B lineage cells. However, we have reported recently that BLyS is also able to activate monocytes. Other innate immune cells, such as dendritic cells (DCs), play a key role in the initiation of adaptive immune responses and the purpose of the current study was to assess whether there is a direct role for BLyS in modulating human DC functions. In this study, we show that BLyS induces DC activation and maturation. Thus, BLyS strongly induced up-regulation of surface costimulatory molecule expression and secretion of specific cytokines and chemokines in DCs. BLyS-stimulated DCs (BLyS-DCs) were also able to augment allogeneic CD4 T cell proliferation to a greater extent than control DCs. BLyS-DCs secreted elevated levels of the major Th1-polarizing cytokine, IL-12p70, and they promoted naive CD4 T cell differentiation into Th1 T cells. Regarding BLyS receptor expression, DCs primarily express cytoplasmic transmembrane activator and CAML interactor; however, low levels of cell surface transmembrane activator and CAML interactor are expressed as well. Collectively, our data suggest that BLyS may modulate adaptive immune cells indirectly by inducing DC maturation.
Collapse
Affiliation(s)
- Sook Kyung Chang
- Department of Immunology, College of Medicine, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
25
|
Deshmukh US, Ohyama Y, Bagavant H, Guo X, Gaskin F, Fu SM. Inflammatory stimuli accelerate Sjögren's syndrome-like disease in (NZB x NZW)F1 mice. ACTA ACUST UNITED AC 2008; 58:1318-23. [PMID: 18438852 DOI: 10.1002/art.23368] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study was undertaken to determine whether induction of systemic inflammation accelerates the development of Sjögren's syndrome (SS) in genetically susceptible mice. METHODS Female (NZB x NZW)F1 mice were treated with either Freund's incomplete adjuvant (IFA) or phosphate buffered saline (PBS) at monthly intervals. Salivary gland function was monitored by measuring pilocarpine-induced saliva volume. Mice were killed at different time points and examined for sialadenitis and salivary gland-infiltrating cells. Sera were analyzed for autoantibodies to salivary gland antigens, nuclear antigens, and Ro60. RESULTS While IFA-treated mice had significantly decreased salivary secretion 7 weeks after the initial treatment, salivary secretion did not decrease in PBS-treated controls until 17 weeks. At 7 weeks, the severity of sialadenitis and the number of T and B cells infiltrating the salivary glands did not differ between the 2 groups. However, at this time point IFA-treated mice showed significantly higher frequencies of CD11clow, B220+, Ly6C+, mouse PDCA-1+ dendritic cells (DCs) in the salivary glands. While levels of autoantibodies did not differ between the 2 groups at early time points, by late time points IFA-treated mice had higher levels. The gland dysfunction observed in IFA-treated mice at earlier time points did not correlate with the severity of sialadenitis or levels of autoantibodies. Instead, it was associated with increased frequency of plasmacytoid DCs in the gland. CONCLUSION Our data suggest that generalized inflammatory stimuli can accelerate the development of SS-like disease in (NZB x NZW)F1 mice, and that gland dysfunction in SS can develop prior to the generation of a robust adaptive autoimmune response.
Collapse
|
26
|
Hansen A, Lipsky PE, Dörner T. B cells in Sjögren's syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis Res Ther 2008; 9:218. [PMID: 17697366 PMCID: PMC2206371 DOI: 10.1186/ar2210] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disorder characterized by specific pathological features. A hallmark of pSS is B-cell hyperactivity as manifested by the production of autoantibodies, hypergammaglobulinemia, formation of ectopic lymphoid structures within the inflamed tissues, and enhanced risk of B-cell lymphoma. Changes in the distribution of peripheral B-cell subsets and differences in post-recombination processes of immunoglobulin variable region (IgV) gene usage are also characteristic features of pSS. Comparison of B cells from the peripheral blood and salivary glands of patients with pSS with regard to their expression of the chemokine receptors CXCR4 and CXCR5, and their migratory capacity towards the corresponding ligands, CXCL12 and CXCL13, provide a mechanism for the prominent accumulation of CXCR4+CXCR5+ memory B cells in the inflamed glands. Glandular B cells expressing distinct features of IgV light and heavy chain rearrangements, (re)circulating B cells with increased mutations of cμ transcripts in both CD27- and CD27+ memory B-cell subsets, and enhanced frequencies of individual peripheral B cells containing IgV heavy chain transcripts of multiple isotypes indicate disordered selection and incomplete differentiation processes of B cells in the inflamed tissues in pSS. This may possibly be related to a lack of appropriate censoring mechanisms or different B-cell activation pathways within the ectopic lymphoid structures of the inflamed tissues. These findings add to our understanding of the pathogenesis of this autoimmune inflammatory disorder and may result in new therapeutic approaches.
Collapse
Affiliation(s)
- Arne Hansen
- Charite Centers (CC) 12 and 14, Departments of Medicine and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charité-Platz 01, 10098 Berlin, Germany
| | - Peter E Lipsky
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Thomas Dörner
- Charite Centers (CC) 12 and 14, Departments of Medicine and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charité-Platz 01, 10098 Berlin, Germany
| |
Collapse
|
27
|
Abstract
Sjögren's syndrome is a common autoimmune rheumatic disease. The most common symptoms of Sjögren's syndrome are extreme tiredness, along with dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia). Saliva plays an essential role in numerous functions of the mouth. Xerostomia can be caused by medications, chronic diseases like Sjögren's syndrome, and medical treatments, such as radiation therapy and bone marrow transplant. Xerostomia can eventually lead to difficulty in swallowing, severe and progressive tooth decay, or oral infections. Despite having excellent oral hygiene, individuals with Sjögren's syndrome have elevated levels of dental caries, along with the loss of many teeth, early in the disease. Sjögren's syndrome alters the protein profile and brings about a change in the composition of saliva. There is an increase in the levels of lactoferrin, beta(2)-microglobulin, sodium, lysozyme C, and cystatin C, and a decrease in salivary amylase and carbonic anhydrase. Up to 90% of individuals with Sjögren's syndrome have antibodies targeting the Ro 60 and La autoantigens. Natural aging, regardless of Sjögren's syndrome, is also another factor that brings about a significant change in the composition of saliva. The most prevailing cause of xerostomia in elderly persons is the use of anticholinergic medications. Currently, there is no cure for Sjögren's syndrome, and treatment is mainly palliative.
Collapse
Affiliation(s)
- S A Mathews
- University of Central Oklahoma, Edmond, OK, USA
| | | | | |
Collapse
|
28
|
Abstract
Sjögren's syndrome is an autoimmune, chronic inflammatory disease characterized by focal mononuclear cell infiltration of exocrine tissues, accompanied by loss of secretory function. The pathogenesis of autoimmune diseases is complex and, therefore, difficult to study in vitro. As of today, the role of initiating factors remains obscure, clinical symptoms develop late, and there are no tests for early diagnosis of SS. Hence, the disease is difficult to detect and treat. Animal models may provide insights into the identification of target antigens, narrowing the relevant pathological immune mechanisms, and to study the evolution of tissue pathology. This review summarizes current knowledge on murine strains, both spontaneous and induced models, used to study Sjögren's syndrome. Special attention is paid to the characteristics of different strains regarding their properties to mimic specific aspects or stages of the disease.
Collapse
Affiliation(s)
- Malin V Jonsson
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Armauer Hansen Building, 5021, Bergen, Norway
| | | | | |
Collapse
|