1
|
Yue Y, Zhu W, Wang J, Wang T, Shi L, Thomas HR, Hu H, Wang L. Integration of DNA Methylation, MicroRNAome, Degradome and Transcriptome Provides Insights into Petunia Anther Development. PLANT & CELL PHYSIOLOGY 2025; 66:36-49. [PMID: 39673770 DOI: 10.1093/pcp/pcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Petunia hybrida is an annual herb flower that is prevalently cultivated both in public landscaping and home gardening. Anthers are vital reproductive organs for plants, but the molecular mechanism controlling petunia anther development remains elusive. In this work, we combined DNA methylation, microRNAome, degradome and transcriptome data to generate a comprehensive resource focused on exploring the complex molecular mechanism of petunia anther development. This study shows that DNA methylation could have an important impact in repressing the anther-expressed genes in the late stages of anther maturation. A total of 8,096 anther-preferential genes and 149 microRNAs (miRNAs) were identified that highly expressed in the five typical petunia anther developmental stages. Gene Ontology enrichment analysis of differentially expressed genes as well as miRNAs target genes revealed that metabolic, cellular and single-organism processes were significantly activated during the anther maturation processes. Moreover, a co-expression regulatory network for five typical anther development stages was constructed based on transcriptomic data, in which two hub transcription factors, PhERF48 and PhMS1, were demonstrated to be important regulatory genes for male fertility. Furthermore, two DNA demethylase proteins (PhDME and PhDML3) and three methyl-CpG-binding-domain proteins (PhMBD2, PhMBD3 and PhMBD4) were identified as potential critical DNA methylation regulators in petunia anther development. Our results provide new knowledge regarding the regulatory mechanism of petunia anther development, which will support the breeding of novel sterile petunia lines in the future.
Collapse
Affiliation(s)
- Yuanzheng Yue
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Wuwei Zhu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Tengteng Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Lisha Shi
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Hannah Rae Thomas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Huirong Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianggui Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Withers KA, Falls K, Youngstrom CE, Nguyen T, DeWald A, Yarvis RM, Simons GP, Flanagan R, Bui LT, Irish EE, Cheng CL. A Ceratopteris EXCESS MICROSPOROCYTES1 suppresses reproductive transition in the fern vegetative leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111812. [PMID: 37532002 DOI: 10.1016/j.plantsci.2023.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Land plant sexual reproduction involves the transition of cells from somatic to reproductive identity during post-embryonic development. In Arabidopsis, the leucine-rich repeat receptor-like kinase EXCESS MICROSPOROCYTES1 (EXS/EMS1) restricts the number of sporogenous cells during the transition from diploid tissue to haploid spore production by promoting the formation of the tapetum cell layer within the anther. Although all land plants studied contain EMS1 genes, its function is unknown beyond a few angiosperms. In the model fern Ceratopteris (Ceratopteris richardii), we discovered an EMS1 homolog (CrEMS1) that functions to suppress formation of reproductive structures on vegetative leaves of the fern sporophyte, a role not found in angiosperms. Suppression of CrEMS1 by RNAi did not affect sporogenesis on reproductive leaves but did affect antheridium production of the fern gametophyte. Expression patterns of CrEMS1 across developmental stages suggest threshold levels of CrEMS1 control the specification of reproductive organs during both generations of the fern. Additional EMS1 homologs present in the fern genome suggest a dynamic role of EMS1 receptors in the evolution of reproductive development in vascular plants.
Collapse
Affiliation(s)
- Kelley A Withers
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Kevin Falls
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | | | - Tommy Nguyen
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Anika DeWald
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Rebekah M Yarvis
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Gabriel P Simons
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Robert Flanagan
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Linh T Bui
- The Translational Genomics Research Institute, 445 N. Fifth St., Phoenix, AZ 85004, USA
| | - Erin E Irish
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Chen J, Xu H, Zhang J, Dong S, Liu Q, Wang R. Transcriptomic analysis reveals candidate genes for male sterility in Prunus sibirica. PeerJ 2021; 9:e12349. [PMID: 34722001 PMCID: PMC8541319 DOI: 10.7717/peerj.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background The phenomenon of male sterility widely occurs in Prunus sibirica and has a serious negative impact on yield. We identified the key stage and cause of male sterility and found differentially expressed genes related to male sterility in Prunus sibirica, and we analyzed the expression pattern of these genes. This work aimed to provide valuable reference and theoretical basis for the study of reproductive development and the mechanisms of male sterility in Prunus sibirica. Method The microstructures of male sterile flower buds and male fertile flower buds were observed by paraffin section. Transcriptome sequencing was used to screen genes related to male sterility in Prunus sibirica. Quantitative real-time PCR analysis was performed to verify the transcriptome data. Results Anther development was divided into the sporogenous cell stage, tetrad stage, microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, and anther development stopped. Therefore, the microspore stage was the key stage for anther abortion , and the pollen maturity stage was the post stage for anther abortion. A total of 4,108 differentially expressed genes were identified by transcriptome analysis. Among them, 1,899 were up-regulated, and 2,209 were down-regulated in the transcriptome of male sterile flower buds. We found that "protein kinase activity", "apoptosis process", "calcium binding", "cell death", "cytochrome c oxidase activity", "aspartate peptidase activity", "cysteine peptidase activity" and other biological pathways such as "starch and sucrose metabolism" and "proteasome" were closely related to male sterility in Prunus sibirica. A total of 331 key genes were preliminarily screened. Conclusion The occurrence of male sterility in Prunus sibirica involved many biological processes and metabolic pathways. According to the results of microstructure observations, related physiological indexes determination and transcriptome analysis, we reveal that the occurrence of male sterility in Prunus sibirica may be caused by abnormal metabolic processes such as the release of cytochrome c in the male sterile flower buds, the imbalance of the antioxidant system being destroyed, and the inability of macromolecular substances such as starch to be converted into soluble small molecules at the correct stage of reproductive development, resulting in energy loss. As a result, the tapetum cannot be fully degraded, thereby blocking anther development, which eventually led to the formation of male sterility.
Collapse
Affiliation(s)
- Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hao Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jian Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ruoxi Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zhang S, Wu S, Niu C, Liu D, Yan T, Tian Y, Liu S, Xie K, Li Z, Wang Y, Zhao W, Dong Z, Zhu T, Hou Q, Ma B, An X, Li J, Wan X. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4298-4318. [PMID: 33822021 DOI: 10.1093/jxb/erab142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Fatty acyl reductases (FARs) catalyse the reduction of fatty acyl-coenzyme A (CoA) or -acyl carrier protein (ACP) substrates to primary fatty alcohols, which play essential roles in lipid metabolism in plants. However, the mechanism by which FARs are involved in male reproduction is poorly defined. Here, we found that two maize allelic mutants, ms25-6065 and ms25-6057, displayed defective anther cuticles, abnormal Ubisch body formation, impaired pollen exine formation and complete male sterility. Based on map-based cloning and CRISPR/Cas9 mutagenesis, Zm00001d048337 was identified as ZmMs25, encoding a plastid-localized FAR with catalytic activities to multiple acyl-CoA substrates in vitro. Four conserved residues (G101, G104, Y327 and K331) of ZmMs25 were critical for its activity. ZmMs25 was predominantly expressed in anther, and was directly regulated by transcription factor ZmMYB84. Lipidomics analysis revealed that ms25 mutation had significant effects on reducing cutin monomers and internal lipids, and altering the composition of cuticular wax in anthers. Moreover, loss of function of ZmMs25 significantly affected the expression of its four paralogous genes and five cloned lipid metabolic male-sterility genes in maize. These data suggest that ZmMs25 is required for anther development and male fertility, indicating its application potential in maize and other crops.
Collapse
Affiliation(s)
- Simiao Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Dongcheng Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Tingwei Yan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Shuangshuang Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
5
|
Ren Z, Wang X, Tao Q, Guo Q, Zhou Y, Yi F, Huang G, Li Y, Zhang M, Li Z, Duan L. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC PLANT BIOLOGY 2021; 21:202. [PMID: 33906598 PMCID: PMC8077928 DOI: 10.1186/s12870-021-02962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Guanmin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yanxia Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping, Beijing, 102206, China.
| |
Collapse
|
6
|
Vanous K, Lübberstedt T, Ibrahim R, Frei UK. MYO, a Candidate Gene for Haploid Induction in Maize Causes Male Sterility. PLANTS 2020; 9:plants9060773. [PMID: 32575668 PMCID: PMC7355785 DOI: 10.3390/plants9060773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Doubled haploid technology is highly successful in maize breeding programs and is contingent on the ability of maize inducers to efficiently produce haploids. Knowledge of the genes involved in haploid induction is important for not only developing better maize inducers, but also to create inducers in other crops. The main quantitative trait loci involved in maize haploid induction are qhir1 and qhir8. The gene underlying qhir1 has been discovered and validated by independent research groups. Prior to initiation of this study, the gene associated with qhir8 had yet to be recognized. Therefore, this research focused on characterizing positional candidate genes underlying qhir8. Pursuing this goal, a strong candidate for qhir8, GRMZM2G435294 (MYO), was silenced by RNAi. Analysis of crosses with these heterozygous RNAi-transgenic lines for haploid induction rate revealed that the silencing of MYO significantly enhanced haploid induction rate by an average of 0.6% in the presence of qhir1. Recently, GRMZM2G465053 (ZmDMP) was identified by map-based gene isolation and shown to be responsible for qhir8. While our results suggest that MYO may contribute to haploid induction rate, results were inconsistent and only showing minor increases in haploid induction rate compared to ZmDMP. Instead, reciprocal crosses clearly revealed that the silencing of MYO causes male sterility.
Collapse
|
7
|
Li J, Jiao Z, He R, Sun Y, Xu Q, Zhang J, Jiang Y, Li Q, Niu J. Gene Expression Profiles and microRNA Regulation Networks in Tiller Primordia, Stem Tips, and Young Spikes of Wheat Guomai 301. Genes (Basel) 2019; 10:genes10090686. [PMID: 31500166 PMCID: PMC6770858 DOI: 10.3390/genes10090686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 01/26/2023] Open
Abstract
Tillering and spike differentiation are two key events for wheat (Triticum aestivum L.). A study on the transcriptomes and microRNA group profiles of wheat at the two key developmental stages will bring insight into the molecular regulation mechanisms. Guomai 301 is a representative excellent new high yield wheat cultivar in the Henan province in China. The transcriptomes and microRNA (miRNA) groups of tiller primordia (TPs), stem tips (STs), and young spikes (YSs) in Guomai 301 were compared to each other. A total of 1741 tillering specifically expressed and 281 early spikes differentiating specifically expressed differentially expressed genes (DEGs) were identified. Six major expression profile clusters of tissue-specific DEGs for the three tissues were classified by gene co-expression analysis using K-means cluster. The ribosome (ko03010), photosynthesis-antenna proteins (ko00196), and plant hormone signal transduction (ko04075) were the main metabolic pathways in TPs, STs, and YSs, respectively. Similarly, 67 TP specifically expressed and 19 YS specifically expressed differentially expressed miRNAs were identified, 65 of them were novel. The roles of 3 well known miRNAs, tae-miR156, tae-miR164, and tae-miR167a, in post-transcriptional regulation were similar to that of other researches. There were 651 significant negative miRNA-mRNA interaction pairs in TPs and YSs, involving 63 differentially expressed miRNAs (fold change > 4) and 416 differentially expressed mRNAs. Among them 12 key known miRNAs and 16 novel miRNAs were further analyzed, and miRNA-mRNA regulatory networks during tillering and early spike differentiating were established.
Collapse
Affiliation(s)
- Junchang Li
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruishi He
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Sun
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaoqiao Xu
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Lora J, Yang X, Tucker MR. Establishing a framework for female germline initiation in the plant ovule. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2937-2949. [PMID: 31063548 DOI: 10.1093/jxb/erz212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNA-DEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Mathew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
9
|
Yue Y, Tian S, Wang Y, Ma H, Liu S, Wang Y, Hu H. Transcriptomic and GC-MS Metabolomic Analyses Reveal the Sink Strength Changes during Petunia Anther Development. Int J Mol Sci 2018; 19:ijms19040955. [PMID: 29570614 PMCID: PMC5979359 DOI: 10.3390/ijms19040955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/17/2022] Open
Abstract
Petunia, which has been prevalently cultivated in landscaping, is a dicotyledonous herbaceous flower of high ornamental value. Annually, there is a massive worldwide market demand for petunia seeds. The normal development of anther is the necessary prerequisite for the plants to generate seeds. However, the knowledge of petunia anther development processes is still limited. To better understand the mechanisms of petunia anther development, the transcriptomes and metabolomes of petunia anthers at three typical development stages were constructed and then used to detect the gene expression patterns and primary metabolite profiles during the anther development processes. Results suggested that there were many differentially-expressed genes (DEGs) that mainly participated in photosynthesis and starch and sucrose metabolism when DEGs were compared between the different development stages of anthers. In this study, fructose and glucose, which were involved in starch and sucrose metabolism, were taken as the most important metabolites by partial least-squares discriminate analysis (PLS-DA). Additionally, the qRT-PCR analysis of the photosynthetic-related genes all showed decreased expression trends along with the anther development. These pieces of evidence indicated that the activities of energy and carbohydrate metabolic pathways were gradually reduced during all the development stages of anther, which affects the sink strength. Overall, this work provides a novel and comprehensive understanding of the metabolic processes in petunia anthers.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaoze Tian
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Wang
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Ma
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Siyu Liu
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuqiao Wang
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huirong Hu
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:96-110. [PMID: 28078801 DOI: 10.1111/tpj.13476] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.
Collapse
Affiliation(s)
- Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengge Cao
- Heze Academy of Agricultural Sciences, Heze, Shandong, 274000, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Nan GL, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2016; 144:163-172. [PMID: 27913638 DOI: 10.1242/dev.140673] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Successful male gametogenesis involves orchestration of sequential gene regulation for somatic differentiation in pre-meiotic anthers. We report here the cloning of Male Sterile23 (Ms23), encoding an anther-specific predicted basic helix-loop-helix (bHLH) transcription factor required for tapetal differentiation; transcripts localize initially to the precursor secondary parietal cells then predominantly to daughter tapetal cells. In knockout ms23-ref mutant anthers, five instead of the normal four wall layers are observed. Microarray transcript profiling demonstrates a more severe developmental disruption in ms23-ref than in ms32 anthers, which possess a different bHLH defect. RNA-seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHLH122 and bHLH51 act sequentially as either homo- or heterodimers to choreograph tapetal development. Among them, MS23 is the earliest-acting factor, upstream of bHLH51 and bHLH122, controlling tapetal specification and maturation. By contrast, MS32 is constitutive and independently regulated and is required later than MS23 in tapetal differentiation.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.,Department of Biology, South University of Science and Technology, Shenzhen 518055, China
| | - Siwaret Arikit
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Darren Morrow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lan Mai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nhi Nguyen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
13
|
Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, Peng YB, Lin YN, Tang X, Deng MH, Yao N, Luo JC, Xu ZH, Bai SN. A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. MOLECULAR PLANT 2015; 8:1069-89. [PMID: 25684654 DOI: 10.1016/j.molp.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 05/19/2023]
Abstract
Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 transcripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are expressed at the low levels in early rice stamen, through the ChIP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reactions and the expression levels of most of them are increased when expression of OsMADS58 is downregulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Ping Shen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Gui Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Ben Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Ming-Hua Deng
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- Center for Quantitative Biology, Peking University, Beijing 100871, China; The National Center of Plant Gene Research, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 624 Jin-Guang Life Science Building, 5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
14
|
Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3-GENES GENOMES GENETICS 2014; 4:993-1010. [PMID: 24939185 PMCID: PMC4065268 DOI: 10.1534/g3.113.009738] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plants lack a germ line; consequently, during reproduction adult somatic cells within flowers must switch from mitotic proliferation to meiosis. In maize (Zea mays L.) anthers, hypoxic conditions in the developing tassel trigger pre-meiotic competence in the column of pluripotent progenitor cells in the center of anther lobes, and within 24 hr these newly specified germinal cells have patterned their surrounding neighbors to differentiate as the first somatic niche cells. Transcriptomes were analyzed by microarray hybridization in carefully staged whole anthers during initial specification events, after the separation of germinal and somatic lineages, during the subsequent rapid mitotic proliferation phase, and during final pre-meiotic germinal and somatic cell differentiation. Maize anthers exhibit a highly complex transcriptome constituting nearly three-quarters of annotated maize genes, and expression patterns are dynamic. Laser microdissection was applied to begin assigning transcripts to tissue and cell types and for comparison to transcriptomes of mutants defective in cell fate specification. Whole anther proteomes were analyzed at three developmental stages by mass spectrometric peptide sequencing using size-fractionated proteins to evaluate the timing of protein accumulation relative to transcript abundance. New insights include early and sustained expression of meiosis-associated genes (77.5% of well-annotated meiosis genes are constitutively active in 0.15 mm anthers), an extremely large change in transcript abundances and types a few days before meiosis (including a class of 1340 transcripts absent specifically at 0.4 mm), and the relative disparity between transcript abundance and protein abundance at any one developmental stage (based on 1303 protein-to-transcript comparisons).
Collapse
|
15
|
Dukowic-Schulze S, Chen C. The meiotic transcriptome architecture of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:220. [PMID: 24926296 PMCID: PMC4046320 DOI: 10.3389/fpls.2014.00220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 05/21/2023]
Abstract
Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next.
Collapse
Affiliation(s)
| | - Changbin Chen
- Department of Horticultural Science, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
16
|
Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang M, Sun Q, Pillardy J, Kianian S, Retzel EF, Pawlowski WP, Chen C. The transcriptome landscape of early maize meiosis. BMC PLANT BIOLOGY 2014; 14:118. [PMID: 24885405 PMCID: PMC4032173 DOI: 10.1186/1471-2229-14-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.
Collapse
Affiliation(s)
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | | | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Minghui Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Jaroslaw Pillardy
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Shahryar Kianian
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
17
|
Kelliher T, Walbot V. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:639-52. [PMID: 24387628 PMCID: PMC3928636 DOI: 10.1111/tpj.12414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 05/20/2023]
Abstract
In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
18
|
Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS. Foliar herbivory triggers local and long distance defense responses in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:103-12. [PMID: 23265323 DOI: 10.1016/j.plantsci.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 05/09/2023]
Abstract
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State University, MS, United States.
| | | | | | | | | |
Collapse
|
19
|
Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3-GENES GENOMES GENETICS 2013; 3:231-49. [PMID: 23390600 PMCID: PMC3564984 DOI: 10.1534/g3.112.004465] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses.
Collapse
|
20
|
Chen C, Retzel EF. Analyzing the meiotic transcriptome using isolated meiocytes of Arabidopsis thaliana. Methods Mol Biol 2013; 990:203-13. [PMID: 23559216 DOI: 10.1007/978-1-62703-333-6_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improved transcriptome sequencing technologies (RNA-seq) have advanced our understanding of the tissue-specific transcriptome landscapes, including those of messenger RNAs, noncoding RNAs and small RNAs. However, transcriptome profiles of plant meiocytes remain challenging due to the lack of efficient methods to enrich meiocytes for the analysis of temporal and spatial gene expression patterns during meiosis. In this chapter, we describe a method to analyze the Arabidopsis meiotic transcriptome using isolated male meiocytes.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Horticulture, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
21
|
Wang D, Adams CM, Fernandes JF, Egger RL, Walbot V. A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:925-35. [PMID: 22748129 PMCID: PMC4144787 DOI: 10.1111/j.1467-7652.2012.00721.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During maize anther development, somatic locular cells differentiate to support meiosis in the pollen mother cells. Meiosis is an important event during anther growth and is essential for plant fertility as pollen contains the haploid sperm. A subset of maize male sterile mutants exhibit meiotic failure, including ms8 (male sterile 8) in which meiocytes arrest as dyads and the locular somatic cells exhibit multiple defects. Systematic proteomic profiles were analysed in biological triplicates plus technical triplicates comparing ms8 anthers with fertile sibling samples at both the premeiotic and meiotic stages; proteins from 3.5 to 20 kDa were fractionated by 1-D PAGE, cleaved with Lys-C and then sequenced using a LTQ Orbitrap Velos MS paradigm. Three hundred and 59 proteins were identified with two or more assigned peptides in which each of those peptides were counted at least two or more times (0.4% peptide false discovery rate (FDR) and 0.2% protein FDR); 2761 proteins were identified with one or more assigned peptides (0.4% peptide FDR and 7.6% protein FDR). Stage-specific protein expression provides candidate stage markers for early anther development, and proteins specifically expressed in fertile compared to sterile anthers provide important clues about the regulation of meiosis. 49% of the proteins detected by this study are new to an independent whole anther proteome, and many small proteins missed by automated maize genome annotation were validated; these outcomes indicate the value of focusing on low molecular weight proteins. The roles of distinctive expressed proteins and methods for mass spectrometry of low molecular weight proteins are discussed.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | | | | | |
Collapse
|
22
|
Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Cheng Z. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. THE NEW PHYTOLOGIST 2012; 196:402-413. [PMID: 22913653 DOI: 10.1111/j.1469-8137.2012.04270.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
The formation of diverse, appropriately patterned cell types is critical in the development of all complex multicellular organisms. In flowering plants, anther patterning is a complex process essential for successful sexual reproduction. However, few genes regulating this process have been characterized to date. We report here that the gene MICROSPORELESS2 (MIL2) regulates early anther cell differentiation in rice (Oryza sativa). The anthers of mil2 mutants were characterized using molecular markers and cytological examination. The MIL2 gene was cloned and its expression pattern was analyzed through RNA in situ hybridization. The localization of the MIL2 protein was observed by immunostaining. MIL2 encodes the rice homolog of the Arabidopsis TAPETUM DETERMINANT1 (TPD1) protein. However, mil2 anthers display phenotypes different from those of tpd1 mutants, with only two layers of anther wall cells formed. MIL2 has an expression pattern distinct from that of TPD1. Its transcripts and proteins predominate in inner parietal cells, but show little accumulation in reproductive cells. Our results demonstrate that MIL2 is responsible for the differentiation of primary parietal cells into secondary parietal cells in rice anthers, and suggest that rice and Arabidopsis anthers might share similar regulators in anther patterning, but divergent mechanisms are employed in these processes.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Coetzer N, Myburg AA, Berger DK. Maize microarray annotation database. PLANT METHODS 2011; 7:31. [PMID: 21961731 PMCID: PMC3198759 DOI: 10.1186/1746-4811-7-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/01/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a) reporter - gene model match, (b) number of reporters per gene model, (c) potential for cross hybridization, (d) sense/antisense orientation of reporters, (e) position of reporter on B73 genome sequence (for eQTL studies), and (f) functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. DESCRIPTION Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS) predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i) "annotation by sense gene model" (23,668 reporters), (ii) "annotation by antisense gene model" (4,330); (iii) "annotation by gDNA" without a WGS transcript hit (1,549); (iv) "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390); (v) "ambiguous annotation" (2,608); and (vi) "inconclusive annotation" (6,489). Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank.The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to the MaizeGDB genome browser as a custom track.The database was used to re-annotate lists of differentially expressed genes reported in case studies of published work using the Agilent-016047 maize microarray. Up to 85% of reporters in each list could be annotated with confidence by a single gene model, however up to 10% of reporters had ambiguous annotations. Overall, more than 57% of reporters gave a measurable signal in tissues as diverse as anthers and leaves. CONCLUSIONS The Maize Microarray Annotation Database will assist users of the Agilent-016047 maize microarray in (i) refining gene lists for global expression analysis, and (ii) confirming the annotation of candidate genes before functional studies.
Collapse
Affiliation(s)
- Nanette Coetzer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Private Bag X20, 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, 0028, South Africa
| | - Dave K Berger
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, 0028, South Africa
| |
Collapse
|
24
|
Chevalier É, Loubert-Hudon A, Zimmerman EL, Matton DP. Cell-cell communication and signalling pathways within the ovule: from its inception to fertilization. THE NEW PHYTOLOGIST 2011; 192:13-28. [PMID: 21793830 DOI: 10.1111/j.1469-8137.2011.03836.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell-cell communication pervades every aspect of the life of a plant. It is particularly crucial for the development of the gametes and their subtle interaction leading to double fertilization. The ovule is composed of a funiculus, one or two integuments, and a gametophyte surrounded by nucellus tissue. Proper ovule and embryo sac development are critical to reproductive success. To allow fertilization, the correct relative positioning and differentiation of the embryo sac cells are essential. Integument development is also intimately linked with the normal development of the female gametophyte; the sporophyte and gametophyte are not fully independent tissues. Inside the gametophyte, numerous signs of cell-cell communication take place throughout development, including cell fate patterning, fertilization and the early stages of embryogenesis. This review highlights the current evidence of cell-cell communication and signalling elements based on structural and physiological observations as well as the description and characterization of mutants in structurally specific genes. By combining data from different species, models of cell-cell interactions have been built, particularly for the establishment of the germline, for the progression through megagametogenesis and for double fertilization.
Collapse
Affiliation(s)
- Éric Chevalier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Audrey Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Erin L Zimmerman
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| |
Collapse
|
25
|
Huang MD, Hsing YIC, Huang AHC. Transcriptomes of the anther sporophyte: availability and uses. PLANT & CELL PHYSIOLOGY 2011; 52:1459-66. [PMID: 21743085 PMCID: PMC3172567 DOI: 10.1093/pcp/pcr088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/30/2011] [Indexed: 05/22/2023]
Abstract
An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics.
Collapse
Affiliation(s)
- Ming-Der Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| | | | - Anthony H. C. Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| |
Collapse
|
26
|
Nan GL, Ronceret A, Wang RC, Fernandes JF, Cande WZ, Walbot V. Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I. BMC PLANT BIOLOGY 2011; 11:120. [PMID: 21867558 PMCID: PMC3180651 DOI: 10.1186/1471-2229-11-120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/26/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Developmental cues to start meiosis occur late in plants. Ameiotic1 (Am1) encodes a plant-specific nuclear protein (AM1) required for meiotic entry and progression through early prophase I. Pollen mother cells (PMCs) remain mitotic in most am1 mutants including am1-489, while am1-praI permits meiotic entry but PMCs arrest at the leptotene/zygotene (L/Z) transition, defining the roles of AM1 protein in two distinct steps of meiosis. To gain more insights into the roles of AM1 in the transcriptional pre-meiotic and meiotic programs, we report here an in depth analysis of gene expression alterations in carefully staged anthers at 1 mm (meiotic entry) and 1.5 mm (L/Z) caused by each of these am1 alleles. RESULTS 1.0 mm and 1.5 mm anthers of am1-489 and am1-praI were profiled in comparison to fertile siblings on Agilent® 4 × 44 K microarrays. Both am1-489 and am1-praI anthers are cytologically normal at 1.0 mm and show moderate transcriptome alterations. At the 1.5-mm stage both mutants are aberrant cytologically, and show more drastic transcriptome changes. There are substantially more absolute On/Off and twice as many differentially expressed genes (sterile versus fertile) in am1-489 than in am1-praI. At 1.5 mm a total of 4,418 genes are up- or down-regulated in either am1-489 or am1-praI anthers. These are predominantly stage-specific transcripts. Many putative meiosis-related genes were found among them including a small subset of allele-specific, mis-regulated genes specific to the PMCs. Nearly 60% of transcriptome changes in the set of transcripts mis-regulated in both mutants (N = 530) are enriched in PMCs, and only 1% are enriched in the tapetal cell transcriptome. All array data reported herein will be deposited and accessible at MaizeGDB http://www.maizegdb.org/. CONCLUSIONS Our analysis of anther transcriptome modulations by two distinct am1 alleles, am1-489 and am1-praI, redefines the role of AM1 as a modulator of expression of a subset of meiotic genes, important for meiotic progression and provided stage-specific insights into the genetic networks associated with meiotic entry and early prophase I progression.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Arnaud Ronceret
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Rachel C Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institute of Plant and Microbial Biology (IPMB), Academia Sinica, Taipei, 11529, Taiwan
| | - John F Fernandes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - W Zacheus Cande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Wang D, Skibbe DS, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. ACTA ACUST UNITED AC 2011; 24:297-306. [PMID: 21475967 DOI: 10.1007/s00497-011-0167-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/18/2011] [Indexed: 12/23/2022]
Abstract
Maize male reproductive development is complex and lengthy, and anther formation and pollen maturation are precisely and spatiotemporally regulated. Here, we document that callose, somatic, and microspore defect 1 (csmd1), a new male-sterile mutant, has both pre-meiotic somatic and post-meiotic gametophyte and somatic defects. Chromosome behavior and cell developmental events were monitored by nuclear staining viewed by bright field microscopy; cell dimensions were charted by Volocity analysis of confocal microscopy images. Aniline blue staining and quantitative assays were performed to record callose deposition, and expression of three callose synthase genes was measured by qRT-PCR. Despite numerous defects and unlike other maize male-sterile mutants that show growth arrest coincident with locular defects, csmd1 anther elongation is nearly normal. Pre-meiotically and during prophase I, there is excess callose surrounding the meiocytes. Post-meiotically csmd1 epidermal cells have impaired elongation but excess longitudinal divisions, and uninucleate microspores cease growth; the microspore nucleoli degrade followed by cytoplasmic vacuolization and haploid cell collapse. The single vascular bundle within csmd1 anthers senesces precociously, coordinate with microspore death. Although csmd1 anther locules contain only epidermal and endothecial cells at maturity, locules are oval rather than collapsed, indicating that these two cell types suffice to maintain an open channel within each locule. Our data indicate that csmd1 encodes a crucial factor important for normal anther development in both somatic and haploid cells, that excess callose deposition does not cause meiotic arrest, and that developing pollen is not required for continued maize anther growth.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
28
|
Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC PLANT BIOLOGY 2010; 10:280. [PMID: 21167045 PMCID: PMC3018465 DOI: 10.1186/1471-2229-10-280] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. RESULTS A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes. CONCLUSION These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Raymond J Langley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Immunology, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Gregory D May
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - James Huntley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Illumina Inc., Hayward, California 94545, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| |
Collapse
|
29
|
Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. THE PLANT CELL 2010; 22:3935-50. [PMID: 21177480 PMCID: PMC3027167 DOI: 10.1105/tpc.110.079343] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/19/2010] [Accepted: 12/03/2010] [Indexed: 05/18/2023]
Abstract
The SBP-box transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE8 (SPL8) is required for proper development of sporogenic tissues in Arabidopsis thaliana. Here, we show that the semisterile phenotype of SPL8 loss-of-function mutants is due to partial functional redundancy with several other members of the Arabidopsis SPL gene family. In contrast with SPL8, the transcripts of these latter SPL genes are all targeted by miR156/7. Whereas the introduction of single miR156/7-resistant SPL transgenes could only partially restore spl8 mutant fertility, constitutive overexpression of miR156 in an spl8 mutant background resulted in fully sterile plants. Histological analysis of the anthers of such sterile plants revealed an almost complete absence of sporogenous and anther wall tissue differentiation, a phenotype similar to that reported for sporocyteless/nozzle (spl/nzz) mutant anthers. Expression studies indicated a functional requirement for miR156/7-targeted SPL genes limited to early anther development. Accordingly, several miR156/7-encoding loci were found expressed in anther tissues at later stages of development. We conclude that fully fertile Arabidopsis flowers require the action of multiple miR156/7-targeted SPL genes in concert with SPL8. Either together with SPL/NZZ or independently, these SPL genes act to regulate genes mediating cell division, differentiation, and specification early in anther development. Furthermore, SPL8 in particular may be required to secure fertility of the very first flowers when floral transition-related miR156/7 levels might not have sufficiently declined.
Collapse
Affiliation(s)
- Shuping Xing
- Department of Molecular Plant Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | | | | | |
Collapse
|
30
|
Kelliher T, Walbot V. Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 2010; 350:32-49. [PMID: 21070762 DOI: 10.1016/j.ydbio.2010.11.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants, the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis; however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium, the somatic tissues consist of four concentric cell layers that surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild-type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over 30 days of wild-type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2'-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain.
Collapse
Affiliation(s)
- Timothy Kelliher
- Stanford University, Department of Biology, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
31
|
Burns C, Stajich JE, Rechtsteiner A, Casselton L, Hanlon SE, Wilke SK, Savytskyy OP, Gathman AC, Lilly WW, Lieb JD, Zolan ME, Pukkila PJ. Analysis of the Basidiomycete Coprinopsis cinerea reveals conservation of the core meiotic expression program over half a billion years of evolution. PLoS Genet 2010; 6:e1001135. [PMID: 20885784 PMCID: PMC2944786 DOI: 10.1371/journal.pgen.1001135] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023] Open
Abstract
Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (∼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged ∼500–900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles. Meiosis is the part of the sexual reproduction process in which the number of chromosomes in an organism is halved. This occurs in most plants, animals, and fungi; and many of the proteins involved are the same in the different organisms that have been studied. We wanted to ask whether the genes involved in the meiotic process are turned on and off at the same stages of meiosis in organisms that separated a long time ago. To do this we looked at three fungal species, Saccharomyces cerevisiae (baker's yeast), Schizosaccharomyces pombe (a very distantly related fungus of the same phylum), and Coprinopsis cinerea (a mushroom-forming fungus of a different phylum), which had a common ancestor 500–900 million years ago (in comparison, rats and mice separated ∼23 million years ago). We lined up meiotic stages and found that gene expression during the meiotic process was more conserved for meiotic genes than for non-meiotic genes, indicating ancient conservation of the meiotic process.
Collapse
Affiliation(s)
- Claire Burns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jason E. Stajich
- Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Andreas Rechtsteiner
- Department of Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lorna Casselton
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Sean E. Hanlon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah K. Wilke
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Oleksandr P. Savytskyy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Allen C. Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, United States of America
| | - Walt W. Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Miriam E. Zolan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Patricia J. Pukkila
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:939-51. [PMID: 20626649 PMCID: PMC2974755 DOI: 10.1111/j.1365-313x.2010.04294.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - John F. Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| |
Collapse
|
33
|
Walbot V, Skibbe DS. Maize host requirements for Ustilago maydis tumor induction. SEXUAL PLANT REPRODUCTION 2010; 23:1-13. [PMID: 20165959 PMCID: PMC4103431 DOI: 10.1007/s00497-009-0109-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
The biotrophic pathogen Ustilago maydis causes tumors by redirecting vegetative and floral development in maize (Zea mays L.). After fungal injection into immature tassels, tumors were found in all floral organs, with a progression of organ susceptibility that mirrors the sequential location of foci of cell division in developing spikelets. There is sharp demarcation between tumor-forming zones and areas with normal spikelet maturation and pollen shed; within and immediately adjacent to the tumor zone, developing anthers often emerge precociously and exhibit a range of developmental defects suggesting that U. maydis signals and host responses are restricted spatially. Male-sterile maize mutants with defects in anther cell division patterns and cell fate acquisition prior to meiosis formed normal adult leaf tumors, but failed to form anther tumors. Methyl jasmonate and brassinosteroid phenocopied these early-acting anther developmental mutants by generating sterile zones within tassels that never formed tumors. Although auxin, cytokinin, abscisic acid and gibberellin did not impede tassel development, the Dwarf8 mutant defective in gibberellin signaling lacked tassel tumors; the anther ear1 mutant reduced in gibberellin content formed normal tumors; and Knotted1, in which there is excessive growth of leaf tissue, formed much larger vegetative and tassel tumors. We propose the hypothesis that host growth potential and tissue identity modulate the ability of U. maydis to redirect differentiation and induce tumors.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA.
| | | |
Collapse
|
34
|
Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D. The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1401-11. [PMID: 19726570 PMCID: PMC2773108 DOI: 10.1104/pp.109.145896] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
The stamen, which consists of an anther and a filament, is the male reproductive organ in a flower. The specification of stamen identity in Arabidopsis (Arabidopsis thaliana) is controlled by a combination of the B genes APETALA3 (AP3) and PISTILLATA, the C gene AGAMOUS (AG), and the E genes SEPALLATA1 (SEP1) to SEP4. The "floral organ-building" gene SPOROCYTELESS/NOZZLE (SPL/NZZ) plays a central role in regulating anther cell differentiation. However, much less is known about how "floral organ identity" and floral organ-building genes interact to control floral organ development. In this study, we report that ectopic expression of SPL/NZZ not only affects flower development in the wild-type background but also leads to the transformation of petal-like organs into stamen-like organs in flowers of ap2-1, a weak ap2 mutant allele. Moreover, our loss-of-function analysis indicates that the spl/nzz mutant enhances the phenotype of the ag weak allele ag-4. Furthermore, ectopic expression and overexpression of SPL/NZZ altered expression of AG, SEP3, and AP2 in rosette leaves and flowers, while ectopic expression of SPL/NZZ resulted in ectopic expression of AG and SEP3 in the outer whorls of flowers. Our results indicate that the SPL/NZZ gene is engaged in controlling stamen identity via interacting with genes required for stamen identity in Arabidopsis.
Collapse
|
35
|
Zhao D. Control of anther cell differentiation: a teamwork of receptor-like kinases. ACTA ACUST UNITED AC 2009; 22:221-8. [DOI: 10.1007/s00497-009-0106-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/20/2009] [Indexed: 11/28/2022]
|
36
|
Skibbe DS, Fernandes JF, Medzihradszky KF, Burlingame AL, Walbot V. Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:622-33. [PMID: 19453454 DOI: 10.1111/j.1365-313x.2009.03901.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite the high conservation of anther gene expression patterns across maize lines, Mu transposition programmed by transcriptionally active MuDR results in a 25% change in the transcriptome, monitored over 90 h of immature anther development, without altering the morphology, anatomy or pace of development. Most transcriptome changes are stage specific: cases of suppression of normal transcripts and ectopic activation are equally represented. Protein abundance changes were validated for numerous metabolic enzymes, and highlight the increased carbon and reactive oxygen management in Mutator anthers. Active Mutator lines appear to experience chronic stress, on a par with abiotic treatments that stimulate early flowering. Despite the diversity of acclimation responses, anther development progresses normally, in contrast to male-sterile mutants that disrupt anther cell fate or function completely, and cause fewer transcriptome changes. The early flowering phenotype ultimately confers an advantage in Mu element transmission.
Collapse
Affiliation(s)
- David S Skibbe
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | | | | | |
Collapse
|
37
|
Huang MD, Wei FJ, Wu CC, Hsing YIC, Huang AHC. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. PLANT PHYSIOLOGY 2009; 149:694-707. [PMID: 19091874 PMCID: PMC2633857 DOI: 10.1104/pp.108.131128] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/05/2008] [Indexed: 05/22/2023]
Abstract
The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.
Collapse
Affiliation(s)
- Ming-Der Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol 2008; 9:R181. [PMID: 19099579 PMCID: PMC2646285 DOI: 10.1186/gb-2008-9-12-r181] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/17/2008] [Accepted: 12/19/2008] [Indexed: 11/10/2022] Open
Abstract
Background During flowering, central anther cells switch from mitosis to meiosis, ultimately forming pollen containing haploid sperm. Four rings of surrounding somatic cells differentiate to support first meiosis and later pollen dispersal. Synchronous development of many anthers per tassel and within each anther facilitates dissection of carefully staged maize anthers for transcriptome profiling. Results Global gene expression profiles of 7 stages representing 29 days of anther development are analyzed using a 44 K oligonucleotide array querying approximately 80% of maize protein-coding genes. Mature haploid pollen containing just two cell types expresses 10,000 transcripts. Anthers contain 5 major cell types and express >24,000 transcript types: each anther stage expresses approximately 10,000 constitutive and approximately 10,000 or more transcripts restricted to one or a few stages. The lowest complexity is present during meiosis. Large suites of stage-specific and co-expressed genes are identified through Gene Ontology and clustering analyses as functional classes for pre-meiotic, meiotic, and post-meiotic anther development. MADS box and zinc finger transcription factors with constitutive and stage-limited expression are identified. Conclusions We propose that the extensive gene expression of anther cells and pollen represents the key test of maize genome fitness, permitting strong selection against deleterious alleles in diploid anthers and haploid pollen. Because flowering plants show a substantial bias for male-sterile compared to female-sterile mutations, we propose that this fitness test is general. Because both somatic and germinal cells are transcriptionally quiescent during meiosis, we hypothesize that successful completion of meiosis is required to trigger maturation of anther somatic cells.
Collapse
|
39
|
Fernandes J, Morrow DJ, Casati P, Walbot V. Distinctive transcriptome responses to adverse environmental conditions in Zea mays L. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:782-98. [PMID: 18643947 DOI: 10.1111/j.1467-7652.2008.00360.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Maize seedling transcriptome responses to six abiotic perturbations (heat, cold, darkness, desiccation, salt, ultraviolet-B) were analysed. Approximately 7800 transcripts were expressed in one or more treatments compared with light-grown seedlings plus juvenile leaves from field-grown plants. Approximately 5200 transcripts were expressed in one or more treatments and absent in light-grown seedlings. Approximately 2000 transcripts were unique to one treatment. Salt and heat elicited the largest number of transcript changes; however, salt resulted in mostly a decreased abundance of transcripts, whereas heat shock resulted in mostly an increased abundance of transcripts. A total of 384 transcripts were common to all stress treatments and not expressed in light-grown seedlings; 146 transcripts were present in light-grown seedlings and absent from all stress treatments. A complex pattern of overlapping transcripts between treatments was found, and a significant pattern of congruence in the direction of transcript change between pairs of treatments was uncovered. From the analysis, it appears that the scope of gene expression changes is determined by the challenge, indicating specificity in perception and response. Nonetheless, transcripts regulated by multiple responses are generally affected in the same manner, indicating common or converging regulatory networks. The data are available for additional analysis through a searchable database.
Collapse
Affiliation(s)
- John Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
40
|
Dwivedi S, Perotti E, Ortiz R. Towards molecular breeding of reproductive traits in cereal crops. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:529-559. [PMID: 18507792 DOI: 10.1111/j.1467-7652.2008.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transition from vegetative to reproductive phase, flowering per se, floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.
Collapse
Affiliation(s)
- Sangam Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | | | | |
Collapse
|
41
|
Wang Y, Wu H, Yang M. Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis. MOLECULAR PLANT 2008; 1:667-674. [PMID: 19825571 DOI: 10.1093/mp/ssn027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuolate microspore stage to the early binucleate pollen stage. We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data. The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest, as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue. No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion. A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase, an extra-large G-protein, other protein kinases, and transcription factors. In addition, proteases, cell wall degradation enzymes, and other proteins were also identified. These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components. Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen, it is further hypothesized that the signaling network acts in the tapetal degeneration process.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
42
|
Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y. Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:342-355. [PMID: 18426481 DOI: 10.1111/j.1438-8677.2008.00039.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel male-sterile mutant which lacks mature pollen, Brassisa campestris male sterile (bcms), was identified in Brassica campestris L. ssp. chinensis Makino (syn. B. rapa ssp. chinensis). Genetic analysis revealed that bcms was controlled by a single recessive mutation locus. Genome-wide transcriptional profiling was performed on the flower buds of both the bcms mutant and the wild-type from which it originated, and profiling analysis indicated that there were numerous changes in gene expression attributable to the gene mutation. This mutation resulted in down-regulation of a variety of genes and up-regulated expression of a few other genes. A total of 51 transcript-derived fragments (TDFs) were isolated: 32 specifically and 12 predominantly accumulated in wild-type flower buds, and two specifically and five predominantly accumulated in bcms flower buds. Sequence analysis showed that some of these TDFs share significant similarities with genes involved in different aspects of cellular development, such as signal transduction, cell wall biosynthesis and regulation. Most other TDFs showed no or very poor sequence similarities to entries in any database and might represent new candidate proteins involved in pollen development. Furthermore, spatial and temporal expression pattern analysis of 20 genes derived from cDNA-amplified fragment length polymorphism in different tissues of both the bcms and wild-type plants revealed their complex and dynamic expression patterns. The bcms mutant and the genes isolated in this paper provide excellent material for future studies on the molecular mechanism of male sterility.
Collapse
Affiliation(s)
- L Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
43
|
Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Hervé P, Xue Q, Bennett J. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:375-87. [PMID: 18248596 PMCID: PMC2408674 DOI: 10.1111/j.1365-313x.2008.03426.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 05/18/2023]
Abstract
Hybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC). The cellular origin of AIs is obscure, but one possibility, suggested by the mac1 and msp1 mutants of maize and rice, is that AIs are apomeiotic derivatives of the additional MeMCs that appear when genetic control over sporocyte numbers is relaxed. MULTIPLE SPOROCYTES1 (MSP1) encodes a leucine-rich-repeat receptor kinase, which is orthologous to EXS/EMS1 in Arabidopsis. Like mac1 and msp1, exs/ems1 mutants produce extra sporocytes in the anther instead of a tapetum, causing male sterility. This phenotype is copied in mutants of TAPETUM DETERMINANT1 (TPD1), which encodes a small protein hypothesized to be an extracellular ligand of EXS/EMS1. Here we show that rice contains two TPD1-like genes, OsTDL1A and OsTDL1B. Both are co-expressed with MSP1 in anthers during meiosis, but only OsTDL1A and MSP1 are co-expressed in the ovule. OsTDL1A binds to the leucine-rich-repeat domain of MSP1 in yeast two-hybrid assays and bimolecular fluorescence complementation in onion cells; OsTDL1B lacks this capacity. When driven by the maize Ubiquitin1 promoter, RNA interference against OsTDL1A phenocopies msp1 in the ovule but not in the anther. Thus, RNAi produces multiple MeMCs without causing male sterility. We conclude that OsTDL1A binds MSP1 in order to limit sporocyte numbers. OsTDL1A-RNAi lines may be suitable starting points for achieving synthetic apospory in rice.
Collapse
Affiliation(s)
- Xinai Zhao
- College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
| | - Justina de Palma
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
| | - Rowena Oane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
| | - Rico Gamuyao
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
| | - Ming Luo
- Division of Plant Industry, Commonwealth Scientific and Industrial Research OrganizationCanberra, Australia
| | - Abdul Chaudhury
- Division of Plant Industry, Commonwealth Scientific and Industrial Research OrganizationCanberra, Australia
| | - Philippe Hervé
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
| | - Qingzhong Xue
- College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - John Bennett
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research InstituteManila, Philippines
- For correspondence (fax +632 5805699; e-mail )
| |
Collapse
|
44
|
Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci U S A 2008; 105:2220-5. [PMID: 18250314 DOI: 10.1073/pnas.0708795105] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction requires the specification of cells with distinct fates in plants and animals. The EMS1 (also known as EXS) leucine-rich repeat receptor-like kinase (LRR-RLK) and TPD1 small protein play key roles in regulating somatic and reproductive cell fate determination in Arabidopsis anthers. Here, we show that ectopic expression of TPD1 causes abnormal differentiation of somatic and reproductive cells in anthers. In addition, ectopic TPD1 activity requires functional EMS1. Yeast two-hybrid, pull-down, and coimmunoprecipitation analyses further demonstrate that TPD1 interacts with EMS1 in vitro and in vivo. Moreover, TPD1 induces EMS1 phosphorylation in planta. Thus, our results suggest that TPD1 serves as a ligand for the EMS1 receptor kinase to signal cell fate determination during plant sexual reproduction.
Collapse
|