1
|
Alaniz-Fabián J, Xiang D, Del Toro-De León G, Gao P, Abreu-Goodger C, Datla R, Gillmor CS. A maternal transcriptome bias in early Arabidopsis embryogenesis. Development 2025; 152:dev204449. [PMID: 40067256 DOI: 10.1242/dev.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
After fertilization in animals, maternal mRNAs and proteins regulate development until the onset of zygotic transcription. In plants, the extent of maternal regulation of early embryo development has been less clear: two hybrid combinations of rice zygotes have a strong maternal transcript bias, zygotes of a third rice hybrid produced by gamete fusion show a small percentage of maternally biased genes, while Arabidopsis Col/Cvi and Col/Ler hybrid embryos display symmetric and asymmetric parental genome activation, respectively. Here, we explore parent-of-origin transcriptome behavior in the Arabidopsis Col/Tsu hybrid, which was previously shown to display maternal effects for embryo defective mutants indistinguishable from those of the reference ecotype, Col. Analysis of Col/Tsu transcriptomes revealed a reciprocal maternal bias in thousands of genes in zygotes and octant stage embryos. Several lines of evidence suggest that this transient maternal bias is due to preferential transcription of maternal alleles in the zygote, rather than inheritance of transcripts from the egg. Our results extend previous observations that parent-of-origin contributions to early embryogenesis differ between hybrids of Arabidopsis, show that the maternal genome plays a predominant role in early embryos of Col/Tsu, and point to a maternal transcriptome bias in early embryos of the Arabidopsis reference ecotype Columbia.
Collapse
Affiliation(s)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | - Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
2
|
Ji Y, Hewavithana T, Sharpe AG, Jin L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1393140. [PMID: 39100085 PMCID: PMC11295249 DOI: 10.3389/fpls.2024.1393140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
The Poaceae family, commonly known as the grass family, encompasses a diverse group of crops that play an essential role in providing food, fodder, biofuels, environmental conservation, and cultural value for both human and environmental well-being. Crops in Poaceae family are deeply intertwined with human societies, economies, and ecosystems, making it one of the most significant plant families in the world. As the major reservoirs of essential nutrients, seed grain of these crops has garnered substantial attention from researchers. Understanding the molecular and genetic processes that controls seed formation, development and maturation can provide insights for improving crop yield, nutritional quality, and stress tolerance. The diversity in photosynthetic pathways between C3 and C4 plants introduces intriguing variations in their physiological and biochemical processes, potentially affecting seed development. In this review, we explore recent studies performed with omics technologies, such as genomics, transcriptomics, proteomics and metabolomics that shed light on the mechanisms underlying seed development in wheat and maize, as representatives of C3 and C4 plants respectively, providing insights into their unique adaptations and strategies for reproductive success.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thulani Hewavithana
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
5
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
6
|
Kumarswamyreddy N, Nakagawa A, Endo H, Shimotohno A, Torii KU, Bode JW, Oishi S. Chemical synthesis of the EPF-family of plant cysteine-rich proteins and late-stage dye attachment by chemoselective amide-forming ligations. RSC Chem Biol 2022; 3:1422-1431. [PMID: 36544577 PMCID: PMC9709926 DOI: 10.1039/d2cb00155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation. The chemically synthesized EPFs exhibit bioactivity on stomatal development in Arabidopsis thaliana. Comprehensive synthesis of EPF derivatives allowed us to identify suitable fluorescent variants for bioimaging of the subcellar localization of EPFs.
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry, Indian Institute of Technology TirupatiTirupati517619Andhra PradeshIndia
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Akie Shimotohno
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at AustinAustinTX 78712USA
| | - Jeffrey W. Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan,Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityChikusa Nagoya 464-8602Japan
| |
Collapse
|
7
|
Alaniz-Fabián J, Orozco-Nieto A, Abreu-Goodger C, Gillmor CS. Hybridization alters maternal and paternal genome contributions to early plant embryogenesis. Development 2022; 149:281772. [PMID: 36314727 DOI: 10.1242/dev.201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
After fertilization, zygotic genome activation results in a transcriptionally competent embryo. Hybrid transcriptome experiments in Arabidopsis have concluded that the maternal and paternal genomes make equal contributions to zygotes and embryos, yet embryo defective (emb) mutants in the Columbia (Col) ecotype display early maternal effects. Here, we show that hybridization of Col with Landsberg erecta (Ler) or Cape Verde Islands (Cvi) ecotypes decreases the maternal effects of emb mutants. Reanalysis of Col/Ler and Col/Cvi transcriptomes confirmed equal parental contributions in Col/Cvi early embryos. By contrast, thousands of genes in Col/Ler zygotes and one-cell embryos were biallelic in one cross and monoallelic in the reciprocal cross, with analysis of intron reads pointing to active transcription as responsible for this parent-of-origin bias. Our analysis shows that, contrary to previous conclusions, the maternal and paternal genomes in Col/Ler zygotes are activated in an asymmetric manner. The decrease in maternal effects in hybrid embryos compared with those in isogenic Col along with differences in genome activation between Col/Cvi and Col/Ler suggest that neither of these hybrids accurately reflects the general trends of parent-of-origin regulation in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Jaime Alaniz-Fabián
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Axel Orozco-Nieto
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - C Stewart Gillmor
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| |
Collapse
|
8
|
Toda E, Kiba T, Kato N, Okamoto T. Isolation of gametes and zygotes from Setaria viridis. JOURNAL OF PLANT RESEARCH 2022; 135:627-633. [PMID: 35534650 DOI: 10.1007/s10265-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Setaria viridis, the wild ancestor of foxtail millet (Setaria italica), is an effective model plant for larger C4 crops because S. viridis has several desirable traits, such as short generation time, prolific seed production and a small genome size. These advantages are well suited for investigating molecular mechanisms in angiosperms, especially C4 crop species. Here, we report a procedure for isolating gametes and zygotes from S. viridis flowers. To isolate egg cells, ovaries were harvested from unpollinated mature flowers and cut transversely, which allowed direct access to the embryo sac. Thereafter, an egg cell was released from the cut end of the basal portion of the dissected ovary. To isolate sperm cells, pollen grains released from anthers were immersed in a mannitol solution, resulting in pollen-grain bursting, which released sperm cells. Additionally, S. viridis zygotes were successfully isolated from freshly pollinated flowers. Isolated zygotes cultured in a liquid medium developed into globular-like embryos and cell masses. Thus, isolated S. viridis gametes, zygotes and embryos are attainable for detailed observations and investigations of fertilization and developmental events in angiosperms.
Collapse
Affiliation(s)
- Erika Toda
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan.
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Norio Kato
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
9
|
Plant egg cell fate determination depends on its exact position in female gametophyte. Proc Natl Acad Sci U S A 2021; 118:2017488118. [PMID: 33597298 DOI: 10.1073/pnas.2017488118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question. In this report, we show that the final position of the nuclei in female gametophyte determines the cell fate of the egg apparatus. We established a live imaging system to visualize the dynamics of nuclear positioning and cell identity establishment in the female gametophyte. We observed that free nuclei should migrate to a specific position before egg apparatus specialization. Artificial changing in the nuclear position on disturbance of the actin cytoskeleton, either in vitro or in vivo, could reset the cell fate of the egg apparatus. We also found that nuclei of the same origin moved to different positions and then showed different cell identities, whereas nuclei of different origins moved to the same position showed the same cell identity, indicating that the final positions of the nuclei, rather than specific nucleus lineage, play critical roles in the egg apparatus specification. Furthermore, the active auxin level was higher in the egg cell than in synergid cells. Auxin transport inhibitor could decrease the auxin level in egg cells and impair egg cell identity, suggesting that directional and accurate auxin distribution likely acts as a positional cue for egg apparatus specialization.
Collapse
|
10
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
11
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Toda E, Okamoto T. Gene Expression and Genome Editing Systems by Direct Delivery of Macromolecules Into Rice Egg Cells and Zygotes. Bio Protoc 2020; 10:e3681. [PMID: 33659352 PMCID: PMC7842353 DOI: 10.21769/bioprotoc.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/02/2022] Open
Abstract
Polyethylene glycol calcium (PEG-Ca2+)-mediated transfection allows rapid and efficient examination to analyze diverse cellular functions of genes of interest. In plant cells, macromolecules, such as DNA, RNA and protein, are delivered into protoplasts derived from somatic tissues or calli via PEG-Ca2+ transfection. To broaden and develop the scope of investigations using plant gametes and zygotes, a procedure for direct delivery of macromolecules into these cells has recently been established using PEG-Ca2+ transfection. This PEG-Ca2+-mediated delivery into rice egg cells/zygotes consists of four microtechniques, (i) isolation of gametes, (ii) production of zygotes by electrofusion of gametes, (iii) PEG-Ca2+-mediated delivery of macromolecules into isolated egg cells or produced zygotes, and (iv) culture and subsequent analyses of the transfected egg cells/zygotes. Because the full protocol for microtechniques (i) and (ii) have already been reported in Toda et al., 2016 , microtechniques (iii) and (iv) are mainly described in this protocol.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
13
|
Abstract
The isolation of male and female gametes is an effective method to study the fertilization mechanisms of higher plants. An osmotic shock method was used to rupture pollen grains of Allium tuberosum Roxb and release the pollen contents, including generative cells, which were mass collected. The pollinated styles were cut following 3 h of in vivo growth, and cultured in medium for 6-8 h, during which time pollen tubes grew out of the cut end of the style. After pollen tubes were transferred into a solution containing 6% mannitol, tubes burst and released pairs of sperm cells. Ovules of A. tuberosum were incubated in an enzyme solution for 30 min, and then dissected to remove the integuments. Following transfer to a dissecting solution free of enzymes, each nucellus was cut in the middle, and squeezed gently on the micropylar end, resulting in the liberation of the egg, zygote and proembryo from ovules at selected stages. These cells can be used to explore fertilization and embryonic development using molecular biological methods for each cell type and development stage.
Collapse
|
14
|
Sprunck S. Twice the fun, double the trouble: gamete interactions in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:106-116. [PMID: 31841779 DOI: 10.1016/j.pbi.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 05/13/2023]
Abstract
During sexual reproduction two gametes of opposite sex unite to produce a zygote. Gamete fusion is a highly controlled process and it has become evident that, across species, common concepts apply to this ancient and fundamental event. Sexual reproduction in flowering plants is even more complex in that two sperm cells fertilize two female reproductive cells (egg and central cell) in a process called double fertilization. Due to the coordinated developmental progression and mutual dependency of the two fertilization products (embryo and endosperm), the success and timing of the two fusion events substantially affects seed set. So far, four proteins are known to act on the surfaces of Arabidopsis gametes to accomplish double fertilization. The molecular and evolutionary characteristics of these players prove that flowering plants integrate plant-specific and widely conserved mechanisms to accomplish the timely fusion of each sperm cell with one female reproductive cell.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Zlobin NE, Lebedeva MV, Taranov VV. CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020; 40:153-168. [PMID: 31903793 DOI: 10.1080/07388551.2019.1709795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the application of CRISPR/Cas9 plant genome editing using alternative transformation methods is discussed. Genome editing by the CRISPR/Cas9 system is usually implemented via the generation of transgenic plants carrying Cas9 and sgRNA genes in the genome. Transgenic plants are usually developed by in vitro regeneration from single transformed cells, which requires using different in vitro culture-based methods. Despite their common application, these methods have some disadvantages and limitations. Thus, some methods of plant transformation that do not depend on in vitro regeneration have been developed. These methods are known as "in planta" transformation. The main focus of this review is the so-called floral dip in planta transformation method, although other approaches are also described. The main features of in planta transformation in the context of CRISPR/Cas9 genome editing are discussed. Furthermore, multiple ways to increase the effectiveness of this approach and to broaden its use in different plant species are considered.
Collapse
Affiliation(s)
- Nikolay E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| |
Collapse
|
16
|
Abstract
Zygotic embryogenesis is one of key processes for fertile seed development and therefore has gained great attention for decades in the field of plant developmental biology. However, this process is deeply embedded in the maternal tissues. The inaccessibility of tiny early embryos has greatly hindered the study of early embryogenesis, especially limits direct observation and accurate omics investigations. In order to investigate the molecular mechanism regulating embryo development with modern technologies, it is necessary to develop a reliable method to isolate living embryos at different stages. For this purpose, plant scientists have been trying to develop different methods for isolating zygotes and early embryos in different plants such as maize, wheat, rice, and tobacco during past decades. Nicotiana tabacum has long been considered as an ideal model eudicot for the study of embryogenesis, which displays a traceable and predictable cell division pattern, spanning from the first zygotic division to the mature embryo formation. Here, we provide a detailed protocol for isolating living embryos from zygote to cotyledon embryo. Isolated living zygotes and early embryos could be used for several important studies such as cell type-specific transcriptome construction and clear GFP observation.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Xuemei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Kao P, Nodine MD. Transcriptional Activation of Arabidopsis Zygotes Is Required for Initial Cell Divisions. Sci Rep 2019; 9:17159. [PMID: 31748673 PMCID: PMC6868190 DOI: 10.1038/s41598-019-53704-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022] Open
Abstract
Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
18
|
Vasantrao JM, Baruah IK, Panda D, Bhattacharjee M, Acharjee S, Sarmah BK. Transcript profiling of chickpea pod wall revealed the expression of floral homeotic gene AGAMOUS-like X2 (CaAGLX2). Mol Biol Rep 2019; 46:5713-5722. [PMID: 31463640 DOI: 10.1007/s11033-019-05005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022]
Abstract
The differentially expressed genes in the chickpea pod wall have been identified for the first time using a forward suppression subtractive hybridization (SSH) library. In all, 226 clones of SSH library were sequenced and analyzed. A total of 179 high-quality expressed sequence tags (ESTs) were generated and based on the CAP3 assembly of these ESTs, 126 genes (97 singletons and 29 contigs) were computationally annotated. The mapping of 88.26% ESTs by gene ontology (GO) annotation distributed them into 751 GO terms of three categories, cellular location, molecular function, and biological process. The KEGG pathway analysis revealed 45 ESTs are involved in 49 different biological pathways. Also, 67 ESTs encodes four different classes of enzymes such as oxidoreductases (29), transferase (20), hydrolases (16) and isomerase (2). Six genes were selected and subjected to qPCR analysis, of these, two genes (FHG Floral homeotic AGAMOUS-like isoform X2, MADS1 MADS-box transcription factor) showed significant up-regulation in the pod wall compared to leaves. Surprisingly, one of the MADS1 box gene, FHG (CaAGLX2), responsible for flower development expressed in the pod wall. Therefore, understanding its specific role in the pod wall could be interesting. Thus, the transcript dynamics of the chickpea pod wall revealed differentially expressed genes in the pod wall, which may be participating in the metabolic build-up of both pod wall and seeds.
Collapse
Affiliation(s)
- Jagadale Mahesh Vasantrao
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
- Office of the ICAR-National Professor (Norman Borlaug Chair), and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Indrani K Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
- Office of the ICAR-National Professor (Norman Borlaug Chair), and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Mamta Bhattacharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
- Office of the ICAR-National Professor (Norman Borlaug Chair), and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair), and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut K Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair), and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
19
|
Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S. Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. PLANT REPRODUCTION 2019; 32:15-27. [PMID: 30707279 DOI: 10.1007/s00497-019-00361-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 05/27/2023]
Abstract
A protocol for the isolation of egg apparatus cells from the basal angiosperm Amborella trichopoda to generate RNA-seq data for evolutionary studies of fertilization-associated genes. Sexual reproduction is particularly complex in flowering plants (angiosperms). Studies in eudicot and monocot model species have significantly contributed to our knowledge on cell fate specification of gametophytic cells and on the numerous cellular communication events necessary to deliver the two sperm cells into the embryo sac and to accomplish double fertilization. However, for a deeper understanding of the evolution of these processes, morphological, genomic and gene expression studies in extant basal angiosperms are inevitable. The basal angiosperm Amborella trichopoda is of special importance for evolutionary studies, as it is likely sister to all other living angiosperms. Here, we report about a method to isolate Amborella egg apparatus cells and on genome-wide gene expression profiles in these cells. Our transcriptomics data revealed Amborella-specific genes and genes conserved in eudicots and monocots. Gene products include secreted proteins, such as small cysteine-rich proteins previously reported to act as extracellular signaling molecules with important roles during double fertilization. The detection of transcripts encoding EGG CELL 1 (EC1) and related prolamin-like family proteins in Amborella egg cells demonstrates the potential of the generated data set to study conserved molecular mechanisms and the evolution of fertilization-related genes and their encoded proteins.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Louvain, Belgium
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Charles P Scutt
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Université de Lyon, Lyon, France
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
20
|
Armenta-Medina A, Gillmor CS. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Curr Top Dev Biol 2019; 131:497-543. [DOI: 10.1016/bs.ctdb.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
22
|
Toda E, Ohnishi Y, Okamoto T. An imbalanced parental genome ratio affects the development of rice zygotes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2609-2619. [PMID: 29538694 PMCID: PMC5920335 DOI: 10.1093/jxb/ery094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 05/25/2023]
Abstract
Upon double fertilization, one sperm cell fuses with the egg cell to form a zygote with a 1:1 maternal-to-paternal genome ratio (1m:1p), and another sperm cell fuses with the central cell to form a triploid primary endosperm cell with a 2m:1p ratio, resulting in formation of the embryo and the endosperm, respectively. The endosperm is known to be considerably sensitive to the ratio of the parental genomes. However, the effect of an imbalance of the parental genomes on zygotic development and embryogenesis has not been well studied, because it is difficult to reproduce the parental genome-imbalanced situation in zygotes and to monitor the developmental profile of zygotes without external effects from the endosperm. In this study, we produced polyploid zygotes with an imbalanced parental genome ratio by electro-fusion of isolated rice gametes and observed their developmental profiles. Polyploid zygotes with an excess maternal gamete/genome developed normally, whereas approximately half to three-quarters of polyploid zygotes with a paternal excess showed developmental arrests. These results indicate that paternal and maternal genomes synergistically serve zygote development with distinct functions, and that genes with monoallelic expression play important roles during zygotic development and embryogenesis.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, Japan
- Plant Breeding Innovation Laboratory, RIKEN Innovation Center, Tsurumi-ku, Yokohama, Japan
| | - Yukinosuke Ohnishi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, Japan
| |
Collapse
|
23
|
Okada T, Jayasinghe JEARM, Nansamba M, Baes M, Warner P, Kouidri A, Correia D, Nguyen V, Whitford R, Baumann U. Unfertilized ovary pushes wheat flower open for cross-pollination. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:399-412. [PMID: 29202197 PMCID: PMC5853862 DOI: 10.1093/jxb/erx410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/27/2017] [Indexed: 05/06/2023]
Abstract
Bread wheat is strongly autogamous; however, an opportunity for outcrossing occurs when self-pollination fails and florets open. The first phase of floret opening at anthesis is short and induced by lodicule turgidity. Some wheat florets re-open post-anthesis for several days, known as the 'second opening', for which the underlying mechanisms are largely unknown. We performed detailed physiological, anatomical, and histological investigations to understand the biological basis of the flower opening process. Wheat florets were observed open when the ovary was unfertilized. Unfertilized ovaries significantly increased in radial size post-anthesis, pushing the lemma and palea apart to open the florets. The absence of fertile pollen was not directly linked to this, but anther filament elongation coincided with initiation of ovary swelling. The pericarp of unfertilized ovaries did not undergo degeneration as normally seen in developing grains, instead pericarp cells remained intact and enlarged, leading to increased ovary radial size. This is a novel role for the ovary pericarp in wheat flower opening, and the knowledge is useful for facilitating cross-pollination in hybrid breeding. Ovary swelling may represent a survival mechanism in autogamous cereals such as wheat and barley, ensuring seed set in the absence of self-fertilization and increasing genetic diversity through cross-pollination.
Collapse
Affiliation(s)
- Takashi Okada
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
- Correspondence:
| | - J E A Ridma M Jayasinghe
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Moureen Nansamba
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Mathieu Baes
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Patricia Warner
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Allan Kouidri
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - David Correia
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Vy Nguyen
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Plant Genomics Centre, Hartley Grove, Urrbrae, SA, Australia
| |
Collapse
|
24
|
Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf. Int J Mol Sci 2017; 18:ijms18122722. [PMID: 29244752 PMCID: PMC5751323 DOI: 10.3390/ijms18122722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023] Open
Abstract
Black rice (Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.
Collapse
|
25
|
Koiso N, Toda E, Ichikawa M, Kato N, Okamoto T. Development of gene expression system in egg cells and zygotes isolated from rice and maize. PLANT DIRECT 2017; 1:e00010. [PMID: 31245659 PMCID: PMC6508540 DOI: 10.1002/pld3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 05/25/2023]
Abstract
Polyethylene glycol calcium (PEG-Ca2+) transfection-mediated analysis allows rapid and efficient examination of gene function. To investigate the diverse cellular functions of genes of interest in plant cells, macromolecules, such as DNA, RNA, and proteins, are delivered into protoplasts prepared from somatic tissues or calli using a PEG-Ca2+ transfection procedure. To take advantage of this macromolecule delivery system in the reproductive and developmental biology of angiosperms, this study established a PEG-Ca2+ transfection system with isolated egg cells and zygotes. The conditions for PEG and plasmid DNA concentrations for transfection of rice egg cells were first addressed, and ~30% of PEG-Ca2+-transfected egg cells showed exogenous and transient expressions of fluorescent proteins from plasmid DNA delivered into the cells. Interestingly, a dual expression of two different fluorescent proteins in the same egg cell using two kinds of plasmid DNAs was also observed. For PEG-Ca2+ transfection with maize zygotes, ~80% of zygotes showed expression of GFP proteins from plasmid DNA. Importantly, PEG-transfected zygotes developed normally into cell masses and mature plants. These results suggest that the present PEG-Ca2+-mediated transient expression system provides a novel and effective platform for expressing and analyzing genes of interest in egg cells and zygotes. Moreover, combined with the CRISPR/Cas9 approach, the present transient expression system in zygotes will become a powerful and alternative tool for the preparation of gene-edited plants.
Collapse
Affiliation(s)
- Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| | | | - Norio Kato
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
- Plant Innovation CenterJapan Tobacco Inc.IwataShizuokaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| |
Collapse
|
26
|
Igawa T, Yamada L, Sawada H, Mori T. Isolation of GFP-tagged plasma membrane protein from Arabidopsis egg cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:119-123. [PMID: 31275017 PMCID: PMC6543763 DOI: 10.5511/plantbiotechnology.17.0522a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 06/09/2023]
Abstract
Angiosperms possess a double fertilization system for sexual reproduction. Double fertilization is regulated by interactions among proteins localized in the plasma membrane of each sex gamete. A few plasma membrane resident proteins regulating double fertilization have been identified in male gametes. In contrast, no fertilization regulators in female gamete plasma membrane have been identified, largely due to difficulties in the isolation and collection of female gametes. We had produced Arabidopsis transgenic plant pDD45::GFP-AtPIP2;1 where the egg cell plasma membrane was specifically labeled with GFP (Igawa et al. 2013). The protein extract derived from approximately 200 pistils, which contained unfertilized and mature egg cells, was subjected to immunoprecipitation using anti-GFP antibody. As a result, both GFP and AtPIP2;1 were specifically detected in immunoprecipitated proteins from pistil tissues of pDD45::GFP-AtPIP2;1 transgenic plant, but not in those of wild type pistils. It was revealed that specific proteins expressed in the egg cells were successfully isolated from pistil cell population. The method described here showed the feasibility of isolating specific egg cell plasma membrane protein without gamete isolation and collection procedures.
Collapse
Affiliation(s)
- Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie 517-0004, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie 517-0004, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
27
|
Englhart M, Šoljić L, Sprunck S. Manual Isolation of Living Cells from the Arabidopsis thaliana Female Gametophyte by Micromanipulation. Methods Mol Biol 2017; 1669:221-234. [PMID: 28936662 DOI: 10.1007/978-1-4939-7286-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The few-celled female gametophyte, or embryo sac, of flowering plants is not easily accessible as it is buried within the sporophytic tissues of the ovule. Nevertheless, it has become an attractive model system to study the molecular mechanisms underlying patterning and cell type specification, as well as fertilization of the two female gametes, the egg and the central cell. While female gametes, zygotes, and early embryos can be manually isolated from the embryo sacs in maize, wheat, tobacco, and rice by micromanipulation, this approach had been considered impossible for the much smaller embryo sac of the model plant Arabidopsis thaliana. Here, we describe a method to isolate living cells from the Arabidopsis female gametophyte by micromanipulation. The manual isolation of egg cells, central cells, and synergid cells is a technique that enables a number of important studies such as cell-type-specific transcriptional profiling or the analysis of DNA methylation profiles. It also offers the possibility to use isolated female gametes for in vitro fertilization studies.
Collapse
Affiliation(s)
- Maria Englhart
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Lucija Šoljić
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
28
|
Abstract
Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
29
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
30
|
Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat. Mol Biol Rep 2016; 43:1435-1449. [PMID: 27649990 DOI: 10.1007/s11033-016-4077-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Gibberellic acid (GA) is involved in the regulation of plant growth and development. We defined GA-stimulated transcript (GAST) gene family and characterized its four members (TaGAST1, 2, 3, and 4) in wheat spikes. Triticum aestivum whole spikes were collected at ten developmental stages and dehulled spikelets were obtained at various days after flowering. Expression of TaGAST1, 2, 3, and 4 was analyzed using RT-PCR at inflorescence development stages, in different tissues, and after phytohormones application. To identify proteins interacting with TaGAST1, yeast two-hybridization was performed and BiFC analysis was used for verification. TaGAST1 was expressed at the inflorescence stage and only expressed in seedlings under abscisic acid (ABA) treatment after phytohormone treatment. TaGAST2 and TaGAST3 showed moderate expression in the spike, vigorous transcript accumulation in the seedling, and up-regulation by exogenous GA in early germination stages. TaGAST4 was predominantly expressed in the seedling. Wheat cyclophilin A-1 (TaCypA1), identified as a TaGAST1-interacting protein, showed opposite expression pattern in the developing spike to TaGAST1. TaCypA1 transcript was slightly up-regulated by GA, slightly down-regulated by paclobutrazol, and was maintained after ABA treatment. The interaction of TaGAST1 with TaCypA1 is targeted to the plasma membrane. TaGAST1 was specifically expressed in the wheat spike and was stimulated by exogenous GA treatment. TaGAST2 and TaGAST3 expression in germinating seeds and seedlings was higher than that in the spike stage. TaGAST4 was not expressed in all developmental stages. TaGAST1 and TaCypA1 might be expressed antagonistically during wheat spike development.
Collapse
|
31
|
Rövekamp M, Bowman JL, Grossniklaus U. Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization. Curr Biol 2016; 26:1782-1789. [PMID: 27345166 DOI: 10.1016/j.cub.2016.05.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Unlike in animals, the life cycle of land plants alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte [1]. Gamete differentiation initiates the transition from the gametophyte to the sporophyte generation and, upon maturation, the egg cell establishes a quiescent state that is maintained until fertilization. This quiescence represents a hallmark of the gametophyte-sporophyte transition. The underlying molecular mechanisms are complex and best characterized in the flowering plant Arabidopsis thaliana [2-4]. However, only few genes with egg cell-specific expression or defects have been identified [5-10]. Intriguingly, ectopic expression of members of a clade of RWP-RK domain (RKD)-containing transcription factors, which are absent from animal genomes [11-13], can induce an egg cell-like transcriptome in sporophytic cells of A. thaliana. Yet, to date, loss-of-function experiments have not produced phenotypes affecting the egg cell, likely due to genetic redundancy and/or cross-regulation among the five RKD genes of A. thaliana [10]. To reduce genetic complexity, we explored the genome of Marchantia polymorpha, a liverwort belonging to the basal lineage of extant land plants [14-17]. Based on sequence homology, we identified a single M. polymorpha RKD gene, MpRKD, which is orthologous to all five A. thaliana RKD genes. Analysis of the MpRKD expression pattern and characterization of lines with reduced MpRKD activity indicate that it functions as a regulator of gametophyte development and the gametophyte-sporophyte transition. In particular, MpRKD is required to establish and/or maintain the quiescent state of the egg cell in the absence of fertilization.
Collapse
Affiliation(s)
- Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland.
| |
Collapse
|
32
|
Del Toro-De León G, Lepe-Soltero D, Gillmor CS. Zygotic genome activation in isogenic and hybrid plant embryos. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:148-53. [PMID: 26802806 DOI: 10.1016/j.pbi.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 05/24/2023]
Abstract
Zygotic genome activation (ZGA) is the onset of large-scale transcription that occurs after fertilization. In animal embryos, ZGA occurs after a period of transcriptional quiescence that varies between species. In plants, the timing of ZGA may also vary between species, and may or may not occur in a parent-of-origin dependent manner: some studies have shown a maternal bias in mRNA transcripts and gene activity in early embryogenesis, while other experiments have found the contribution of maternal and paternal genomes to be equal. In order to differentiate between maternal and paternal mRNAs, RNA sequencing studies of ZGA in plants have used embryos hybrid for polymorphic accessions. A recent genetic assay in Arabidopsis demonstrated significant variation in paternal allele activity between some hybrid combinations and isogenic embryos, as well as between different hybrid combinations, suggesting a possible source for conflicting results obtained by various experiments on paternal genome activation. We review recent literature on paternal genome activation studies in the zygote in both isogenic and hybrid embryos, and discuss possible explanations for the effects of hybridization on gene expression in early embryogenesis in plants.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Daniel Lepe-Soltero
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
33
|
Embryogenesis and Plant Regeneration from Isolated Wheat Zygotes. Methods Mol Biol 2015; 1359:503-14. [PMID: 26619884 DOI: 10.1007/978-1-4939-3061-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Wheat zygotes can be mechanically isolated and cultivated to continue their development in vitro. Since each zygote needs to be individually isolated, only relatively few of these cells are available per experiment. To facilitate embryonic growth despite of this limitation, the zygotes are kept within a culture insert placed in a larger dish which itself contains embryogenic pollen cocultivated for continuous medium conditioning. This setup ensures that the two cultures, while being physically separated from one another, can exchange essential intercellular signal molecules passing through the bottom of the insert which is made of a permeable membrane. Thanks to the natural fate of zygotes, which is to form an embryo followed by the generation of a plant, embryogenesis and plant regeneration are achieved at much higher efficiency as compared to other single-cell systems. While the method is largely independent of the genotype, it allows for the nondestructive observation, manipulation, and individual analysis of zygotes and very young embryos.
Collapse
|
34
|
Schmid MW, Schmidt A, Grossniklaus U. The female gametophyte: an emerging model for cell type-specific systems biology in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:907. [PMID: 26579157 PMCID: PMC4630298 DOI: 10.3389/fpls.2015.00907] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/10/2015] [Indexed: 05/03/2023]
Abstract
Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods ("omics") now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.
Collapse
Affiliation(s)
| | | | - Ueli Grossniklaus
- Department of Plant & Microbial Biology and Zurich-Basel Plant Science Center, University of ZurichZurich, Switzerland
| |
Collapse
|
35
|
Baroux C, Grossniklaus U. The Maternal-to-Zygotic Transition in Flowering Plants: Evidence, Mechanisms, and Plasticity. Curr Top Dev Biol 2015; 113:351-71. [PMID: 26358878 DOI: 10.1016/bs.ctdb.2015.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The maternal-to-zygotic transition (MZT) defines a developmental phase during which the embryo progressively emancipates itself from a developmental control relying largely on maternal information. The MZT is a functional readout of two processes: the clearance of maternally derived information and the de novo expression of the inherited, parental alleles enabled by zygotic genome activation (ZGA). In plants, for many years the debate about whether the MZT exists at all focused on the ZGA alone. However, several recent studies provide evidence for a progressive alleviation of the maternal control over embryogenesis that is correlated with a gradual ZGA, a process that is itself maternally controlled. Yet, several examples of zygotic genes that are expressed and/or functionally required early in embryogenesis demonstrate a certain flexibility in the dynamics and kinetics of the MZT among plant species and also intraspecific hybrids.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Ishii T, Sunamura N, Matsumoto A, Eltayeb AE, Tsujimoto H. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos. Chromosome Res 2015; 23:709-18. [PMID: 26134441 DOI: 10.1007/s10577-015-9477-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 680-0001, Japan.,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Gatersleben, Germany
| | - Naohiro Sunamura
- Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Ayaka Matsumoto
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 680-0001, Japan
| | - Amin Elsadig Eltayeb
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 680-0001, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Hamasaka, Tottori, 680-0001, Japan.
| |
Collapse
|
37
|
Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem Soc Trans 2015; 42:401-7. [PMID: 24646251 DOI: 10.1042/bst20140039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During double fertilization in Arabidopsis thaliana, the egg cell secretes small cysteine-rich EC1 (egg cell 1) proteins, which enable the arriving sperm pair to rapidly interact with the two female gametes. EC1 proteins are members of the large and unexplored group of ECA1 (early culture abundant 1) gametogenesis-related family proteins, characterized by a prolamin-like domain with six conserved cysteine residues that may form three pairs of disulfide bonds. The distinguishing marks of egg-cell-expressed EC1 proteins are, however, two short amino acid sequence motifs present in all EC1-like proteins. EC1 genes appear to encode the major CRPs (cysteine-rich proteins) expressed by the plant egg cell, and they are restricted to flowering plants, including the most basal extant flowering plant Amborella trichopoda. Many other ECA1 gametogenesis-related family genes are preferentially expressed in the synergid cell. Functional diversification among the ECA1 gametogenesis-related family is suggested by the different patterns of expression in the female gametophyte and the low primary sequence conservation.
Collapse
|
38
|
|
39
|
Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 2014; 514:624-7. [PMID: 25209660 DOI: 10.1038/nature13620] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2014] [Indexed: 11/08/2022]
Abstract
Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.
Collapse
|
40
|
Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM. Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014; 15:414. [PMID: 25084966 PMCID: PMC4309534 DOI: 10.1186/s13059-014-0414-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.
Collapse
|
41
|
Qin Y, Song W, Xiao S, Yin G, Zhu Y, Yan Y, Hu Y. Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries. J Proteomics 2014; 102:11-27. [PMID: 24607492 DOI: 10.1016/j.jprot.2014.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED In this study, a proteomic approach was utilized to identify differentially accumulated proteins in developing wheat ovaries before and after fertilization and in response to water deficit. Proteins were extracted, quantified, and resolved by 2-DE at pH4-7. Statistical analysis of spot intensity was performed by using principal component analysis and samples were clustered by using Euclidean distance. In total, 136 differentially accumulated protein spots representing 88 unique proteins were successfully identified by MALDI-TOF/TOF MS. Under normal conditions, stress-related proteins were abundant in unfertilized ovaries while proteins involved in the metabolism of energy and matter were enriched in fertilized ovaries just 48h after fertilization. Similar trends were observed in unfertilized and fertilized wheat ovaries under water deficit conditions, except for increased accumulation of stress-related proteins in fertilized ovaries. Some proteins required for normal development were not present in ovaries subjected to water deficit. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit. BIOLOGICAL SIGNIFICANCE Fertilization initiates the most dramatic changes that occur in the life cycle of higher plants; research into differences in gene expression before and after ovary pollination can make a substantial contribution to understanding the physiological and biochemical processes associated with fertilization. To date, a small number of studies have examined changes in transcriptional activity of the developing plant embryo sac before and after fertilization. However, comparative proteomic analysis of wheat ovary development before and after fertilization, and in response to water deficit, has not yet been reported. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit.
Collapse
Affiliation(s)
- Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shuyang Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
42
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
43
|
Wang SS, Wang F, Tan SJ, Wang MX, Sui N, Zhang XS. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac-pollen tube interaction. FRONTIERS IN PLANT SCIENCE 2014; 5:702. [PMID: 25566277 PMCID: PMC4269116 DOI: 10.3389/fpls.2014.00702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/25/2014] [Indexed: 05/05/2023]
Abstract
The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14-16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac-pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac-pollen tube interaction in maize.
Collapse
Affiliation(s)
- Shuai Shuai Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Su Jian Tan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Ming Xiu Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Na Sui
- College of Life Sciences, Shandong Normal UniversityJi'nan, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Xian Sheng Zhang, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018 Shandong, China e-mail:
| |
Collapse
|
44
|
Leljak-Levanić D, Juranić M, Sprunck S. De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. PLANT REPRODUCTION 2013; 26:267-85. [PMID: 23912470 DOI: 10.1007/s00497-013-0229-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/10/2013] [Indexed: 05/12/2023]
Abstract
Wheat is one of the world's most important crops, and increasing grain yield is a major challenge for the future. Still, our knowledge about the molecular machineries responsible for early post-fertilization events such as zygotic reprogramming, the initial cell-specification events during embryogenesis, and the intercellular communication between the early embryo and the developing endosperm is very limited. Here, we describe the identification of de novo transcribed genes in the wheat zygote. We used wheat ovaries of defined post-fertilization stages to isolate zygotes and early embryos, and identified genes that are specifically induced in these particular stages. Importantly, we observed that some of the zygotic-induced genes encode proteins with similarity to secreted signaling peptides such as TAPETUM DETERMINANT 1 and EGG APPARATUS 1, and to MATH-BTB proteins which are known substrate-binding adaptors for the Cullin3-based ubiquitin E3 ligase. This suggests that both cell-cell signaling and targeted proteasomal degradation may be important molecular events during zygote formation and the progression of early embryogenesis.
Collapse
Affiliation(s)
- Dunja Leljak-Levanić
- Department of Molecular Biology, Faculty of Science and Mathematics, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | | | | |
Collapse
|
45
|
Sánchez-Díaz RA, Castillo AM, Vallés MP. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. PLANT REPRODUCTION 2013; 26:287-96. [PMID: 23839308 DOI: 10.1007/s00497-013-0225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/26/2013] [Indexed: 05/21/2023]
Abstract
Microspore embryogenesis involves reprogramming of the pollen immature cell towards embryogenesis. We have identified and characterized a collection of 14 genes induced along different morphological phases of microspore-derived embryo development in wheat (Triticum aestivum L.) anther culture. SERKs and FLAs genes previously associated with somatic embryogenesis and reproductive tissues, respectively, were also included in this analysis. Genes involved in signalling mechanisms such as TaTPD1-like and TAA1b, and two glutathione S-transferase (GSTF2 and GSTA2) were induced when microspores had acquired a 'star-like' morphology or had undergone the first divisions. Genes associated with control of plant development and stress response (TaNF-YA, TaAGL14, TaFLA26, CHI3, XIP-R; Tad1 and WALI6) were activated before exine rupture. When the multicellular structures have been released from the exine, TaEXPB4, TaAGP31-like and an unknown embryo-specific gene TaME1 were induced. Comparison of gene expression, between two wheat cultivars with different response to anther culture, showed that the profile of genes activated before exine rupture was shifted to earlier stages in the low responding cultivar. This collection of genes constitutes a value resource for study mechanism of intra-embryo communication, early pattern formation, cell wall modification and embryo differentiation.
Collapse
Affiliation(s)
- Rosa Angélica Sánchez-Díaz
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av Montañana 1005, 50080, Zaragoza, Spain
| | | | | |
Collapse
|
46
|
Dresselhaus T, Franklin-Tong N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. MOLECULAR PLANT 2013; 6:1018-36. [PMID: 23571489 DOI: 10.1093/mp/sst061] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sperm cells of flowering plants are non-motile and thus require transportation to the egg apparatus via the pollen tube to execute double fertilization. During its journey, the pollen tube interacts with various sporophytic cell types that support its growth and guide it towards the surface of the ovule. The final steps of tube guidance and sperm delivery are controlled by the cells of the female gametophyte. During fertilization, cell-cell communication events take place to achieve and maximize reproductive success. Additional layers of crosstalk exist, including self-recognition and specialized processes to prevent self-fertilization and consequent inbreeding. In this review, we focus on intercellular communication between the pollen grain/pollen tube including the sperm cells with the various sporophytic maternal tissues and the cells of the female gametophyte. Polymorphic-secreted peptides and small proteins, especially those belonging to various subclasses of small cysteine-rich proteins (CRPs), reactive oxygen species (ROS)/NO signaling, and the second messenger Ca(2+), play center stage in most of these processes.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany.
| | | |
Collapse
|
47
|
Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T. Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1927-40. [PMID: 23570690 PMCID: PMC3638821 DOI: 10.1093/jxb/ert054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In angiosperms, fertilization and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries; therefore, these processes are poorly elucidated. In this study, microarray-based transcriptome analyses were conducted on rice sperm cells, egg cells, and zygotes isolated from flowers to identify candidate genes involved in gametic and/or early zygotic development. Cell type-specific transcriptomes were obtained, and up- or down-regulated genes in zygotes after fertilization were identified, in addition to genes enriched in male and female gametes. A total of 325 putatively up-regulated and 94 putatively down-regulated genes in zygotes were obtained. Interestingly, several genes encoding homeobox proteins or transcription factors were identified as highly up-regulated genes after fertilization, and the gene ontology for up-regulated genes was highly enriched in functions related to chromatin/DNA organization and assembly. Because a gene encoding methyltransferase 1 was identified as a highly up-regulated gene in zygotes after fertilization, the effect of an inhibitor of this enzyme on zygote development was monitored. The inhibitor appeared partially to affect polarity or division asymmetry in rice zygotes, but it did not block normal embryo generation.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Hiroki Maeda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| |
Collapse
|
48
|
Li D, Deng Z, Liu X, Qin B. Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). JOURNAL OF PLANT PHYSIOLOGY 2013; 170:497-504. [PMID: 23273927 DOI: 10.1016/j.jplph.2012.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/08/2012] [Accepted: 11/10/2012] [Indexed: 05/04/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a multi-functioning protein that carries out vital roles in various life processes. In this study, a new TCTP gene, designated as HbTCTP1, was isolated in Hevea brasiliensis. The full-length complementary DNA (cDNA) of HbTCTP1 contained a maximum open reading frame (ORF) of 507base pair (bp) encoding 168 amino acids. The sequence comparison showed that the deduced HbTCTP1 indicated high identities to plant TCTP proteins, and clustered in the dicot cluster of plant TCTPs. Although HbTCTP1 and human TCTP proteins did not parallel in overall sequence similarity, they indicated highly similar 3D structures with a nearly identical spatial organization of α-helices, β-sheets, and coil regions. Real time reverse-transcription PCR (RT-PCR) analyses showed that HbTCTP1 was expressed throughout different tissues and developmental stages of leaves. Besides being related to tapping panel dryness (TPD), the HbTCTP1 transcripts were regulated by various treatments, including drought, low temperature, high salt, ethrel (ET), wounding, H2O2, and methyl jasmonate (Me-JA) treatments. The recombinant HbTCTP1 fusion protein was shown to protect supercoiled plasmid DNA from damages induced by metal-catalyzed generation of reactive oxygen species. The (45)Ca(2+)-overlay assay showed that HbTCTP1 was a calcium-binding protein. Our results are greatly helpful in understanding the molecular characterization and expression profiles of HbTCTP1, and lay the foundation for further analyzing the function of HbTCTP1 in rubber tree.
Collapse
Affiliation(s)
- Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | | | | | | |
Collapse
|
49
|
Domoki M, Szűcs A, Jäger K, Bottka S, Barnabás B, Fehér A. Identification of genes preferentially expressed in wheat egg cells and zygotes. PLANT CELL REPORTS 2013; 32:339-48. [PMID: 23160639 DOI: 10.1007/s00299-012-1367-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/28/2012] [Accepted: 10/31/2012] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE : Wheat genes differentially expressed in the egg cell before and after fertilization were identified. The data support zygotic gene activation before the first cell division in wheat. To have an insight into fertilization-induced gene expression, cDNA libraries have been prepared from isolated wheat egg cells and one-celled zygotes. Two-hundred and twenty-six egg cell and 253 zygote-expressed EST sequences were determined. Most of the represented transcripts were detected in the wheat egg cell or zygote transcriptome at the first time. Expression analysis of fourteen of the identified genes and three controls was carried out by real-time quantitative PCR. The preferential expression of all investigated genes in the female gametophyte-derived samples (egg cells, zygotes, two-celled proembryos, and basal ovule parts with synergids) in comparison to the anthers, and the leaves were verified. Three genes with putative signaling/regulatory functions were expressed at a low level in the egg cell but exhibited increased (2-to-33-fold) relative expression in the zygote and the proembryo. Genes with high EST abundance in cDNA libraries exhibited strong expression in the egg cell and the zygote, while the ones coding for unknown or hypothetical proteins exhibited differential expression patterns with preferential transcript accumulation in egg cells and/or zygotes. The obtained data support the activation of the zygotic genome before the first cell division in wheat.
Collapse
Affiliation(s)
- Mónika Domoki
- Biological Research Centre, Institute of Plant Biology, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | | | | | | | | | | |
Collapse
|
50
|
Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 2012. [PMID: 23180860 DOI: 10.1126/science.1223944] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Double fertilization is the defining characteristic of flowering plants. However, the molecular mechanisms regulating the fusion of one sperm with the egg and the second sperm with the central cell are largely unknown. We show that gamete interactions in Arabidopsis depend on small cysteine-rich EC1 (EGG CELL 1) proteins accumulating in storage vesicles of the egg cell. Upon sperm arrival, EC1-containing vesicles are exocytosed. The sperm endomembrane system responds to exogenously applied EC1 peptides by redistributing the potential gamete fusogen HAP2/GCS1 (HAPLESS 2/GENERATIVE CELL SPECIFIC 1) to the cell surface. Furthermore, fertilization studies with ec1 quintuple mutants show that successful male-female gamete interactions are necessary to prevent multiple-sperm cell delivery. Our findings provide evidence that mutual gamete activation, regulated exocytosis, and sperm plasma membrane modifications govern flowering plant gamete interactions.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|