1
|
Ablazov A, Jamil M, Haider I, Wang JY, Melino V, Maghrebi M, Vigani G, Liew KX, Lin P, Chen GE, Kuijer HNJ, Berqdar L, Mazzarella T, Fiorilli V, Lanfranco L, Zheng X, Dai N, Lai M, Caroline Hsing Y, Tester M, Blilou I, Al‐Babili S. Zaxinone Synthase overexpression modulates rice physiology and metabolism, enhancing nutrient uptake, growth and productivity. PLANT, CELL & ENVIRONMENT 2025; 48:2615-2629. [PMID: 38924092 PMCID: PMC11893931 DOI: 10.1111/pce.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.
Collapse
Affiliation(s)
- Abdugaffor Ablazov
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Muhammad Jamil
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Imran Haider
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and BreedingUniversity of Bari Aldo MoroBariItaly
| | - Jian You Wang
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vanessa Melino
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Moez Maghrebi
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Gianpiero Vigani
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Kit Xi Liew
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Pei‐Yu Lin
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Guan‐Ting Erica Chen
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hendrik N. J. Kuijer
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Lamis Berqdar
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Teresa Mazzarella
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Valentina Fiorilli
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Xiongjie Zheng
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Nai‐Chiang Dai
- Crop Science DivisionTaiwan Agricultural Research InstituteTaichungTaiwan
| | - Ming‐Hsin Lai
- Crop Science DivisionTaiwan Agricultural Research InstituteTaichungTaiwan
| | | | - Mark Tester
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Salim Al‐Babili
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
2
|
Sun Y, Jiang T, Sun L, Qin Q, Yang S, Wang J, Sun S, Xue Y. Phosphorus and sulphur crosstalk in cereals: Unraveling the molecular interplay, agronomic impacts on yield and heavy metal tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109838. [PMID: 40158480 DOI: 10.1016/j.plaphy.2025.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Phosphorus (P) and sulphur (S) are essential macronutrients for crop growth, playing critical roles in physiological and biochemical processes throughout the plant life cycle, as well as in mitigating heavy metal and metalloid toxicity. Therefore, the coordinated use of P and S is crucial for optimizing crop growth and reducing the accumulation of heavy metals and metalloids in plants. While P and S signaling pathways are often studied independently, our understanding of their interactions remains limited. A series of recent studies have revealed key components regulating P-S interactions in cereal crops such as rice, maize and wheat, providing new insights into the network that integrates the signaling pathways of P and S. However, the interaction between P and S in molecular regulatory pathways, crop yield improvement, and resistance to heavy metal stress has not yet been systematically summarized or hypothesized. Here, we summarize the latest advances in P-S interactions and propose potential working mechanisms that integrate these P-S interactive regulatory pathways in cereal crops. Furthermore, we discuss the regulatory mechanisms of P-S interactions in cereal crops that still need to be uncovered in the future.
Collapse
Affiliation(s)
- Yafei Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tingting Jiang
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lijuan Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qin Qin
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jun Wang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China.
| | - Yong Xue
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
3
|
Hussain HA, Uddin S, Liu D, Long W. Decoding the ZmNF-YC1-ZmAPRG pathway for phosphorus efficiency. FRONTIERS IN PLANT SCIENCE 2025; 16:1548962. [PMID: 40177012 PMCID: PMC11961643 DOI: 10.3389/fpls.2025.1548962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Hafiz Athar Hussain
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Saleem Uddin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Daofeng Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Wenjing Long
- Rice and Sorghum Institute, Sichuan Academy of Agricultural Sciences, National Sorghum Improvement Center Sichuan Branch, Deyang, Sichuan, China
| |
Collapse
|
4
|
Shen Y, Chen J, Liu H, Zhu W, Chen Z, Zhang L, Du R, Wu Z, Liu S, Zhou S, FuminYuan, Zhao H, Yin N, Li J, Qu C, Du H. Genome-wide identification and analysis of phosphate utilization related genes (PURs) reveal their roles involved in low phosphate responses in Brassica napus L. BMC PLANT BIOLOGY 2025; 25:326. [PMID: 40082789 PMCID: PMC11905441 DOI: 10.1186/s12870-025-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for Brassica napus L. growth and development, and is mainly acquired from the soil as phosphate (Pi). However, there is no research on the system analysis of Pi utilization related genes (PURs) in B. napus yet. RESULTS In this study, 285 PURs were identified in B. napus genome, including 4 transcription factor (TF) gene families (83 genes) and 17 structural gene families (202 genes). Subcellular localization analysis showed that the proteins encoded by B. napus PURs were mainly located in the nucleus (~ 46.0%) and cell membrane (~ 36.5%). Chromosome localization analysis suggested that B. napus PURs were distributed on An (131) and Cn (149) subgenomes without bias. Analysis of 35 representative species confirmed that PURs were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Collinearity analysis revealed that allopolyploidization and small-scale duplication events resulted in the large expansion of B. napus PURs. For each gene pair of B. napus PURs, the sequence identity of promoter was significantly lower than that of CDS, proving the significant difference in promoter region that might be related to the divergence of PURs expression and function. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of B. napus PURs are regulated by multiple factors including 32 TF gene families (362), 108 types of CRE (29,770) and 25 types of miRNAs (66). Spatiotemporal expression analysis demonstrated that B. napus PURs were widely expressed during the whole developmental stages, and most synteny-gene pairs (76.42%) shared conserved expression patterns. RNA-seq analyses revealed that most B. napus PURs were induced by low Pi stress, and the hub genes were generally the Pi transporter (PHT) family members. qRT-PCR analysis proved that the expression levels of four B. napus PURs were positively correlated with the root system architecture of three B. napus varieties under low Pi supply at the seedling stage. CONCLUSION The 285 PURs were identified from B. napus with strong LP inducible expression profile. Our findings regarding the evolution, transcriptional regulation, and expression of B. napus PURs provide valuable information for further functional research.
Collapse
Affiliation(s)
- Yibing Shen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiaqi Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Haijiang Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenyu Zhu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Li Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Runjie Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Sining Zhou
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - FuminYuan
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Huiyan Zhao
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Nengwen Yin
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Alves JDS, Menguer PK, Lima-Melo Y, Fiorentini VHR, Ponte LR, Olsson RV, Sasso VM, De Palma N, Tabaldi LA, Brunetto G, Giehl RFH, Margis-Pinheiro M, Ricachenevsky FK. Aluminum alleviates iron deficiency chlorosis by interfering with phosphorus homeostasis in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109427. [PMID: 39893947 DOI: 10.1016/j.plaphy.2024.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Rice (Oryza sativa L.) is a staple food for more than half of the human population. Rice plants are cultivated in several different environments, and face various abiotic stresses, including nutritional imbalance in soils. The ionome, the inorganic composition of an organism, is known to be tightly regulated, as changes in concentration of one element affect concentrations of others. Iron (Fe) is an essential element that is involved in redox reactions, nitrogen metabolism and chlorophyll synthesis. The hallmark of Fe deficiency in plants is leaf chlorosis, a phenotype known to be alleviated by deficiencies of other elements, such as phosphorus (P). Aluminum (Al) is abundant in soils and limits plant growth in acidic soils. Despite its well-established detrimental effects, Al has been proposed to have a positive effect on growth for some species, but little is known about this phenomenon. Here we aim to understand whether Al affects Fe homeostasis in rice. We found that Al alleviated Fe deficiency-induced chlorosis. +Al-Fe treatment decreased expression of Fe deficiency marker genes and partially recovered photosynthesis. We also observed that Al induced expression of a P deficiency marker gene, and addition of excess P to nutrient solution reversed effects of Al on chlorosis. Our data show that Al alleviates Fe deficiency-induced chlorosis, and suggests that this occurs indirectly by inducing P deficiency in leaves.
Collapse
Affiliation(s)
| | | | - Yugo Lima-Melo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Lucas Roani Ponte
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Vic Martini Sasso
- Departamento de Biologia, Universidade Federal de Santa Maria, Brazil
| | - Nicolás De Palma
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Gustavo Brunetto
- Departamento de Biologia, Universidade Federal de Santa Maria, Brazil
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Márcia Margis-Pinheiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, Brazil
| | - Felipe Klein Ricachenevsky
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Guo Z, Zhang C, Zhao H, Liu Y, Chen X, Zhao H, Chen L, Ruan W, Chen Y, Yuan L, Yi K, Xu L, Zhang J. Vacuolar phosphate efflux transporter ZmVPEs mediate phosphate homeostasis and remobilization in maize leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:311-326. [PMID: 39620397 DOI: 10.1111/jipb.13811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Vacuoles play a crucial role in inorganic phosphate (Pi) storage and remobilization in plants. However, the physiological function of vacuolar phosphate efflux transporters in plant Pi remobilization remains obscure. Here, we identified three ZmVPE genes (ZmVPE1, ZmVPE2a, ZmVPE2b) by combining them with transcriptome and quantitative real-time polymerase chain reaction (PCR) analyses, showing a relatively higher expression in older leaves than in younger leaves in maize. Moreover, the expression of the ZmVPEs was triggered by Pi deficiency and abscisic acid. ZmVPEs were localized to the vacuolar membrane and responsible for vacuolar Pi efflux. Compared with the wild-type, Pi remobilization from older to younger leaves was enhanced in ZmVPE-overexpression lines. zmvpe2a mutants displayed an increase in the total P and Pi concentrations in older leaves, but a decrease in younger leaves. In rice, Pi remobilization was impaired in the osvpe1osvpe2 double mutant and enhanced in OsVPE-overexpression plants, suggesting conserved functions of VPEs in modulating Pi homeostasis and remobilization in crop plants. Taken together, our findings revealed a novel mechanism underlying Pi remobilization from older to younger leaves mediated by plant vacuolar Pi efflux transporters, facilitating the development of Pi-efficient crop plants.
Collapse
Affiliation(s)
- Zhenhui Guo
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Chaonan Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Hongyu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiyao Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Hanshu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yifang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Yang M, Sakuraba Y, Yanagisawa S. Down-regulation of the rice HRS1 HOMOLOG3 transcriptional repressor gene due to N deficiency directly co-activates ammonium and phosphate transporter genes. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:461-477. [PMID: 39470443 PMCID: PMC11714757 DOI: 10.1093/jxb/erae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Rice HRS1 HOMOLOG3 (OsHHO3) acts as a transcriptional repressor of AMMONIUM TRANSPORTER1 (OsAMT1) genes in rice; thus, reduced OsHHO3 expression in nitrogen (N)-deficient environments promotes ammonium uptake. In this study, we show that OsHHO3 also functions as a repressor of a specific subset of phosphate (Pi) transporter (PT) genes involved in the uptake and root-to-shoot translocation of Pi, including OsPT2, OsPT4, and OsPHO1;1. Disruption of OsHHO3 increased Pi uptake and Pi contents in shoots and roots, while overexpression of OsHHO3 caused the opposite effects. Furthermore, phosphorus (P) deficiency slightly decreased OsHHO3 expression, up-regulating a specific subset of PT genes. However, N deficiency was more effective than P deficiency in suppressing OsHHO3 expression in roots, and unlike N deficiency-dependent activation of PT genes under the control of OsHHO3, the P deficiency-dependent activation of OsAMT1 genes was minimal. Interestingly, the simultaneous deficiency of both N and P promoted the OsHHO3-regulated expression of PT genes more significantly than the deficiency of either N or P, but diminished the expression of genes regulated by OsPHR2, a master regulator of Pi starvation-responsive transcriptional activation. Phenotypic analysis revealed that the inactivation and overexpression of OsHHO3 improved and reduced plant growth, respectively, under N-deficient and P-deficient conditions. These results indicate that OsHHO3 regulates a specific subset of PT genes independently of OsPHR2-mediated regulation and plays a critical role in the adaptation to diverse N and P environments.
Collapse
Affiliation(s)
- Mailun Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Li X, Tian J, Chen X, Liao H. Bioengineering and management for efficient and sustainable utilization of phosphorus in crops. Curr Opin Biotechnol 2024; 90:103180. [PMID: 39241658 DOI: 10.1016/j.copbio.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth, but low P availability in soils is also a primary constraint to crop production. To meet the increasing demands for food, P fertilizer applications have been increased, causing the accumulation of surplus P in soils, which has led to the frequency and magnitude of associated risk effects on agroecosystems. Finding solutions for efficient and sustainable crop P utilization is, therefore, an urgent priority. This review summarizes recent progress in bioengineering approaches to improving crop P efficiency and highlights that modifying root architecture in P-deficient soils and reducing P accumulation in grains in soils with P surplus could offer a way forward for improving P use efficiency.
Collapse
Affiliation(s)
- Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Hu H, Wang Y, Zhong H, Li B, Qi J, Wang Y, Liu J, Zhang S, Zhang H, Luo B, Zhang X, Nie Z, Zhang H, Gao D, Gao S, Liu D, Wu L, Gao S. Functional analysis of ZmPHR1 and ZmPHR2 under low-phosphate stress in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:69. [PMID: 39359407 PMCID: PMC11442720 DOI: 10.1007/s11032-024-01508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01508-2.
Collapse
Affiliation(s)
- Hongmei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yikai Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haixu Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Binyang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jingxiao Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yarong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shuhao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haiying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Zhi Nie
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan China
| | - Hongkai Zhang
- Sichuan University of Science and Engineering, Yibin, Sichuan China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Ling Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Liu J, Xu W, Zhang Q, Liao W, Li L, Chen S, Yang J, Wang Z, Xu F. OsPHR2-mediated recruitment of Pseudomonadaceae enhances rice phosphorus uptake. PLANT COMMUNICATIONS 2024; 5:100930. [PMID: 38685708 PMCID: PMC11369732 DOI: 10.1016/j.xplc.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Plants can shape their root microbiome to promote growth and nutrient uptake. PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) is a central regulator of phosphate signaling in rice, but whether OsPHR2 can shape the root microbiome to promote phosphorus uptake is unclear. Here, we investigate the role of OsPHR2 in recruiting microbiota for phosphorus uptake using high-throughput sequencing and metabolite analysis. OsPHR2-overexpressing (OsPHR2 OE) rice showed 69.8% greater shoot P uptake in natural soil compared with sterilized soil under high-phosphorus (HP) conditions, but there was only a 54.8% increase in the wild-type (WT). The abundance of the family Pseudomonadaceae was significantly enriched in OsPHR2 OE roots relative to those of WT rice. Compared with the WT, OsPHR2 OE rice had a relatively higher abundance of succinic acid and methylmalonic acid, which could stimulate the growth of Pseudomonas sp. (P6). After inoculation with P6, phosphorus uptake in WT and OsPHR2 OE rice was higher than that in uninoculated rice under low-phosphorus (LP) conditions. Taken together, our results suggest that OsPHR2 can increase phosphorus use in rice through root exudate-mediated recruitment of Pseudomonas. This finding reveals a cooperative contribution of the OsPHR2-modulated root microbiome, which is important for improving phosphorus use in agriculture.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Li
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Chen
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyong Yang
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengrui Wang
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Li L, Zhang X, Li D, Su H, He Y, Xu Z, Zhao Y, Hong Y, Li Q, Xu P, Hong G. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. HORTICULTURE RESEARCH 2024; 11:uhae178. [PMID: 39161738 PMCID: PMC11331543 DOI: 10.1093/hr/uhae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Catechins constitute abundant metabolites in tea and have potential health benefits and high economic value. Intensive study has shown that the biosynthesis of tea catechins is regulated by environmental factors and hormonal signals. However, little is known about the coordination of phosphate (Pi) signaling and the jasmonic acid (JA) pathway on biosynthesis of tea catechins. We found that Pi deficiency caused changes in the content of catechins and modulated the expression levels of genes involved in catechin biosynthesis. Herein, we identified two transcription factors of phosphate signaling in tea, named CsPHR1 and CsPHR2, respectively. Both regulated catechin biosynthesis by activating the transcription of CsANR1 and CsMYB5c. We further demonstrated CsSPX1, a Pi pathway repressor, suppressing the activation by CsPHR1/2 of CsANR1 and CsMYB5c. JA, one of the endogenous plant hormones, has been reported to be involved in the regulation of secondary metabolism. Our work demonstrated that the JA signaling repressor CsJAZ3 negatively regulated catechin biosynthesis via physical interaction with CsPHR1 and CsPHR2. Thus, the CsPHRs-CsJAZ3 module bridges the nutrition and hormone signals, contributing to targeted cultivation of high-quality tea cultivars with high fertilizer efficiency.
Collapse
Affiliation(s)
- Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Department of Tea Science, College of Horticulture, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yiyi Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| |
Collapse
|
12
|
Luo B, Zhang H, Han Z, Zhang X, Guo J, Zhang S, Luo X, Zhao J, Wang W, Yang G, Zhang C, Li J, Ma J, Zheng H, Tang Z, Lan Y, Ma P, Nie Z, Li Y, Liu D, Wu L, Gao D, Gao S, Su S, Guo J, Gao S. Exploring the phosphorus-starch content balance mechanisms in maize grains using GWAS population and transcriptome data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:158. [PMID: 38864891 DOI: 10.1007/s00122-024-04667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zirui Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, China
| | - Yunjian Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Zhuomeng L, Ji T, Chen Q, Xu C, Liu Y, Yang X, Li J, Yang F. Genome-wide identification and characterization of SPXdomain-containing genes family in eggplant. PeerJ 2024; 12:e17341. [PMID: 38827281 PMCID: PMC11141551 DOI: 10.7717/peerj.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024] Open
Abstract
Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.
Collapse
Affiliation(s)
- Li Zhuomeng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| | - Qi Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Chenxiao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Yuqing Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Xiaodong Yang
- Weifang Academy of Agricultural Science, Weifang, China
| | - Jing Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| | - Fengjuan Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| |
Collapse
|
15
|
Zhao B, Jia X, Yu N, Murray JD, Yi K, Wang E. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. THE NEW PHYTOLOGIST 2024; 242:1507-1522. [PMID: 37715479 DOI: 10.1111/nph.19263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.
Collapse
Affiliation(s)
- Boyu Zhao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
| |
Collapse
|
16
|
Nussaume L, Kanno S. Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. JOURNAL OF PLANT RESEARCH 2024; 137:297-306. [PMID: 38517656 DOI: 10.1007/s10265-024-01533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.
Collapse
Affiliation(s)
- Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint‑Paul Lez Durance, France.
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, 1-1-1, Furocho, Chikusaku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
17
|
Baek D, Hong S, Kim HJ, Moon S, Jung KH, Yang WT, Kim DH. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis. Int J Mol Sci 2024; 25:2209. [PMID: 38396886 PMCID: PMC10889527 DOI: 10.3390/ijms25042209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Collapse
Affiliation(s)
- Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Soyeon Hong
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Hye Jeong Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Won Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
18
|
Guo M, Ruan W, Li R, Xu L, Hani S, Zhang Q, David P, Ren J, Zheng B, Nussaume L, Yi K. Visualizing plant intracellular inorganic orthophosphate distribution. NATURE PLANTS 2024; 10:315-326. [PMID: 38195907 DOI: 10.1038/s41477-023-01612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Intracellular inorganic orthophosphate (Pi) distribution and homeostasis profoundly affect plant growth and development. However, its distribution patterns remain elusive owing to the lack of efficient cellular Pi imaging methods. Here we develop a rapid colorimetric Pi imaging method, inorganic orthophosphate staining assay (IOSA), that can semi-quantitatively image intracellular Pi with high resolution. We used IOSA to reveal the alteration of cellular Pi distribution caused by Pi starvation or mutations that alter Pi homeostasis in two model plants, rice and Arabidopsis, and found that xylem parenchyma cells and basal node sieve tube element cells play a critical role in Pi homeostasis in rice. We also used IOSA to screen for mutants altered in cellular Pi homeostasis. From this, we have identified a novel cellular Pi distribution regulator, HPA1/PHO1;1, specifically expressed in the companion and xylem parenchyma cells regulating phloem Pi translocation from the leaf tip to the leaf base in rice. Taken together, IOSA provides a powerful method for visualizing cellular Pi distribution and facilitates the analysis of Pi signalling and homeostasis from the level of the cell to the whole plant.
Collapse
Affiliation(s)
- Meina Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources/ National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ruili Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sahar Hani
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pascale David
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Jianhao Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Laurent Nussaume
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
19
|
Molla KA. A significant P value: How phosphorus controls plant height. THE PLANT CELL 2024; 36:213-214. [PMID: 37943675 PMCID: PMC10827309 DOI: 10.1093/plcell/koad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Kutubuddin A Molla
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- ICAR-National Rice Research Institute, Cuttack 753006, India
| |
Collapse
|
20
|
Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. THE PLANT CELL 2024; 36:298-323. [PMID: 37847093 PMCID: PMC10827323 DOI: 10.1093/plcell/koad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiao Deng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
21
|
Liu N, Shang W, Guan M, Xiao J, Tian G, Ma B, Shang W, Li X, Zhao S, Li C, Cheng K, Zheng W. Phosphate deficiency responsive TaSPX3 is involved in the regulation of shoot phosphorus in Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108215. [PMID: 38029619 DOI: 10.1016/j.plaphy.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
SPX (SYG/PHO81/XPR1) domain genes have been reported to play vital roles in the Phosphorus (Pi) signaling network in Arabidopsis thaliana and rice. However, the functions of SPX proteins in wheat remain largely unknown. In this study, the full-length cDNA sequence of the TaSPX3 gene was cloned from the common wheat variety Zhengmai9023. The expression of TaSPX3 was up-regulated in eight different genotypes of wheat under low phosphorus (LP) stress, indicating that TaSPX3 responds to Pi limitation in multiple wheat genotypes. The transcription level of TaSPX3 was also detected in the absence of seven different elements, showing certain specificity for Pi deficiency in wheat. Over expressing TaSPX3 in Arabidopsis can alleviate Pi deficiency symptoms at the seedling stage and promote the growth of plant, and advance the flowering period at the adult stage. The expression of 7 genes associated with the Pi starvation signal pathways was analyzed using qRT-PCR. The results showed that TaSPX3, along with AtSPX1, AtRNS1, AtIPS1, AtPAP2, AtPAP17 and AtAT4, were all induced by Pi deficiency. This study reveals that the TaSPX3 gene in wheat is involved in the response to phosphorus stress and may affect shoot phosphorus levels through AT4 or PAPs-related pathways. Overall, our study provides new insights into the regulation of plant response under LP conditions and the molecular mechanism underlying the role of the wheat SPX gene in coping with LP stress.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenyan Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Mengxin Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jibin Xiao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Guangxiang Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Baozhan Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenjing Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xu Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shijia Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Kun Cheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
22
|
Zhang H, Luo B, Liu J, Jin X, Zhang H, Zhong H, Li B, Hu H, Wang Y, Ali A, Riaz A, Sahito JH, Iqbal MZ, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Functional analysis of ZmG6PE reveals its role in responses to low-phosphorus stress and regulation of grain yield in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1286699. [PMID: 38023907 PMCID: PMC10666784 DOI: 10.3389/fpls.2023.1286699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and β-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.
Collapse
Affiliation(s)
- Hongkai Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Xinwu Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Haiying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Haixu Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Binyang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongmei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yikai Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Asad Riaz
- Centre of Excellence for Plant Success in Nature and Agriculture, The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shunzong Su
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Guo X, Chen Y, Hu Y, Feng F, Zhu X, Sun H, Li J, Zhao Q, Sun H. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:87-99. [PMID: 37340958 DOI: 10.1111/tpj.16361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium (NH 4 + ) is the primary source of N for rice,NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism thatNH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased underNH 4 + compared withNO 3 - supply. UnderNH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 underNO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 byNH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation underNH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation underNH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 byNH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yake Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yibo Hu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
24
|
Chen Y, Han J, Wang X, Chen X, Li Y, Yuan C, Dong J, Yang Q, Wang P. OsIPK2, a Rice Inositol Polyphosphate Kinase Gene, Is Involved in Phosphate Homeostasis and Root Development. PLANT & CELL PHYSIOLOGY 2023; 64:893-905. [PMID: 37233621 DOI: 10.1093/pcp/pcad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Phosphorus (P) is a growth-limiting nutrient for plants, which is taken up by root tissue from the environment as inorganic phosphate (Pi). To maintain an appropriate status of cellular Pi, plants have developed sophisticated strategies to sense the Pi level and modulate their root system architecture (RSA) under the ever-changing growth conditions. However, the molecular basis underlying the mechanism remains elusive. Inositol polyphosphate kinase (IPK2) is a key enzyme in the inositol phosphate metabolism pathway, which catalyzes the phosphorylation of IP3 into IP5 by consuming ATP. In this study, the functions of a rice inositol polyphosphate kinase gene (OsIPK2) in plant Pi homeostasis and thus physiological response to Pi signal were characterized. As a biosynthetic gene for phytic acid in rice, overexpression of OsIPK2 led to distinct changes in inositol polyphosphate profiles and an excessive accumulation of Pi levels in transgenic rice under Pi-sufficient conditions. The inhibitory effects of OsIPK2 on root growth were alleviated by Pi-deficient treatment compared with wild-type plants, suggesting the involvement of OsIPK2 in the Pi-regulated reconstruction of RSA. In OsIPK2-overexpressing plants, the altered acid phosphatase (APase) activities and misregulation of Pi-starvation-induced (PSI) genes were observed in roots under different Pi supply conditions. Notably, the expression of OsIPK2 also altered the Pi homeostasis and RSA in transgenic Arabidopsis. Taken together, our findings demonstrate that OsIPK2 plays an important role in Pi homeostasis and RSA adjustment in response to different environmental Pi levels in plants.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jianming Han
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xiaoyu Wang
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xinyu Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Yonghui Li
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Congying Yuan
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Junyi Dong
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Qiaofeng Yang
- College of Food and Bioengineering, Henan University of Animal Husbandry and Ecomomy, Zhengzhou, Henan 450046, China
| | - Peng Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
25
|
Zhu J, Wei R, Wang X, Jiang X, Wang M, Yang Y, Yang L. The ppk-expressing transgenic rice floating bed improves P removal in slightly polluted water. ENVIRONMENTAL RESEARCH 2023; 231:116261. [PMID: 37245571 DOI: 10.1016/j.envres.2023.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
With significant economic advantages, the plant floating bed has been widely utilized in the ecological remediation of eutrophic water because of the excessive phosphorus (P) and nitrogen discharge in China. Previous research has demonstrated that polyphosphate kinase (ppk)-expressing transgenic rice (Oryza sativa L. ssp. japonica) (ETR) can increase the P absorption capacity to support rice growth and boost rice yield. In this study, the floating beds of ETR with single copy line (ETRS) and double copy line (ETRD) are built to investigate their capacity to remove aqueous P in slightly polluted water. Compared with the wild type Nipponbare (WT) floating bed, the ETR floating beds greatly reduce the total P concentration in slightly polluted water though the ETR floating beds have the same removal rates of chlorophyll-a, NO3--N, and total nitrogen in slightly polluted water. The P uptake rate of ETRD on the floating bed is 72.37% in slightly polluted water, which is higher than that of ETRS and WT on the floating beds. Polyphosphate (polyP) synthesis is a critical factor for the excessive phosphate uptake of ETR on the floating beds. The synthesis of polyP decreases the level of free intracellular phosphate (Pi) in ETR on the floating beds, simulating the phosphate starvation signaling. The OsPHR2 expression in the shoot and root of ETR on the floating bed increased, and the corresponding P metabolism gene expression in ETR was changed, which promoted Pi uptake by ETR in slightly polluted water. The Pi accumulation further promoted the growth of ETR on the floating beds. These findings highlight that the ETR floating beds, especially ETRD floating bed, have significant potential for P removal and can be exploited as a novel method for phytoremediation in slightly polluted water.
Collapse
Affiliation(s)
- Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ruping Wei
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yicheng Yang
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, United States
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
26
|
Zhang Y, Zhang Q, Guo M, Wang X, Li T, Wu Q, Li L, Yi K, Ruan W. NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1874-1889. [PMID: 37096648 DOI: 10.1111/jipb.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.
Collapse
Affiliation(s)
- Yuxin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing, 100083, China
| | - Xueqing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Tianjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| |
Collapse
|
27
|
Gu P, Tao W, Tao J, Sun H, Hu R, Wang D, Zong G, Xie X, Ruan W, Xu G, Yi K, Zhang Y. The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. THE NEW PHYTOLOGIST 2023; 239:673-686. [PMID: 37194447 DOI: 10.1111/nph.18963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.
Collapse
Affiliation(s)
- Pengyuan Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huwei Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ripeng Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guoxinan Zong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaonan Xie
- Utsunomiya University, 321-8505, Utsunomiya, Japan
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| |
Collapse
|
28
|
Tao XY, Guan XY, Hong GJ, He YQ, Li SJ, Feng SL, Wang J, Chen G, Xu F, Wang JW, Xu SC. Biotinylated Tn5 transposase-mediated CUT&Tag efficiently profiles transcription factor-DNA interactions in plants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1191-1205. [PMID: 36786225 DOI: 10.1111/pbi.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gao-Jie Hong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Qing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Su-Juan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shou-Li Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sheng-Chun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
29
|
Huang C, Wang J, Wang D, Chang J, Chen H, Chen D, Deng W, Tian C. Genome-Wide Identification and Analysis of OsSPXs Revealed Its Genetic Influence on Cold Tolerance of Dongxiang Wild Rice (DXWR). Int J Mol Sci 2023; 24:ijms24108755. [PMID: 37240100 DOI: 10.3390/ijms24108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
SPX-domain proteins (small proteins with only the SPX domain) have been proven to be involved in phosphate-related signal transduction and regulation pathways. Except for OsSPX1 research showing that it plays a role in the process of rice adaptation to cold stress, the potential functions of other SPX genes in cold stress are unknown. Therefore, in this study, we identified six OsSPXs from the whole genome of DXWR. The phylogeny of OsSPXs has a strong correlation with its motif. Transcriptome data analysis showed that OsSPXs were highly sensitive to cold stress, and real-time PCR verified that the levels of OsSPX1, OsSPX2, OsSPX4, and OsSPX6 in cold-tolerant materials (DXWR) during cold treatment were higher than that of cold-sensitive rice (GZX49). The promoter region of DXWR OsSPXs contains a large number of cis-acting elements related to abiotic stress tolerance and plant hormone response. At the same time, these genes have expression patterns that are highly similar to cold-tolerance genes. This study provides useful information about OsSPXs, which is helpful for the gene-function research of DXWR and genetic improvements during breeding.
Collapse
Affiliation(s)
- Cheng Huang
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jilin Wang
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Dianwen Wang
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jingjing Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongping Chen
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Dazhou Chen
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wei Deng
- Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
30
|
Pipercevic J, Kohl B, Gerasimaite R, Comte-Miserez V, Hostachy S, Müntener T, Agustoni E, Jessen HJ, Fiedler D, Mayer A, Hiller S. Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 2023; 14:2645. [PMID: 37156835 PMCID: PMC10167327 DOI: 10.1038/s41467-023-38315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Many proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex. Vtc2 inhibits the catalytically active VTC subunit Vtc4 by homotypic SPX-SPX interactions via the conserved helix α1 and the previously undescribed helix α7. Binding of inositol pyrophosphates to Vtc2 abrogates this interaction, thus activating the VTC complex. Accordingly, VTC activation is also achieved by site-specific point mutations that disrupt the SPX-SPX interface. Structural data suggest that ligand binding induces reorientation of helix α1 and exposes the modifiable helix α7, which might facilitate its post-translational modification in vivo. The variable composition of these regions within the SPX domain family might contribute to the diversified SPX functions in eukaryotic phosphate homeostasis.
Collapse
Affiliation(s)
- Joka Pipercevic
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Bastian Kohl
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Ruta Gerasimaite
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
- Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Véronique Comte-Miserez
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
| | - Sarah Hostachy
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Elia Agustoni
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Henning Jacob Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
31
|
Singh NRR, Roychowdhury A, Srivastava R, Gaganan GA, Parida AP, Kumar R. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111723. [PMID: 37142098 DOI: 10.1016/j.plantsci.2023.111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Owing to the essential requirement of phosphorus (P) for growth and development, plants tightly control inorganic phosphate (Pi) homeostasis. SPX-PHR regulatory circuit not only control phosphate homeostasis responses but also root mycorrhization by arbuscular mycorrhiza (AM) fungi. Besides sensing Pi deficiency, SPX (SYG1/Pho81/XPR1) proteins also control the transcription of P starvation inducible (PSI) genes by blocking the activity of PHR1 (PHOSPHATE STARVATION RESPONSE1) homologs in plants under Pi-sufficient conditions. However, the roles of SPX members in Pi homeostasis and AM fungi colonization remain to be fully recognized in tomato. In this study, we identified 17 SPX-domain containing members in the tomato genome. Transcript profiling revealed the high Pi-specific nature of their activation. Four SlSPX members have also induced in AM colonized roots. Interestingly, we found that SlSPX1 and SlSPX2 are induced by P starvation and AM colonization. Further, SlSPX1 and SlSPX2 exhibited varying degrees of interaction with the PHR homologs in this study. Virus-induced gene silencing-based (VIGS) transcript inhibition of these genes alone or together promoted the accumulation of higher total soluble Pi in tomato seedlings and improved their growth. It also enhanced AM fungi colonization in the roots of SlSPX1 and SlSPX2 silenced seedlings. Overall, the present study provides evidence in support of SlSPX members being good candidates for improving AM fungi colonization potential in tomato.
Collapse
Affiliation(s)
| | | | - Rajat Srivastava
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Adwaita Prasad Parida
- Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, USA
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
32
|
Sun Y, Wu Q, Xie Z, Huang J. Transcription factor OsNAC016 negatively regulates phosphate-starvation response in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111618. [PMID: 36738935 DOI: 10.1016/j.plantsci.2023.111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phosphate (Pi), the main form of inorganic phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients in plants. However, the underlying molecular mechanism determining how plants sense external Pi levels and reprogram transcriptional and adaptive responses is incompletely understood. At present, few rice NAC members have been reported to be involved in the signaling pathways of Pi homeostasis in plants. Here, our research demonstrated that OsNAC016, a Pi-starvation responsive gene in rice, was regulated by PHOSPHATE STARVATION RESPONSE protein 1 (OsPHR1) and OsPHR4. Under Pi-starvation stress, the root growth of OsNAC016-overexpression lines was inhibited more severely, and overexpression plants had lower Pi content than wild type, while osnac016 mutant was hyposensitive to Pi starvation, indicating that OsNAC016 negatively modulates rice Pi-starvation response. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis and transient transactivation assays indicated that OsNAC016 could activate the SPX-domain-containing protein 2 (OsSPX2) gene through binding to its promoter. Further, we found that Pi starvation enhanced OsNAC016 binding to the OsSPX2 promoter, thus strongly promoting OsSPX2 expression. At the same time, Pi starvation induced OsNAC016 protein accumulation in plants. Moreover, similar to OsSPX2, OsNAC016 negatively regulates leaf inclination by repressing the cell elongation in lamina joint in rice under Pi-starvation stress. Together, our findings demonstrate that OsNAC016 negatively regulates rice phosphate-starvation response and leaf inclination by activating OsSPX2 expression under Pi-starvation conditions. These data provide a strategy to create smart crops with ideal shoot architecture and high phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
33
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Zhu Z, Qu K, Li D, Zhang L, Wang C, Cong L, Bai C, Lu X. SbPHO2, a conserved Pi starvation signalling gene, is involved in the regulation of the uptake of multiple nutrients in sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111556. [PMID: 36481362 DOI: 10.1016/j.plantsci.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Sorghum is one of the five most productive crops worldwide, but its yield is seriously limited by phosphate (Pi) availability. Although inorganic Pi signalling is well studied in Arabidopsis and rice, it remains largely unknown in sorghum. The sorghum sbpho2 mutant was identified, showing leaf necrosis and short roots. Map-based cloning identified SbPHO2 as Sobic.009G228100, an E2 conjugase gene that is a putative orthologue of the PHO2 genes in rice and Arabidopsis, which play important roles in Pi signalling. Pi starvation experiments and transformation of SbPHO2 into the rice ospho2 mutant further revealed that SbPHO2 is likely involved in Pi accumulation and root architecture alteration in sorghum. qRTPCR results showed that SbPHO2 was expressed in almost the entire plant, especially in the leaves. Furthermore, some typical Pi starvation-induced genes were induced in sbpho2 even under Pi-sufficient conditions, including Pi transporters, SPXs, phosphatases and lipid composition alteration-related genes. In addition to P accumulation in the shoots of sbpho2, concentrations of N, K, and other metal elements were also altered significantly in the sbpho2 plants. Nitrate uptake was also suppressed in the sbpho2 mutant. Consistent with this finding, the expression of several nitrate-, potassium- and other metal element-related genes was also altered in sbpho2. Furthermore, the results indicated that N-dependent control of the P starvation response is regulated via SbPHO2 in sorghum. Our results suggest that SbPHO2 participates in the regulation of the absorption of multiple nutrients, although PHO2 is a crucial and conserved component of Pi starvation signalling.
Collapse
Affiliation(s)
- Zhenxing Zhu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Kuangzheng Qu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Dan Li
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Lixia Zhang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunyu Wang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Ling Cong
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunming Bai
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Xiaochun Lu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China.
| |
Collapse
|
35
|
Noike Y, Okamoto I, Tada Y. Root epidermis-specific expression of a phosphate transporter TaPT2 enhances the growth of transgenic Arabidopsis under Pi-replete and Pi-depleted conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111540. [PMID: 36410568 DOI: 10.1016/j.plantsci.2022.111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Although attempts to improve the phosphate (Pi) uptake and use efficiency by constitutively overexpressing phosphate transporters have resulted in enhanced Pi or total phosphorous contents, growth promotion by Pi acquisition was observed in only a few cases. This study examined the effect of the tissue-specific overexpression of phosphate transporter on Pi acquisition and plant growth. We cloned cDNA for a wheat phosphate transporter, TaPT2, using PCR and confirmed its Pi transport activity in Arabidopsis suspension cells. The overexpression of TaPT2 by the Arabidopsis Shaker family inward rectifying potassium channel 1 (AKT1) promoter, dominantly expressed in root epidermal cells, resulted in increased root and shoot growth of transgenic Arabidopsis under Pi-replete and Pi-depleted conditions. However, their Pi and total P contents did not increase. The overexpression of TaPT2 by the constitutive promoter, actin8 (ACT8), increased shoot total P contents in transgenic plants, but did not promote their growth. These results suggested that enhanced Pi uptake in root epidermal cells is suitable as a driving force for Pi transport from roots to shoots, improving subsequent Pi use in shoots. Thus, the root epidermal cell-specific expression of TaPT2 may be a simple and promising strategy for enhancing plant Pi uptake and efficiency.
Collapse
Affiliation(s)
- Yuki Noike
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Izumi Okamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
36
|
Soumya PR, Vengavasi K, Pandey R. Adaptive strategies of plants to conserve internal phosphorus under P deficient condition to improve P utilization efficiency. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1981-1993. [PMID: 36573147 PMCID: PMC9789281 DOI: 10.1007/s12298-022-01255-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is one of the limiting factors for plant growth and productivity due to its slow diffusion and immobilization in the soil which necessitates application of phosphatic fertilizers to meet the crop demand and obtain maximum yields. However, plants have evolved mechanisms to adapt to low P stress conditions either by increasing acquisition (alteration of belowground processes) or by internal inorganic P (Pi) utilization (cellular Pi homeostasis) or both. In this review, we have discussed the adaptive strategies that conserve the use of P and maintain cellular Pi homeostasis in the cytoplasm. These strategies involve modification in membrane lipid composition, flavanol/anthocyanin level, scavenging and reutilization of Pi adsorbed in cell wall pectin, remobilization of Pi during senescence by enzymes like RNases and purple acid phosphatases, alternative mitochondrial electron transport, and glycolytic pathways. The remobilization of Pi from senescing tissues and its internal redistribution to various cellular organelles is mediated by various Pi transporters. Although much efforts have been made to enhance P acquisition efficiency, an understanding of the physiological mechanisms conserving internal Pi and their manipulation would be useful for plants that can utilize P more efficiently to produce optimum growth per unit P uptake.
Collapse
Affiliation(s)
- Preman R. Soumya
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Present Address: Regional Agricultural Research Station, Kerala Agricultural University, Ambalavayal, Wayanad, Kerala 673593 India
| | - Krishnapriya Vengavasi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
37
|
Zhang X, Li C, Lu W, Wang X, Ma B, Fu K, Li C, Li C. Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat. PeerJ 2022; 10:e13887. [PMID: 36168435 PMCID: PMC9509674 DOI: 10.7717/peerj.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Phosphorus stress and drought stress are common abiotic stresses for wheat. In this study, two winter wheat varieties "Xindong20" and "Xindong23" were cultured in a hydroponic system using Hoagland nutrient solution and treated with drought stress under conventional (CP: 1.0 mmol/L) and low (LP: 0.05 mmol/L) phosphorus levels. Under drought stress, the root growth was better under LP than under CP. Under LP, root phosphorus content was increased by 94.2% in Xindong20 and decreased by 48.9% in Xindong23 at 3 d after re-watering, compared with those at 0 d under drought stress. However, the potassium (K) content was the highest among the four elements studied and the phosphorus (P) and calcium (Ca) content were reduced in the root of the two varieties. Under CP, the zinc (Zn) content was higher than that under LP in Xindong23. The GeneChip analysis showed that a total of 4,577 and 202 differentially expressed genes (DEGs) were detected from the roots of Xindong20 and Xindong23, respectively. Among them, 89.9% of DEGs were involved in organelles and vesicles in Xindong20, and 69.8% were involved in root anatomical structure, respiratory chain, electron transport chain, ion transport, and enzyme activity in Xindong23. Overall, LP was superior to CP in mitigating drought stress on wheat, and the regulatory genes were also different in the two varieties. Xindong20 had higher drought tolerance for more up-regulated genes involved in the responses compared to Xindong23.
Collapse
|
38
|
Li Y, Fang Y, Peng C, Hua X, Zhang Y, Qi X, Li Z, Wang Y, Hu L, Xu W. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. PROTOPLASMA 2022; 259:1271-1282. [PMID: 35039948 DOI: 10.1007/s00709-021-01702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Oryza sativa PHOSPHATE RESPONSE2 (OsPHR2) can promote the uptake and use of phosphorus (P) in rice. We introduced OsPHR2 into the winter wheat (Triticum aestivum L.) variety "Zhengmai0856." OsPHR2 was integrated into the wheat genome with two copy numbers and could be correctly transcribed and expressed. OsPHR2 was mainly expressed in the leaves at the seedling stage. From the jointing to filling stage, OsPHR2 was mainly expressed in the roots, followed by the leaves, with a low expression level in detected the tassels and stems. The transgenic lines exhibited higher P accumulation at each growth stage and increased P uptake intensity in comparison to the wild type under low P and high P conditions. Analysis of the root characteristics showed that the transgenic expression of OsPHR2 increased the maximum root length, total root length, root-to-shoot ratio, and root volume under the conditions of P deficiency or low P. A field experiment showed that the transgenic lines had a higher grain yield than the wild type under low P and high P conditions. The yield of the transgenic lines increased by 6.29% and 3.73% on average compared with the wild type under low P and high P conditions, respectively. Thus, the transgenic expression of OsPHR2 could increase P uptake and yield in wheat, but the effect was more prominent under low P conditions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Yuhui Fang
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Chaojun Peng
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xia Hua
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xueli Qi
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Zhengling Li
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Yumin Wang
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Lin Hu
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China
| | - Weigang Xu
- Key Laboratory of Wheat Germplasm Resources Innovation and Improvement in Henan Province, Key Laboratory for Wheat Biology of Henan Province, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, People's Republic of China.
| |
Collapse
|
39
|
Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. J Adv Res 2022; 42:69-81. [PMID: 35609869 PMCID: PMC9788951 DOI: 10.1016/j.jare.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.
Collapse
|
40
|
Takehisa H, Ando F, Takara Y, Ikehata A, Sato Y. Transcriptome and hyperspectral profiling allows assessment of phosphorus nutrient status in rice under field conditions. PLANT, CELL & ENVIRONMENT 2022; 45:1507-1519. [PMID: 35128701 DOI: 10.1111/pce.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is one of the macronutrients indispensable for crop production, and therefore it is important to understand the potential of plants to adapt to low P conditions. We compared growth and leaf genome-wide transcriptome of four rice cultivars during growth between two fields with different amount of available phosphate and further analysed the acceptable range of P levels for normal growth from the view of both appearance traits and internal P nutrient status, which was measured by profiling the expression of the P indicator gene. This demonstrated that rice plants have a robustness to moderate P-deficient conditions expressing a system for P acquisition and usage without any effects on yield potential and that P indicator gene expression could be a useful index for early diagnosis of P status in plants. To develop a simple method for assessment of P status, we tried to predict the expression level using reflectance spectroscopy and hyperspectral imaging, thereby providing models with good performance. Our findings suggest that rice plants have the potential to adapt to moderate low P conditions in the field and showed that the hyperspectral technique is one of the useful tools for simple measurement of molecular-level dynamics reflecting internal nutrient conditions.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | - Akifumi Ikehata
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
41
|
Yadava P, Dayaman V, Agarwal A, Kumar K, Singh I, Verma R, Kaul T. Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:885-898. [PMID: 35592478 PMCID: PMC9110616 DOI: 10.1007/s12298-022-01155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
UNLABELLED The post green revolution agriculture is based on generous application of fertilizers and high-yielding genotypes that are suited for such high input regimes. Cereals, like maize (Zea mays L.) are capable of utilizing less than 20% of the applied inorganic phosphate (Pi) - a non-renewable fertilizer resource. A greater understanding of the molecular mechanisms underlying the acquisition, transportation and utilization of Pi may lead to engineering genotypes with high phosphorus use efficiency. In this study, we carried out functional domain similarity analysis, promoter analysis and comparative transcriptional expression profiling of 12 selected Pi responsive genes in the Pi stress tolerant maize inbred line HKI-163 under sufficient and deficient Pi conditions. Pi starvation led to significant increase in root length; marked proliferation of root hairs and lesser number of crown roots. Eleven genes were significantly up or down regulated in Pi deficient condition. The putative acid phosphatase, ZmACP5 expression was up regulated by 162.81 and 74.40 fold in root and leaf tissues, respectively. The RNase, ZmRNS1 showed 115 fold up regulation in roots under Pi deprivation. Among the two putative high affinity Pi transporters ZmPht1;4 was found specific to root, whereas ZmPht2 was found to be up regulated in both root and leaf tissues. The genes involved in Pi homeostasis pathway (ZmSIZ1, SPX1 and Pho2) were up regulated in root and leaf. In light of the expression profiling of selected regulatory genes, an updated model of transcriptional regulation under Pi starvation in maize has been presented. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01155-x.
Collapse
Affiliation(s)
- Pranjal Yadava
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, 110012 New Delhi, India
| | - Vikram Dayaman
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Astha Agarwal
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Krishan Kumar
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Ishwar Singh
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
| | - Rachana Verma
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, 110012 New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| |
Collapse
|
42
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
43
|
Li C, You Q, Zhao P. Genome-wide identification and characterization of SPX-domain-containing protein gene family in Solanum lycopersicum. PeerJ 2022; 9:e12689. [PMID: 35036163 PMCID: PMC8710047 DOI: 10.7717/peerj.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
The SYG1, PHO81, and XPR1 (SPX) domain is named after the suppressor of yeast gpa1 (Syg1), yeast phosphatase (Pho81) and the human Xenotropic and Polytrophic Retrovirus receptor1 (XPR1). SPX-domain-containing proteins play pivotal roles in maintaining phosphate ions (Pi) homeostasis in plant. This study was to genome-wide identification and analysis of Solanum lycopersicum SPX-domain-containing protein gene family. The Solanum lycopersicum genome contains 19 SPX-domain-containing protein genes. These SPX-domain-containing protein genes were located in seven of the 12 chromosomes. According to the different conserved domains, the proteins encoded by those genes could be divided into four SPX-domain-containing protein families, which included SPX Family, SPX-ERD1/XPR1/SYG1(SPX-EXS) Family, SPX-Major Facilitator Superfamily (SPX-MFS) Family and SPX-Really Interesting New Gene (SPX-RING) Family. Phylogenetic analysis of SPX-domain-containing protein genes in Arabidopsis thaliana, Solanum tuberosum, Capsicum annuum and Solanum lycopersicum classified these genes into eight clades. Expression profiles derived from transcriptome (RNA-seq) data analysis showed 19 SPX-domain-containing protein genes displayed various expression patterns. SPX-domain-containing protein may play different roles in phosphate nutrition of Solanum lycopersicum different tissues and development stages. And, this study can provide the selection of candidate genes for functional research and genome editing in Solanum lycopersicum phosphate ions (Pi) nutrition.
Collapse
Affiliation(s)
- Chunwei Li
- Nanchang Normal University, Nanchang, China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, Shanghai, China
| | | |
Collapse
|
44
|
Li H, Gao MY, Mo CH, Wong MH, Chen XW, Wang JJ. Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:50-67. [PMID: 34610119 DOI: 10.1093/jxb/erab444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Rice polluted by metal(loid)s, especially arsenic (As) and cadmium (Cd), imposes serious health risks. Numerous studies have demonstrated that the obligate plant symbionts arbuscular mycorrhizal fungi (AMF) can reduce As and Cd concentrations in rice. The behaviours of metal(loid)s in the soil-rice-AMF system are of significant interest for scientists in the fields of plant biology, microbiology, agriculture, and environmental science. We review the mechanisms of As and Cd accumulation in rice with and without the involvement of AMF. In the context of the soil-rice-AMF system, we assess and discuss the role of AMF in affecting soil ion mobility, chemical forms, transport pathways (including the symplast and apoplast), and genotype variation. A potential strategy for AMF application in rice fields is considered, followed by future research directions to improve theoretical understanding and encourage field application.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Xun Wen Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Jian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
45
|
Deng S, Li J, Du Z, Wu Z, Yang J, Cai H, Wu G, Xu F, Huang Y, Wang S, Wang C. Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:191-205. [PMID: 34550608 DOI: 10.1111/pce.14191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). The phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA.
Collapse
Affiliation(s)
- Suren Deng
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Li
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zezhen Du
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jian Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. PLANT CELL REPORTS 2022; 41:33-51. [PMID: 34402946 DOI: 10.1007/s00299-021-02773-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
47
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
48
|
Wang S, Zhang J, Gu M, Xu G. OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1976545. [PMID: 34523389 PMCID: PMC8525937 DOI: 10.1080/15592324.2021.1976545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P), which is taken up by plants as inorganic phosphate (Pi), is one of the most important macronutrients for plant growth and development. Meanwhile, it determines plant architecture in several ways, including leaf inclination. However, the molecular basis underlying the crosstalk between the signaling pathways of plant P homeostasis and architecture maintenance remains elusive. We recently characterized a WRKY transcription factor, OsWRKY108, in rice (Oryza sativa). It functions redundantly with OsWRKY21 to promote Pi uptake in response to Pi supply. Overexpression of either OsWRKY108 or OsWRKY21 led to up-regulation of Pi transporter genes and thus enhanced Pi accumulation. By contrast, transgenic rice plants expressing OsWRKY21-SRDX (a fusion protein transforming OsWRKY21 from an activator into a dominant repressor) but not the OsWRKY108-SRDX fusion showed decreased Pi accumulation under Pi-replete conditions. Here, we report that OsWRKY108 acts as a positive regulator of leaf inclination. OsWRKY108 overexpressors showed increased leaf inclination and OsWRKY108-SRDX plants showed an erect-leaf phenotype, irrespective of the Pi regimes. Nevertheless, the response of leaf inclination to Pi starvation was largely impaired upon OsWRKY108 overexpression. Moreover, in both OsWRKY108-SRDX plants and OsWRKY108 overexpressors, the 'percentage of leaf angle alteration relative to wild-type' under Pi-starvation condition was more significant than that under Pi-replete condition. These results suggest that the regulation of OsWRKY108 on leaf inclination is in part dependent on Pi availability. Altogether, our findings demonstrate that OsWRKY108 is an integrative regulator of P homeostasis and leaf inclination, serving as a link between plant nutrient signaling and developmental cues.
Collapse
Affiliation(s)
- Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Moa Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Moa Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| |
Collapse
|
49
|
Jia X, Wang L, Zeng H, Yi K. Insights of intracellular/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. THE NEW PHYTOLOGIST 2021; 232:1566-1571. [PMID: 34482553 DOI: 10.1111/nph.17716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an essential element for plant growth and development. Vacuoles play a fundamental role in the storage and remobilization of P in plants, while our understanding of the evolutionary mechanisms of creating and reusing P stores are limited. Besides, we also know very little about the coordination of intercellular P translocation, neither the inorganic phosphate (Pi) signaling nor the Pi transport patterns. Here we summarize recent advances in understanding the core elements involved in cellular and/or subcellular P homeostasis and signaling in unicellular green algae and multicellular land plants. We also propose further work that might help to uncover the high-resolution intracellular and intercellular landscape of Pi distribution and signaling in plants.
Collapse
Affiliation(s)
- Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Wang
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Riemer E, Qiu D, Laha D, Harmel RK, Gaugler P, Gaugler V, Frei M, Hajirezaei MR, Laha NP, Krusenbaum L, Schneider R, Saiardi A, Fiedler D, Jessen HJ, Schaaf G, Giehl RFH. ITPK1 is an InsP 6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:1864-1880. [PMID: 34274522 PMCID: PMC8573591 DOI: 10.1016/j.molp.2021.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/20/2023]
Abstract
In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. In this study, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. Using the capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7, and InsP8 increase several fold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrated that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides new insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates.
Collapse
Affiliation(s)
- Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Debabrata Laha
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK; Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Michael Frei
- Institute of Agronomy and Crop Physiology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Lukas Krusenbaum
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany.
| |
Collapse
|