1
|
Rakočević S, Mališ V, Kozić L, Dubovina A, Drakul M, Bokonjić D, Čolić M, Mihajlović D. Dapsone Alters Phenotypical and Functional Properties of Human Neutrophils In Vitro. Molecules 2024; 30:113. [PMID: 39795170 PMCID: PMC11722540 DOI: 10.3390/molecules30010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Dapsone is a sulfone used in treating inflammatory skin conditions. Despite its widespread dermatological use, the pharmacological actions of dapsone remain poorly understood. Here, we examined how different aspects of neutrophil functions are affected by dapsone. Peripheral blood neutrophils from healthy donors were stimulated with phorbol-12-myristate-13-acetate (PMA), N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), or calcium ionophore (CaI) or primed with cytokines prior to stimulation, in the presence of different concentrations of dapsone (from 10 to 50 µg/mL), followed by analyses of their survival, phenotype, and functional properties. We found that dapsone at the concentration of 50 μg/mL induced a significant neutrophil apoptotic rate during 6 h and 18 h, while other concentrations were well tolerated compared to control non-treated cells. However, dapsone significantly decreased the induced oxidative burst of neutrophils at all non-cytotoxic concentrations. Additionally, dapsone showed a dose-dependent suppression of NETosis in activated neutrophils. The production of IL-8 by dapsone-treated neutrophils was decreased under both stimulated (fMLP) and primed (TNF-α/fMLP) conditions. Moreover, dapsone inhibited the expression of CD11b/CD18, CD66, and CD89 and reversed or significantly mitigated the downregulation of CD16, CD32, CD181, CD88, and CD62L on neutrophils after priming and fMLP stimulation. In conclusion, our results indicate the complexity of dapsone actions on neutrophil functions, extending previous knowledge on the suppression of oxidative burst and IL-8 production upon neutrophils' activation. Suppressed NETosis and modulation of marker expression associated with different neutrophil functions under inflammatory conditions are new findings, not recognized previously.
Collapse
Affiliation(s)
- Sara Rakočević
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Vanja Mališ
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Ljiljana Kozić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Anđela Dubovina
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Marija Drakul
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Dejan Bokonjić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
| | - Miodrag Čolić
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
- Serbian Academy of Sciences and Arts, Kneza Mihajla 35, 11000 Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina; (S.R.); (V.M.); (L.K.); (A.D.); (M.D.); (D.B.); (M.Č.)
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Crnotravska 17, 11040 Belgrade, Serbia
| |
Collapse
|
2
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
3
|
Grisolia JC, Santos LA, Dias NA, Malaquias LCC, Burger E. Low-level LASER therapy accelerates fungal lesions cicatrization by increasing the production of Th1 and Th2 cytokines. Photochem Photobiol Sci 2024; 23:1295-1307. [PMID: 38806861 DOI: 10.1007/s43630-024-00595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with serious clinical consequences in which the use of antifungal drugs requires long-term treatment. Therefore, we studied the effect of low-level LASER therapy (LLLT) to evaluate its prospects as a complementary treatment for PCM and improve the clinical response to the disease. OBJECTIVES Our study focused on the resolution of lesions caused by fungal infection using a subcutaneous air pouch model of infection. METHODS We evaluated cell profile and cytokines, fungi viability, and the presence of fibroblasts and fibrocytes at the site of infection. Inoculation of P. brasiliensis (Pb) was performed using a subcutaneous air pouch model and the LLLT irradiation was performed on alternate days on the rear paws of mice for 10 days, after which the cells from the air pouch were collected and analyzed. RESULTS In animals irradiated with LLLT, the influx of cells to the air pouch was reduced, but they were more activated and produced pro-inflammatory (IL-12, IL-17 and TNF-α) and neutrophil (PMN) activating cytokines (IL-8, GM-CSF and γ-IFN). A better resolution of the infection, evidenced by the reduction in the number of viable fungi with preserved morphology in the air pouch, and an increase in the number of fibrocytes, indicating a healing profile were also observed. CONCLUSION LLLT decreased the influx of PMN, but those presents were highly activated, with increased fungicidal activity. LLLT irradiation also resulted in earlier cicatrization at the site of infection, leading to a better outcome of the infection. These data are favorable to the use of LLLT as a complementary therapy in PCM.
Collapse
Affiliation(s)
- Julianne Caravita Grisolia
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brazil.
| | - Lauana Aparecida Santos
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brazil
| | - Nayara Andrade Dias
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brazil
| |
Collapse
|
4
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Silva LOS, Baeza LC, Pigosso LL, Silva KSFE, Pereira M, de Carvalho Júnior MAB, de Almeida Soares CM. The Response of Paracoccidioides lutzii to the Interaction with Human Neutrophils. J Fungi (Basel) 2023; 9:1088. [PMID: 37998893 PMCID: PMC10672145 DOI: 10.3390/jof9111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The fungal pathogen Paracoccidioides lutzii causes systemic mycosis Paracoccidioidomycosis (PCM), which presents a broad distribution in Latin America. Upon infection, the fungus undergoes a morphological transition to yeast cells and provokes an inflammatory granulomatous reaction with a high number of neutrophils in the lungs. In this work, we employed proteomic analysis to investigate the in vitro response of the fungus to the interaction with human neutrophils. Proteomic profiling of P. lutzii yeast cells harvested at 2 and 4 h post interaction with human polymorphonuclear cells allowed the identification of 505 proteins differentially accumulated. The data indicated that P. lutzii yeast cells underwent a shift in metabolism from glycolysis to Beta oxidation, increasing enzymes of the glyoxylate cycle and upregulating enzymes related to the detoxification of oxidative and heat shock stress. To our knowledge, this is the first study employing proteomic analysis in the investigation of the response of a member of the Paracoccidioides genus to the interaction with neutrophils.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Lilian Cristiane Baeza
- Laboratório de Bacteriologia e Micologia Médica, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel 85819-110, PR, Brazil;
| | - Laurine Lacerda Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Kleber Santiago Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| |
Collapse
|
6
|
Wang J, Lu S, Zheng K, He Z, Li W, Liu J, Guo N, Xie Y, Chen D, Xu M, Wu Y. Treponema pallidum delays the apoptosis of human polymorphonuclear neutrophils through the intrinsic and extrinsic pathways. Mol Immunol 2022; 147:157-169. [PMID: 35597181 DOI: 10.1016/j.molimm.2022.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Treponema pallidum is a "stealth pathogen" responsible for infectious sexually transmitted diseases. Although neutrophils are usually present in skin lesions of early syphilis, the role of these cells in T. pallidum infection has barely been investigated. Neutrophils are short-lived cells that undergo constitutive apoptosis, and phagocytosis usually accelerates this process. Here, we demonstrated that human polymorphonuclear neutrophils (hPMNs) could phagocytose T. pallidum in vitro. An unexpected discovery was that T. pallidum inhibited hPMNs apoptosis markedly in an opsonin-independent manner. Furthermore, this phenomenon was not affected by bacterial viability, as detected by annexin V, morphology studies, and TUNEL staining. Exploration of the underlying mechanism showed that expression of the cleaved forms of caspase-3, -8, and -9 and effector caspase activity were diminished significantly in T. pallidum-infected hPMNs. T. pallidum also impaired staurosporine- and anti-Fas-induced signaling for neutrophil apoptosis. Of note, these effects were accompanied by inducing the autocrine production of the anti-apoptotic cytokine IL-8. Taken together, our data revealed that T. pallidum could inhibit the apoptosis of hPMNs through intrinsic and extrinsic pathways and provide new insights for understanding the pathogenicity mechanisms of T. pallidum.
Collapse
Affiliation(s)
- Jianye Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Simin Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Zhangping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jie Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Ningyuan Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yafeng Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China; Department of Clinical Laboratory, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Dejun Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Man Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China.
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Giusiano G. The Trojan Horse Model in Paracoccidioides: A Fantastic Pathway to Survive Infecting Human Cells. Front Cell Infect Microbiol 2021; 10:605679. [PMID: 33680980 PMCID: PMC7928272 DOI: 10.3389/fcimb.2020.605679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most relevant systemic endemic mycosis limited to Latin American countries. The etiological agents are thermally dimorphic species of the genus Paracoccidioides. Infection occurs via respiratory tract by inhalation of propagules from the environmental (saprophytic) phase. In the lung alveoli the fungus converts to the characteristic yeast phase (parasitic) where interact with extracellular matrix proteins, epithelial cells, and the host cellular immunity. The response involves phagocytic cells recognition but intracellular Paracoccidioides have demonstrated the ability to survive and also multiply inside the neutrophils, macrophages, giant cells, and dendritic cells. Persistence of Paracoccidioides as facultative intracellular pathogen is important in terms of the fungal load but also regarding to the possibility to disseminate penetrating other tissues even protected by the phagocytes. This strategy to invade other organs via transmigration of infected phagocytes is called Trojan horse mechanism and it was also described for other fungi and considered a factor of pathogenicity. This mini review comprises a literature revision of the spectrum of tools and mechanisms displayed by Paracoccidioides to overcame phagocytosis, discusses the Trojan horse model and the immunological context in proven models or the possibility that Paracoccidioides apply this tool for dissemination to other tissues.
Collapse
Affiliation(s)
- Gustavo Giusiano
- Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Resistencia, Argentina
| |
Collapse
|
8
|
Zonta YR, Dezen ALO, Della Coletta AM, Yu KST, Carvalho L, Dos Santos LA, Deprá IDC, Kratofil RM, Willson ME, Zbytnuik L, Kubes P, Ximenes VF, Dias-Melicio LA. Paracoccidioides brasiliensis Releases a DNase-Like Protein That Degrades NETs and Allows for Fungal Escape. Front Cell Infect Microbiol 2021; 10:592022. [PMID: 33643928 PMCID: PMC7902888 DOI: 10.3389/fcimb.2020.592022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the Paracoccidioides complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of Paracoccidioides brasiliensis, the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged in vitro with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.
Collapse
Affiliation(s)
- Yohan Ricci Zonta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Laura Ortega Dezen
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Amanda Manoel Della Coletta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Kaio Shu Tsyr Yu
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Larissa Carvalho
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Leandro Alves Dos Santos
- Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Igor de Carvalho Deprá
- Laboratory of Genetic Basis of Endocrinological Diseases, Experimental Research Unity (UNIPEX), Sector 5, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rachel M Kratofil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lori Zbytnuik
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luciane Alarcão Dias-Melicio
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Department of Pathology, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
9
|
Puerta-Arias JD, Mejía SP, González Á. The Role of the Interleukin-17 Axis and Neutrophils in the Pathogenesis of Endemic and Systemic Mycoses. Front Cell Infect Microbiol 2020; 10:595301. [PMID: 33425780 PMCID: PMC7793882 DOI: 10.3389/fcimb.2020.595301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic and endemic mycoses are considered life-threatening respiratory diseases which are caused by a group of dimorphic fungal pathogens belonging to the genera Histoplasma, Coccidioides, Blastomyces, Paracoccidioides, Talaromyces, and the newly described pathogen Emergomyces. T-cell mediated immunity, mainly T helper (Th)1 and Th17 responses, are essential for protection against these dimorphic fungi; thus, IL-17 production is associated with neutrophil and macrophage recruitment at the site of infection accompanied by chemokines and proinflammatory cytokines production, a mechanism that is mediated by some pattern recognition receptors (PRRs), including Dectin-1, Dectine-2, TLRs, Mannose receptor (MR), Galectin-3 and NLPR3, and the adaptor molecules caspase adaptor recruitment domain family member 9 (Card9), and myeloid differentiation factor 88 (MyD88). However, these PRRs play distinctly different roles for each pathogen. Furthermore, neutrophils have been confirmed as a source of IL-17, and different neutrophil subsets and neutrophil extracellular traps (NETs) have also been described as participating in the inflammatory process in these fungal infections. However, both the Th17/IL-17 axis and neutrophils appear to play different roles, being beneficial mediating fungal controls or detrimental promoting disease pathologies depending on the fungal agent. This review will focus on highlighting the role of the IL-17 axis and neutrophils in the main endemic and systemic mycoses: histoplasmosis, coccidioidomycosis, blastomycosis, and paracoccidioidomycosis.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Susana P Mejía
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,Max Planck Tandem Group in Nanobioengineering, Universidad de Antioquia, Medellin, Colombia
| | - Ángel González
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
10
|
Romagnolo AG, de Quaglia E Silva JC, Della Coletta AM, Gardizani TP, Martins ATL, Romagnoli GG, Kaneno R, de Campos Soares AMV, De Faveri J, Dias-Melicio LA. Role of Dectin-1 receptor on cytokine production by human monocytes challenged with Paracoccidioides brasiliensis. Mycoses 2018; 61:222-230. [PMID: 29110339 DOI: 10.1111/myc.12725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022]
Abstract
Fungal recognition by Dectin-1 receptor triggers a series of cellular mechanisms involved in a protective activation of the immune system. In this study, we aimed to evaluate the participation of Dectin-1 receptor in the induction of IL-8, TNF-α, IL-12, IL-10 and IL-17A secretion by human monocytes activated with different cytokines, and challenged in vitro with Paracoccidioides brasiliensis (P. brasiliensis). Our results show that monocytes challenged with P. brasiliensis (Pb265) are able to produce IL-12, IL-8, IL-17, IL-10 and TNF-α. Dectin-1 receptor blockage decreased the IL-12, IL-17, IL-10 and TNF-α levels indicating the participation of such receptor in the induction of these cytokines. Only IL-8 production was not affected by the blockage. Cells activation with different cytokines showed that GM-CSF was able to induce secretion of all cytokines and the receptor blockage prior to the challenge also decreased the cytokine secretion, except IL-8. Monocytes activated with TNF-α promoted IL-8, IL-10 and TNF-α production, whereas stimulation with IFN-γ promoted mainly IL-12 and TNF-α. Thus, these findings bring new and important knowledge about Dectin-1 participation in cytokines production by monocytes challenged with Pb265.
Collapse
Affiliation(s)
- Alexandre Giannecchini Romagnolo
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Juliana Carvalho de Quaglia E Silva
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Amanda Manoel Della Coletta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Taiane Priscila Gardizani
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Teresa Loyola Martins
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Graziela Gorete Romagnoli
- Department of Microbiology and Immunology, Institute of Biosciences (IB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences (IB), São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Julio De Faveri
- Department of Pathology, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Luciane Alarcão Dias-Melicio
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil.,Department of Pathology, Medical School of Botucatu (FMB), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
11
|
Miralda I, Uriarte SM, McLeish KR. Multiple Phenotypic Changes Define Neutrophil Priming. Front Cell Infect Microbiol 2017; 7:217. [PMID: 28611952 PMCID: PMC5447094 DOI: 10.3389/fcimb.2017.00217] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States
| | - Silvia M Uriarte
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States.,Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States.,Robley Rex VA Medical CenterLouisville, KY, United States
| |
Collapse
|
12
|
Kinkead LC, Fayram DC, Allen LAH. Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J Leukoc Biol 2017; 102:815-828. [PMID: 28550119 DOI: 10.1189/jlb.4ma0117-014r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023] Open
Abstract
Francisella novicida is a Gram-negative bacterium that is closely related to the highly virulent facultative intracellular pathogen, Francisella tularensis Data published by us and others demonstrate that F. tularensis virulence correlates directly with its ability to impair constitutive apoptosis and extend human neutrophil lifespan. In contrast, F. novicida is attenuated in humans, and the mechanisms that account for this are incompletely defined. Our published data demonstrate that F. novicida binds natural IgG that is present in normal human serum, which in turn, elicits NADPH oxidase activation that does not occur in response to F. tularensis As it is established that phagocytosis and oxidant production markedly accelerate neutrophil death, we predicted that F. novicida may influence the neutrophil lifespan in an opsonin-dependent manner. To test this hypothesis, we quantified bacterial uptake, phosphatidylserine (PS) externalization, and changes in nuclear morphology, as well as the kinetics of procaspase-3, -8, and -9 processing and activation. To our surprise, we discovered that F. novicida not only failed to accelerate neutrophil death but also diminished and delayed apoptosis in a dose-dependent, but opsonin-independent, manner. In keeping with this, studies of conditioned media (CM) showed that neutrophil longevity could be uncoupled from phagocytosis and that F. novicida stimulated neutrophil secretion of CXCL8. Taken together, the results of this study reveal shared and unique aspects of the mechanisms used by Francisella species to manipulate neutrophil lifespan and as such, advance understanding of cell death regulation during infection.
Collapse
Affiliation(s)
- Lauren C Kinkead
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA
| | - Drew C Fayram
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA; .,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; and
| |
Collapse
|
13
|
Puerta-Arias JD, Pino-Tamayo PA, Arango JC, González Á. Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis. PLoS One 2016; 11:e0163985. [PMID: 27690127 PMCID: PMC5045199 DOI: 10.1371/journal.pone.0163985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic stages of paracoccidioidomycosis (PCM) are characterized by granulomatous lesions which promote the development of pulmonary fibrosis leading to the loss of respiratory function in 50% of patients; in addition, it has been observed that neutrophils predominate during these chronic stages of P. brasiliensis infection. The goal of this study was to evaluate the role of the neutrophil during the chronic stages of experimental pulmonary PCM and during the fibrosis development and tissue repair using a monoclonal specific to this phagocytic cell. Male BALB/c mice were inoculated intranasally with 1.5x106 P. brasiliensis yeast cells. A monoclonal antibody specific to neutrophils was administered at 4 weeks post-inoculation followed by doses every 48h during two weeks. Mice were sacrificed at 8 and 12 weeks post-inoculation to assess cellularity, fungal load, cytokine/chemokine levels, histopathological analysis, collagen and expression of genes related to fibrosis development. Depletion of neutrophils was associated with a significant decrease in the number of eosinophils, dendritic cells, B cells, CD4-T cells, MDSCs and Treg cells, fungal load and levels of most of the pro-inflammatory cytokines/chemokines evaluated, including IL-17, TNF-α and TGF-β1. Recovery of lung architecture was also associated with reduced levels of collagen, high expression of TGF-β3, matrix metalloproteinase (MMP)-12 and -14, and decreased expression of tissue inhibitor metalloproteinase (TIMP)-2, and MMP-8. Depletion of neutrophils might attenuate lung fibrosis and inflammation through down-regulating TGF-β1, TNF-α, IL-17, MMP-8 and TIMP-2. These results suggest that neutrophil could be considered as a therapeutic target in pulmonary fibrosis induced by P. brasiliensis.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Julián Camilo Arango
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Ángel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
14
|
Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide. PLoS Pathog 2015; 11:e1004853. [PMID: 25946018 PMCID: PMC4422582 DOI: 10.1371/journal.ppat.1004853] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/03/2015] [Indexed: 01/18/2023] Open
Abstract
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. The absence of obvious clinical symptoms during the early stages of brucellosis is linked to the Brucella stealthy strategy and its non-canonical PAMPs, which are low PRRs agonists. Still, there are clinical profiles that require explanation. For instance ‒despite the fact that neutrophils readily ingest Brucella during the onset of infection, brucellosis courses without neutrophilia, and just a low number of infected neutrophils are present in target organs. In the chronic phases, a significant proportion of the patients display absolute neutropenia and bone marrow pancytopenia linked to the myeloid cell linage. Examination of the Brucella infected bone marrow reveals granulomas and phagocytosis of myeloid cells. Based on these observations we explored the fate of native neutrophils during their interaction with Brucella. We found that the bacterium induces the premature cell death of neutrophils without inducing proinflammatory phenotypic changes. This event was reproduced by the lipid A of the Brucella LPS and depends on NADPH-oxidase activation and low ROS formation. We believe that this phenomenon explains ‒at least in part‒ the hematological and histological profiles observed during brucellosis. In addition, it may be that dying Brucella-infected neutrophils serve as “Trojan horse” vehicles for infecting phagocytic cells without promoting activation.
Collapse
Affiliation(s)
- Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Juana L. de Diego
- Department of Cell Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Andre G. Buret
- Biological Sciences, Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail: (JPG); (EM)
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail: (JPG); (EM)
| |
Collapse
|
15
|
Mansano ESB, de Morais GR, Moratto EM, Sato F, Medina Neto A, Svidzinski TIE, Baesso ML, Hernandes L. Correlation between histopathological and FT-Raman spectroscopy analysis of the liver of Swiss mice infected with Paracoccidioides brasiliensis. PLoS One 2014; 9:e106256. [PMID: 25181524 PMCID: PMC4152158 DOI: 10.1371/journal.pone.0106256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022] Open
Abstract
Paracoccidioidomycosis is the most important systemic mycosis in Latin America. The main entrance of the fungus is the airway. It primarily occurs in the lung, but in its disseminated form may affect any organ. The liver is one of the organs afflicted by this disease and its homeostasis may be impaired. The aim of the present study was to evaluate the evolution of paracoccidioidomycosis in the liver of Swiss mice and correlate morphological factors with the expression of gp43 and with physicochemical analysis via FT-Raman of the infected organ. According to colony forming unit (CFU) and granuloma counting, the first and second weeks were the periods when infection was most severe. Tissue response was characterized by the development of organized granulomas and widespread infection, with yeasts located within the macrophages and isolated hepatocytes. The gp43 molecule was distributed throughout the hepatic parenchyma, and immunostaining was constant in all observed periods. The main physicochemical changes of the infected liver were observed in the spectral ranges between 1700-1530 cm(-1) and 1370-1290 cm(-1), a peak shifting center attributed to phenylalanine and area variation of -CH2 and -CH3 compounds associated to collagen, respectively. Over time, there was a direct proportional relationship between the number of CFUs, the number of granulomas and the physicochemical changes in the liver of mice infected with Paracoccidioides brasiliensis. The expression of gp43 was similar in all observed periods.
Collapse
Affiliation(s)
| | | | | | - Francielle Sato
- Department of Physics, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Antonio Medina Neto
- Department of Physics, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Mauro Luciano Baesso
- Department of Physics, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
16
|
McCracken JM, Allen LAH. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death 2014; 7:15-23. [PMID: 25278783 PMCID: PMC4167320 DOI: 10.4137/jcd.s11038] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are the most abundant white blood cells in humans and play a central role in innate host defense. Another distinguishing feature of PMNs is their short lifespan. Specifically, these cells survive for less than 24 hours in the bloodstream and are inherently pre-programed to die by constitutive apoptosis. Recent data indicate that this process is regulated by intracellular signaling and changes in gene expression that define an “apoptosis differentiation program.” Infection typically accelerates neutrophil turnover, and as such, phagocytosis-induced cell death (PICD) and subsequent clearance of the corpses by macrophages are essential for control of infection and resolution of the inflammatory response. Herein we reprise recent advances in our understanding of the molecular mechanisms of neutrophil apoptosis with a focus on regulatory factors and pathway intermediates that are specific to this cell type. In addition, we summarize mechanisms whereby perturbation of PMN death contributes directly to the pathogenesis of many infectious and inflammatory disease states.
Collapse
Affiliation(s)
- Jenna M McCracken
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA. ; Department of Medicine, University of Iowa, Iowa City, IA, USA. ; Veteran's Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
17
|
Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, Latgé JP, Elbim C. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5332-42. [PMID: 24790151 DOI: 10.4049/jimmunol.1303180] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis. In this study, we show that PMN apoptosis occurs via a new NK cell-dependent mechanism. Reactive oxygen species, induced by the presence of GG, play an indispensable role in this apoptotic effect by increasing MHC class I chain-related molecule A expression at the PMN surface. This increased expression enables interaction between MHC class I chain-related molecule A and NKG2D, leading to NK cell activation, which in turn generates a Fas-dependent apoptosis-promoting signal in PMNs. Taken together, our results demonstrate that the crosstalk between PMNs and NK cells is essential to GG-induced PMN apoptosis. NK cells might thus play a role in the induction of PMN apoptosis in situations such as unexplained neutropenia or autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Robinet
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Florence Baychelier
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | | | - Capucine Picard
- Centre D'étude des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, L'hôpital Necker - Enfants Malades, 75743 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, 75015 Paris, France; and
| | - Patrice Debré
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France; Département d'Immunologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vincent Vieillard
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Carole Elbim
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France;
| |
Collapse
|
18
|
Wu CX, Liu Y, Zhang JC. Chronic intermittent hypoxia and hypertension: A review of systemic inflammation and Chinese Medicine. Chin J Integr Med 2013; 19:394-400. [DOI: 10.1007/s11655-013-1459-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Indexed: 01/14/2023]
|
19
|
Gabelloni ML, Trevani AS, Sabatté J, Geffner J. Mechanisms regulating neutrophil survival and cell death. Semin Immunopathol 2013; 35:423-37. [PMID: 23370701 DOI: 10.1007/s00281-013-0364-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/17/2013] [Indexed: 12/19/2022]
Abstract
Neutrophils not only play a critical role as a first line of defense against bacteria and fungi infections but also contribute to tissue injury associated with autoimmune and inflammatory diseases. Neutrophils are rapidly and massively recruited from the circulation into injured tissues displaying an impressive arsenal of toxic weapons. Although effective in their ability to kill pathogens, these weapons were equally effective to induce tissue damage. Therefore, the inflammatory activity of neutrophils must be regulated with exquisite precision and timing, a task mainly achieved through a complex network of mechanisms, which regulate neutrophil survival. Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis although new forms of cell death have been characterized over the last few years. The lifespan of neutrophils can be dramatically modulated by a large variety of agents such as cytokines, pathogens, danger-associated molecular patterns as well as by pharmacological manipulation. Recent findings shed light about the complex mechanisms responsible for the regulation of neutrophil survival in different physiological, pathological, and pharmacological scenarios. Here, we provide an updated review on the current knowledge and new findings in this field and discuss novel strategies that could be used to drive the resolution of neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- María Laura Gabelloni
- Instituto de Medicina Experimental IMEX, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Abreu e Silva MÀD, Salum FG, Figueiredo MA, Cherubini K. Important aspects of oral paracoccidioidomycosis--a literature review. Mycoses 2012; 56:189-99. [PMID: 23088400 DOI: 10.1111/myc.12017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paracoccidioidomycosis is a deep mycosis endemic to Latin America, with considerable morbidity and mortality. It is caused by the dimorphic fungus Paracoccidioides brasiliensis, which affects, among other organs in the human body, the oral cavity. Fungus virulence and immunocompetence of the host determine the establishment of infection or active disease, whose severity and clinical behaviour depend mostly on the cellular immune response of the host. Often, oral lesions constitute the first sign and site of confirmation of diagnosis, which in most cases is delayed. The success of the treatment depends on early and correct diagnosis, as well as on the patient's adherence to the drug therapy.
Collapse
|
21
|
Fortes MRP, Miot HA, Kurokawa CS, Marques MEA, Marques SA. Immunology of paracoccidioidomycosis. An Bras Dermatol 2012; 86:516-24. [PMID: 21738969 DOI: 10.1590/s0365-05962011000300014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America, among immunecompetent patients. It's caused by the dimorphic fungus Paracoccidioiddes brasiliensis. Investigations regarding its immunopathogenesis are very important in the understanding of aspects related to natural history, as the protective immunity, and the relationship between host and parasite; also favoring the knowledge about clinical patterns and the elaboration of therapeutic strategies. The disease clinical polymorphism depends, at least, of the immune response profile according to the tissue and blood released citokynes, resulting in tissue damage.
Collapse
|
22
|
Seider K, Heyken A, Lüttich A, Miramón P, Hube B. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 2010; 13:392-400. [PMID: 20627672 DOI: 10.1016/j.mib.2010.05.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.
Collapse
Affiliation(s)
- Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena (HKI), Jena, Germany
| | | | | | | | | |
Collapse
|
23
|
Acorci-Valério MJ, Bordon-Graciani AP, Dias-Melicio LA, de Assis Golim M, Nakaira-Takahagi E, de Campos Soares ÂMV. Role of TLR2 and TLR4 in Human Neutrophil Functions AgainstParacoccidioides brasiliensis. Scand J Immunol 2010; 71:99-108. [DOI: 10.1111/j.1365-3083.2009.02351.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect Immun 2009; 77:5216-24. [PMID: 19805528 DOI: 10.1128/iai.00723-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human polymorphonuclear neutrophils (PMNs) play a major role in the immune defense against invasive Candida albicans infection. This fungal pathogen produces a set of aspartic proteases that directly contributes to virulence properties such as adhesion, tissue invasion, and immune evasion. We show here that, in contrast to other secreted proteases, the cell surface-associated isoform Sap9 has a major impact on the recognition of C. albicans by PMNs. SAP9 is required for the induction of PMN chemotaxis toward C. albicans filaments, an essential prerequisite of effective PMN activation. Furthermore, deletion of SAP9 leads to a mitigated release of reactive oxygen intermediates (ROI) in human PMNs and decreases C. albicans-induced apoptosis triggered by ROI formation. In confrontation assays, killing of a SAP9 deletion mutant is reduced in comparison to wild-type C. albicans. These data clearly implicate Sap9 protease activity in the initiation of protective innate immunity and suggest novel molecular mechanisms in C. albicans-host interaction leading to neutrophil activation.
Collapse
|