1
|
Manzoor N, Yuan J, Dongcheng W, Liu Z, Lin C, Mao Z. Integrated transcriptomic and proteomic analyses revealed molecular mechanisms underlying nutritional changes during seed development of Chenopodium quinoa. Genomics 2025; 117:111045. [PMID: 40210023 DOI: 10.1016/j.ygeno.2025.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Quinoa (Chenopodium quinoa) is a pseudocereal crop of the Amaranthacea family containing highly nutritious seeds which undergo complex physiological and biochemical changes during their development, resulting in final yield and seed nutritional quality (SN-quality). To obtain new insights into the underlying molecular mechanisms, integrated transcriptomic and proteomic analyses of developing seeds from 7 days after flowering (DAF) to maturation (57 DAF) were conducted. A total of 44,776 genes and 8235 proteins were detected; among them, 4130 genes and 3978 proteins were significantly different in pairwise comparisons of samples at various seed developmental stages. Results showed that genes and proteins associated with pathways of sucrose, fructose, mannose, pentose, glucuronate, starch, amino sugar and nucleotide sugar in carbohydrate metabolism; cyano amino acid, taurine & hypotaurine and storage proteins in amino acid and protein metabolisms; cutin, suberin and wax biosynthesis in lipid metabolism and phenylpropanoid and terpenoid biosynthesis in secondary metabolisms of flavonoids and triterpenoidal saponins play a key role in seed developmental process and SN-quality control. Gene regulatory networks correlated with SN-quality traits identified ABA independent (CqDREB2A, Cyclic dof factor 2 (CqCDF2) and AINTEGUMENTA-like5 (CqAIL5),) as well as dependent (CqABI4 and CqWRKY24) associated transcription factors play dynamic role in quinoa SN-quality control by regulating potential target genes and their encoding proteins related to above-mentioned metabolic pathways. The provided multi-omic data sets presented a dynamic picture regarding the developmental process of quinoa seeds, revealing the temporal specific expression of key candidate genes and proteins and providing the basis for crop improvement.
Collapse
Affiliation(s)
- Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Jiahong Yuan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| |
Collapse
|
2
|
Hu H, Jiang Y, Liu C, Zhang Y, Chen M, Liu Z. Genome-Wide Identification and Characterization of Basic Pentacysteine Transcription Factors in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1136. [PMID: 40219204 PMCID: PMC11991588 DOI: 10.3390/plants14071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC), a plant-specific transcription factor family, is a group of GAGA_motif binding factors controlling multiple developmental processes of growth and response to abiotic stresses. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. However, the information about BnaBPCs from Brassica napus remains unclear. Here, we identified 25 BnaBPC genes that were mainly localized in the nucleus, randomly localized on 16 chromosomes, and grouped into three subfamilies based on phylogenetic analysis. Twenty-five BnaBPC genes exhibit syntenic relationships with AtBPC genes, and the polypeptides encoded by BnaBPC genes within the same subfamily share similar conserved motifs and protein domains. The expansion of BnaBPC genes underwent whole-genome duplication events and purifying selection in genomes, and all the BnaBPC genes had the same conserved GAGA binding domains. Additionally, the promoter of each BnaBPC gene consisted of various cis-elements associated with stresses, phytohormones, and growth and development. Notably, the seed-specific regulatory element was found only in the BnaC04.BPC4 promoter. Further expression pattern analysis showed that BnaBPC members are widely expressed in stems, buds, developing seeds and siliques. These findings provide insights into BnaBPC genes and enrich our understanding of their functional characterization in B. napus.
Collapse
Affiliation(s)
- Huan Hu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Yuqin Jiang
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Chiyuan Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Ying Zhang
- Department of Ecological and Environmental Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Mingxun Chen
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Zijin Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| |
Collapse
|
3
|
Zhang S, Zhong H, Zhang F, Zheng J, Zhang C, Yadav V, Zhou X, Nocker SV, Wu X, Wang X. Identification of grapevine BASIC PENTACYSTEINE transcription factors and functional characterization of VvBPC1 in ovule development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112491. [PMID: 40189153 DOI: 10.1016/j.plantsci.2025.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Seedless grapes are gaining increasingly attention in the market because of their desirable traits. Therefore, understanding the molecular genetic regulation of seed development and abortion is crucial for the advancement of seedless cultivars. Recent studies have shown that AGAMOUS-LIKE11 (VvAGL11), an ortholog of Arabidopsis SEEDSTICK (STK), plays a key role in grape ovule development, and amino acid substitution mutations result in seed abortion. However, the regulatory pathways involved in this process are poorly understood in grapevines. In this study, we identified four BASIC PENTACYSTEINE (BPC) genes in the grapevine (Vitis vinifera L.) genome and analyzed their evolutionary relationships, subcellular localization, and expression patterns. VvBPC1 was identified as an upstream regulatory factor of VvAGL11 in a yeast one-hybrid assay. Dual-luciferase assays confirmed that VvAGL11 is negatively regulated by VvBPC1, and the production of small seeds by heterologous overexpression of VvBPC1 in tomatoes results from the suppression of VvAGL11 expression. Furthermore, assays in yeast cells demonstrated that VvBPC1 interacts with VvBELL1. Taken together, this study not only establishes the foundation for further exploration of the molecular mechanisms of the VvBPC1-VvBELL1-VvAGL11 module in regulating grape seed development but also provides new insights into the genetic improvement of seedless grapes.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Jinling Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan, Xinjiang 838000, China.
| |
Collapse
|
4
|
Nobles A, Wendel JF, Yoo MJ. Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:502. [PMID: 40006762 PMCID: PMC11859044 DOI: 10.3390/plants14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis.
Collapse
Affiliation(s)
- Alexander Nobles
- Chemistry & Biomolecular Science Department, Clarkson University, Potsdam, NY 13699, USA;
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mi-Jeong Yoo
- Biology Department, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
5
|
Chen J, Liu Z, Yan J. BPC1 and BPC2 positively regulates the waterlogging stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 2025; 747:151296. [PMID: 39799863 DOI: 10.1016/j.bbrc.2025.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Waterlogging stress is a significant abiotic factor that severely limits plant growth and development. Identifying genes involved in the waterlogging stress response and understanding the mechanisms by which plants resist waterlogging stress are therefore critical. In this study, we identified a specific role for two transcription factors, BPC1 and BPC2, in the waterlogging stress response of Arabidopsis thaliana. Waterlogging stress markedly upregulated the transcripts of BPC1 and BPC2 in Arabidopsis. Loss-of-function mutations in BPC1 and BPC2 decreased tolerance to waterlogging stress during the seedling growth stage. Physiological analyses demonstrated that the mutations of BPC1 and BPC2 aggravated waterlogging-induced increases in electrolyte leakage, malondialdehyde (MDA) content and hydrogen peroxide (H₂O₂) accumulation by modulating POD activity. Furthermore, quantitative real-time PCR (qRT-PCR) and dual-luciferase assays showed that BPC1 and BPC2 up-regulated the expression of peroxidase gene (Prx28). Collectively, our results indicate that BPC1 and BPC2 positively modulate Prx28 expression to affect the POD activity, modulating electrolyte leakage, MDA content and H₂O₂ accumulation under waterlogging stress. This study reveals the molecular mechanisms underlying waterlogging resistance in A. thaliana, providing new insights into this field.
Collapse
Affiliation(s)
- Jiaying Chen
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zhihui Liu
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jingwei Yan
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Wang L, Chen W, Zhao Z, Li H, Pei D, Huang Z, Wang H, Xiao L. Genome-Wide Identification, Conservation, and Expression Pattern Analyses of the BBR-BPC Gene Family Under Abiotic Stress in Brassica napus L. Genes (Basel) 2024; 16:36. [PMID: 39858583 PMCID: PMC11764527 DOI: 10.3390/genes16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. Brassica napus L. (B. napus), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of Brassica rapa L. (B. rapa) and Brassica oleracea L. (B. oleracea), and is one of the most important oil crops. However, little is known about the characteristics, conservation, and expression patterns of this gene family in B. napus, especially under abiotic stress. METHODS To explore the characteristics and potential biological roles of the BBR-BPC gene family members in B. napus, we conducted identification based on bioinformatics and comparative genomics methods. We further analyzed the expression patterns through RNA-seq and qRT-PCR. RESULTS We identified 25 BBR-BPC members, which were classified into three subfamilies based on phylogenetic analysis, and found them to be highly conserved in both monocots and dicots. The conserved motifs revealed that most members contained Motif 1, Motif 2, Motif 4, and Motif 8. After whole-genome duplication (WGD), collinearity analysis showed that BBR-BPC genes underwent significant purifying selection. The promoters of most BBR-BPC genes contained cis-acting elements related to light response, hormone induction, and stress response. RNA-seq and qRT-PCR further indicated that BnBBR-BPC7, BnBBR-BPC15, BnBBR-BPC20, and BnBBR-BPC25 might be key members of this family. CONCLUSIONS This study provides a theoretical foundation for understanding the potential biological functions and roles of the BBR-BPC gene family, laying the groundwork for resistance breeding in B. napus.
Collapse
Affiliation(s)
- Long Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Wei Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Zhi Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Huaxin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Damei Pei
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Lu Xiao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| |
Collapse
|
7
|
Lao Z, Mao J, Chen R, Xu R, Yang Z, Wang Y, Zhou J, Mu Z, Xu H, Li F, Huang D, Xiao Y, Luo J, Xia W. Genome-wide identification and characterization of BASIC PENTACYSTEINE transcription factors and their binding motifs in coconut palm. FRONTIERS IN PLANT SCIENCE 2024; 15:1491139. [PMID: 39719939 PMCID: PMC11666369 DOI: 10.3389/fpls.2024.1491139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Introduction BASIC PENTACYSTEINE (BPC) is a small transcription factor family known for its role in various developmental processes in plants, particularly in binding GA motifs and regulating flower and seed development. However, research on the functional characteristics and target genes of BPCs in coconut (Cocos nucifera) is limited. Methods In this study, we systematically characterized the gene structure, conserved protein domains, gene expansion, and target genes of CnBPCs in the coconut genome. We conducted yeast one-hybrid (Y1H) and dual-luciferase assay to explore gene interactions. We identified genes with the GA motif in their promoter regions and combined this information with a weighted gene co-expression network to identify the target genes of CnBPCs. Results Eight CnBPCs were identified, including three Class I CnBPCs from triplication, four Class II CnBPCs (with CnBPC6A and CnBPC6B resulting from segmental duplication), and one Class III CnBPC (CnBPC7). Three conserved DNA-binding motifs were detected, exhibiting variation in certain sites. Widespread BPC gene expansion was detected in coconut and other plant species, while only three BPCs were found in the most basal extant flowering plant. Notably, 92% of protein-coding genes contained at least one GA motif, with the (GA)3 motif being most prevalent. Genes containing the GA motif that exhibit a high expression correlation with CnBPCs, tend to interact strongly with the corresponding CnBPCs. Additionally, promoters rich in the GA motif tend to interact with all members of CnBPC. The dual-luciferase assay showed that CnBPCs could activate or repress the transcriptional activities of promoters containing either (GA)3 or (GA)11 motif but with a bias toward certain genes. Furthermore, we constructed co-expressed networks identifying 426 genes with GA motifs as potential CnBPC targets. Discussion Our findings suggest that CnBPCs may play significant roles in seed germination, flower development, and mesocarp development by interacting with genes such as CnAG1, CnAG2, CnSTK, CnMFT, and CnCS. This study characterized CnBPCs' binding motif and possible target genes, laying a theoretical foundation to reveal CnBPCs' function in flower and seed development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yong Xiao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Wei Xia
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| |
Collapse
|
8
|
Zhang J, Wu L, Mu L, Wang Y, Zhao M, Wang H, Li X, Zhao L, Lin C, Zhang H, Gu L. Evolution and post-transcriptional regulation insights of m 6A writers, erasers, and readers in plant epitranscriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:505-525. [PMID: 39167634 DOI: 10.1111/tpj.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
As a dynamic and reversible post-transcriptional marker, N6-methyladenosine (m6A) plays an important role in the regulation of biological functions, which are mediated by m6A pathway components including writers (MT-A70, FIP37, VIR and HAKAI family), erasers (ALKBH family) and readers (YTH family). There is an urgent need for a comprehensive analysis of m6A pathway components across species at evolutionary levels. In this study, we identified 4062 m6A pathway components from 154 plant species including green algae, utilizing large-scale phylogenetic to explore their origin and evolution. We discovered that the copy number of writers was conserved among different plant lineages, with notable expansions in the ALKBH and YTH families. Synteny network analysis revealed conserved genomic contexts and lineage-specific transpositions. Furthermore, we used Direct RNA Sequencing (DRS) to reveal the Poly(A) length (PAL) and m6A ratio profiles in six angiosperms species, with a particular focus on the m6A pathway components. The ECT1/2-Poeaece4 sub-branches (YTH family) with unique genomic contexts exhibited significantly higher expression level than genes of other ECT1/2 poeaece sub-branches (ECT1/2-Poeaece1-3), accompanied by lower m6A modification and PAL. Besides, conserved m6A sites distributed in CDS and 3'UTR were detected in the ECT1/2-Poaceae4, and the dual-luciferase assay further demonstrated that these conserved m6A sites in the 3'UTR negatively regulated the expression of Firefly luciferase (LUC) gene. Finally, we developed transcription factor regulatory networks for m6A pathway components, using yeast one-hybrid assay demonstrated that PheBPC1 could interact with the PheECT1/2-5 promoter. Overall, this study presents a comprehensive evolutionary and functional analysis of m6A pathway components and their modifications in plants, providing a valuable resource for future functional analysis in this field.
Collapse
Affiliation(s)
- Jun Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lele Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhua Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengna Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangrong Li
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Xiong Y, Lu G, Li H, He J, Fan S, Yan S, Zhang L, Jia H, Li M. Integrating QTL mapping and transcriptomics to decipher the genetic architecture of sterol metabolism in Brassica napus L. HORTICULTURE RESEARCH 2024; 11:uhae196. [PMID: 39257541 PMCID: PMC11384122 DOI: 10.1093/hr/uhae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols as well as total sterol (TS) content were detected in a double haploid (DH) population of Brassica napus, and a total of 24 quantitative trait loci (QTL) and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.
Collapse
Affiliation(s)
- Yiyi Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Guangyuan Lu
- College of Biology and Food Engineering, Kechuang 1st Road, Maonan District, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Huaixin Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Jianjie He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shipeng Fan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Shuxiang Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuchang District, Wuhan 430062, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| | - Maoteng Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoxiong Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
10
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Dang TT, Lalanne D, Ly Vu J, Ly Vu B, Defaye J, Verdier J, Leprince O, Buitink J. BASIC PENTACYSTEINE1 regulates ABI4 by modification of two histone marks H3K27me3 and H3ac during early seed development of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2024; 15:1395379. [PMID: 38916028 PMCID: PMC11194320 DOI: 10.3389/fpls.2024.1395379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024]
Abstract
Introduction The production of highly vigorous seeds with high longevity is an important lever to increase crop production efficiency, but its acquisition during seed maturation is strongly influenced by the growth environment. Methods An association rule learning approach discovered MtABI4, a known longevity regulator, as a gene with transcript levels associated with the environmentally-induced change in longevity. To understand the environmental sensitivity of MtABI4 transcription, Yeast One-Hybrid identified a class I BASIC PENTACYSTEINE (MtBPC1) transcription factor as a putative upstream regulator. Its role in the regulation of MtABI4 was further characterized. Results and discussion Overexpression of MtBPC1 led to a modulation of MtABI4 transcripts and its downstream targets. We show that MtBPC1 represses MtABI4 transcription at the early stage of seed development through binding in the CT-rich motif in its promoter region. To achieve this, MtBPC1 interacts with SWINGER, a sub-unit of the PRC2 complex, and Sin3-associated peptide 18, a sub-unit of the Sin3-like deacetylation complex. Consistent with this, developmental and heat stress-induced changes in MtABI4 transcript levels correlated with H3K27me3 and H3ac enrichment in the MtABI4 promoter. Our finding reveals the importance of the combination of histone methylation and histone de-acetylation to silence MtABI4 at the early stage of seed development and during heat stress.
Collapse
Affiliation(s)
- Thi Thu Dang
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
- LIPME - Laboratoire des interactions plantes-microbes-environnement. UMR CNRS–INRAE, Castanet Tolosan, France
| | - David Lalanne
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Joseph Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Benoit Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Johan Defaye
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Jerome Verdier
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| |
Collapse
|
12
|
Bellino C, Herrera FE, Rodrigues D, Garay AS, Huck SV, Reinheimer R. Molecular Evolution of RAMOSA1 (RA1) in Land Plants. Biomolecules 2024; 14:550. [PMID: 38785957 PMCID: PMC11117814 DOI: 10.3390/biom14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.
Collapse
Affiliation(s)
- Carolina Bellino
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Fernando E. Herrera
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - Daniel Rodrigues
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - A. Sergio Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina;
| | - Sofía V. Huck
- Fellow of Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina
| |
Collapse
|
13
|
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. THE PLANT CELL 2024; 36:585-604. [PMID: 38019898 PMCID: PMC10896295 DOI: 10.1093/plcell/koad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuyuan Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yanni Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xiaoqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tiantian Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
14
|
Bascom C. An apple a day: MdBPC2 transcription factor keeps the auxin away and causes dwarfing in Malus domestica. THE PLANT CELL 2024; 36:493-494. [PMID: 38084887 PMCID: PMC10896282 DOI: 10.1093/plcell/koad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Affiliation(s)
- Carlisle Bascom
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Natural Resources and the Environment Department, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
15
|
Wang D, Qie B, Wang A, Wang M, Dai P, Xiao L, Zhai R, Yang C, Wang Z, Xu L. PbBPC4 involved in a xylem-deficient dwarf phenotype in pear by directly regulating the expression of PbXND1. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154125. [PMID: 37979434 DOI: 10.1016/j.jplph.2023.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Dwarfing is an important agronomic trait in fruit breeding. At present, dwarf cultivars or dwarfing rootstocks are used for high-density planting. Although some dwarf rootstocks have been used in the cultivation of pear (Pyrus bretschneideri Rehd), the breeding of dwarf pear rootstocks or cultivars is still sorely lacking. A previous study reported that PbXND1 results in a xylem-dwarf phenotype in pear trees. However, the regulatory mechanism upstream of PbXND1 is unclear. In this study, we identified PbBPC4 as an upstream regulatory factor of PbXND1 in yeast one-hybrid assays. In β-glucuronidase staining and dual-luciferase assays, PbBPC4 enhanced the activity of the PbXND1 promoter. Tobacco plants overexpressing PbBPC4 showed decreased plant height because of a reduced xylem size. Similar changes in the xylem was observed in transgenic pear roots; those overexpressing PbBPC4 showed reduced xylem size, and those with silencing PbBPC4 expression showed increased xylem size, greater density of xylem vessels, and a larger proportion of the xylem out of the total cross-section area. Expression analyses showed that PbBPC4 increases the transcription of PbXND1, leading to reduced transcript levels of genes involved in the positive regulation of xylem development, ultimately resulting in a xylem-deficient dwarf phenotype. Taken together, our results reveal the mechanism by which PbBPC4 participates in the regulation of xylem development via directly altering the expression of PbXND1, thus leading to the dwarf phenotype in pear. These findings have reference value for the breeding of dwarf pear trees.
Collapse
Affiliation(s)
- Di Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Bingqing Qie
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Azheng Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Minmin Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Pingyuan Dai
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Lijuan Xiao
- Institute of Agricultural Sciences of the 1st Division, Xinjiang Production and Construction Corps, Aral, 843300, China.
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| |
Collapse
|
16
|
Meng D, Li S, Feng X, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is essential for cucumber survival under cold stress. BMC PLANT BIOLOGY 2023; 23:566. [PMID: 37968586 PMCID: PMC10652477 DOI: 10.1186/s12870-023-04577-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Cold stress affects the growth and development of cucumbers. Whether the BPC2 transcription factor participates in cold tolerance and its regulatory mechanism in plants have not been reported. Here, we used wild-type (WT) cucumber seedlings and two mutant Csbpc2 lines as materials. The underlying mechanisms were studied by determining the phenotype, physiological and biochemical indicators, and transcriptome after cold stress. The results showed that CsBPC2 knockout reduced cucumber cold tolerance by increasing the chilling injury index, relative electrical conductivity and malondialdehyde (MDA) content and decreasing antioxidant enzyme activity. We then conducted RNA sequencing (RNA-seq) to explore transcript-level changes in Csbpc2 mutants. A large number of differentially expressed genes (1032) were identified and found to be unique in Csbpc2 mutants. However, only 489 down-regulated genes related to the synthesis and transport of amino acids and vitamins were found to be enriched through GO analysis. Moreover, both RNA-seq and qPT-PCR techniques revealed that CsBPC2 knockout also decreased the expression of some key cold-responsive genes, such as CsICE1, CsCOR413IM2, CsBZR1 and CsBZR2. These results strongly suggested that CsBPC2 knockout not only affected cold function genes but also decreased the levels of some key metabolites under cold stress. In conclusion, this study reveals for the first time that CsBPC2 is essential for cold tolerance in cucumber and provides a reference for research on the biological function of BPC2 in other plants.
Collapse
Affiliation(s)
- Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
17
|
Yadav VK, Jalmi SK, Tiwari S, Kerkar S. Deciphering shared attributes of plant long non-coding RNAs through a comparative computational approach. Sci Rep 2023; 13:15101. [PMID: 37699996 PMCID: PMC10497521 DOI: 10.1038/s41598-023-42420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
Over the past decade, long non-coding RNA (lncRNA), which lacks protein-coding potential, has emerged as an essential regulator of the genome. The present study examined 13,599 lncRNAs in Arabidopsis thaliana, 11,565 in Oryza sativa, and 32,397 in Zea mays for their characteristic features and explored the associated genomic and epigenomic features. We found lncRNAs were distributed throughout the chromosomes and the Helitron family of transposable elements (TEs) enriched, while the terminal inverted repeat depleted in lncRNA transcribing regions. Our analyses determined that lncRNA transcribing regions show rare or weak signals for most epigenetic marks except for H3K9me2 and cytosine methylation in all three plant species. LncRNAs showed preferential localization in the nucleus and cytoplasm; however, the distribution ratio in the cytoplasm and nucleus varies among the studied plant species. We identified several conserved endogenous target mimic sites in the lncRNAs among the studied plants. We found 233, 301, and 273 unique miRNAs, potentially targeting the lncRNAs of A. thaliana, O. sativa, and Z. mays, respectively. Our study has revealed that miRNAs, which interact with lncRNAs, target genes that are involved in a diverse array of biological and molecular processes. The miRNA-targeted lncRNAs displayed a strong affinity for several transcription factors, including ERF and BBR-BPC, mutually present in all three plants, advocating their conserved functions. Overall, the present study showed that plant lncRNAs exhibit conserved genomic and epigenomic characteristics and potentially govern the growth and development of plants.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Siddhi Kashinath Jalmi
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Shalini Tiwari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
18
|
Feng X, Li S, Meng D, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is a key regulator of root growth and development. PHYSIOLOGIA PLANTARUM 2023; 175:e13977. [PMID: 37616013 DOI: 10.1111/ppl.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.
Collapse
Affiliation(s)
- Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Li S, Sun M, Miao L, Di Q, Lv L, Yu X, Yan Y, He C, Wang J, Shi A, Li Y. Multifaceted regulatory functions of CsBPC2 in cucumber under salt stress conditions. HORTICULTURE RESEARCH 2023; 10:uhad051. [PMID: 37213679 PMCID: PMC10194891 DOI: 10.1093/hr/uhad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/08/2023] [Indexed: 05/23/2023]
Abstract
BASIC PENTACYSTEINE (BPC) transcription factors are essential regulators of plant growth and development. However, BPC functions and the related molecular mechanisms during cucumber (Cucumis sativus L.) responses to abiotic stresses, especially salt stress, remain unknown. We previously determined that salt stress induces CsBPC expression in cucumber. In this study, Csbpc2 transgene-free cucumber plants were created using a CRISPR/Cas9-mediated editing system to explore CsBPC functions associated with the salt stress response. The Csbpc2 mutants had a hypersensitive phenotype, with increased leaf chlorosis, decreased biomass, and increased malondialdehyde and electrolytic leakage levels under salt stress conditions. Additionally, a mutated CsBPC2 resulted in decreased proline and soluble sugar contents and antioxidant enzyme activities, which led to the accumulation of hydrogen peroxide and superoxide radicals. Furthermore, the mutation to CsBPC2 inhibited salinity-induced PM-H+-ATPase and V-H+-ATPase activities, resulting in decreased Na+ efflux and increased K+ efflux. These findings suggest that CsBPC2 may mediate plant salt stress resistance through its effects on osmoregulation, reactive oxygen species scavenging, and ion homeostasis-related regulatory pathways. However, CsBPC2 also affected ABA signaling. The mutation to CsBPC2 adversely affected salt-induced ABA biosynthesis and the expression of ABA signaling-related genes. Our results indicate that CsBPC2 may enhance the cucumber response to salt stress. It may also function as an important regulator of ABA biosynthesis and signal transduction. These findings will enrich our understanding of the biological functions of BPCs, especially their roles in abiotic stress responses, thereby providing the theoretical basis for improving crop salt tolerance.
Collapse
Affiliation(s)
- Shuzhen Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou 341000, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Miao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aokun Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | |
Collapse
|
21
|
Dai Y, Liu S, Zuo D, Wang Q, Lv L, Zhang Y, Cheng H, Yu JZ, Song G. Identification of MYB gene family and functional analysis of GhMYB4 in cotton (Gossypium spp.). Mol Genet Genomics 2023; 298:755-766. [PMID: 37027022 DOI: 10.1007/s00438-023-02005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/05/2023] [Indexed: 04/08/2023]
Abstract
Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.
Collapse
Affiliation(s)
- Yuanli Dai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hailiang Cheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA.
| | - Guoli Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
22
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
23
|
Kim ED, Dorrity MW, Fitzgerald BA, Seo H, Sepuru KM, Queitsch C, Mitsuda N, Han SK, Torii KU. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment. NATURE PLANTS 2022; 8:1453-1466. [PMID: 36522450 PMCID: PMC9788986 DOI: 10.1038/s41477-022-01304-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bridget A Fitzgerald
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hyemin Seo
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Soon-Ki Han
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
24
|
Characterizations of a Class-I BASIC PENTACYSTEINE Gene Reveal Conserved Roles in the Transcriptional Repression of Genes Involved in Seed Development. Curr Issues Mol Biol 2022; 44:4059-4069. [PMID: 36135190 PMCID: PMC9497819 DOI: 10.3390/cimb44090278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. BASIC PENTACYSTEINE genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the BPC genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due. Here we characterized a Class I BPC gene (CjBPC1) from an ornamental flower—Camellia japonica. We showed that CjBPC1 is highly expressed in the central whorls of flowers in both single and doubled varieties. Overexpression of CjBPC1 in Arabidopsis thaliana caused severe defects in siliques and seeds. We found that genes involved in ovule and seed development, including SEEDSTICK, LEAFY COTYLEDON2, ABSCISIC ACID INSENSITIVE 3 and FUSCA3, were significantly down-regulated in transgenic lines. We showed that the histone 3 lysine 27 methylation levels of these downstream genes were enhanced in the transgenic plants, indicating conserved roles of CjBPC1 in recruiting the Polycomb Repression Complex for gene suppression.
Collapse
|
25
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
26
|
Lee YC, Tsai PT, Huang XX, Tsai HL. Family Members Additively Repress the Ectopic Expression of BASIC PENTACYSTEINE3 to Prevent Disorders in Arabidopsis Circadian Vegetative Development. FRONTIERS IN PLANT SCIENCE 2022; 13:919946. [PMID: 35693178 PMCID: PMC9182635 DOI: 10.3389/fpls.2022.919946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family members are plant-specific GAGA-motif binding factors (GAFs) controlling multiple developmental processes of growth and propagation. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. It has been revealed that BPCs have an overlapping and antagonistic relationship in regulating development. In this study, we showed disturbances interfering with the homeostasis of BPC expressions impede growth and development. The ectopic expression of BPC3 results in the daily growth defect shown by higher-order bpc mutants. Oscillations of multiple circadian clock genes are phase-delayed in the quadruple mutant of bpc1 bpc2 bpc4 bpc6 (bpc1,2,4,6). By introducing the overexpression of BPC3 into wild-type Arabidopsis, we found that BPC3 is a repressor participating in its repression and repressing multiple regulators essential to the circadian clock. However, the induction of BPC3 overexpression did not fully replicate clock defects shown by the quadruple mutant, indicating that in addition to the BPC3 antagonization, BPC members also cofunction in the circadian clock regulation. A leaf edge defect similar to that shown by bpc1,2,4,6 is also observed under BPC3 induction, accompanied by repression of a subset of TCPs required for the edge formation. This proves that BPC3 is a repressor that must be confined during the vegetative phase. Our findings demonstrate that BPCs form a meticulous repressor network for restricting their repressive functions to molecular mechanisms controlling plant growth and development.
Collapse
|
27
|
Li Q, Wang M, Fang L. BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:373-380. [PMID: 34710757 DOI: 10.1016/j.plaphy.2021.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 05/28/2023]
Abstract
Osmotic stress substantially affects plant growth and development. Study of plant transcription factors involved in osmotic stress can enhance our understanding of the mechanisms of plant osmotic stress tolerance and how the tolerance of plants to osmotic stress can be improved. Here, we identified the specific function of Arabidopsis thaliana BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factor, BPC2, in the osmotic stress response. Phenotypic analysis showed that loss-of-function of BPC2 led to an increase in osmotic stress tolerance in the seedling growth stage. Physiological analysis showed that mutation of BPC2 in Arabidopsis alleviated osmotic-induced increases in H2O2 accumulation, the malondialdehyde (MDA) content, and percent electrolyte leakage. BPC2 was localized in the nucleus. RNA-seq and qRT-PCR analysis showed that BPC2 could negatively regulate the expression of late embryogenesis abundant (LEA) genes (LEA3, LEA4-2, and LEA4-5). Further analysis showed that BPC2 could directly bind to the promoter of LEA4-5 in vitro and in vivo. Overexpression of BPC2 enhanced hypersensitivity to osmotic stress in the seedling growth stage. Overexpression of BPC2 led to decreases in LEA4-5 expression and aggravated osmotic-induced increases in H2O2 accumulation, the MDA content, and percent electrolyte leakage. Overall, our results indicate that BPC2 negatively regulates LEA4-5 expression to modulate osmotic-induced H2O2 accumulation, the MDA content, and percent electrolyte leakage, all of which affect the osmotic stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qiaolu Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
28
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
29
|
Krizek BA, Bantle AT, Heflin JM, Han H, Freese NH, Loraine AE. AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5478-5493. [PMID: 34013313 PMCID: PMC8318262 DOI: 10.1093/jxb/erab223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/15/2021] [Indexed: 05/07/2023]
Abstract
Arabidopsis flower primordia give rise to organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular mechanisms by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT- and AIL6-binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT and/or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include class B and C floral homeotic genes, growth regulatory genes, and genes involved in vascular development.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Correspondence:
| | - Alexis T Bantle
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jorman M Heflin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Han Han
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Nowlan H Freese
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
30
|
Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:411-425. [PMID: 33276159 DOI: 10.1016/j.molp.2020.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Salinity severely reduces plant growth and limits agricultural productivity. Dynamic changes and rearrangement of the plant cell wall is an important response to salt stress, but relatively little is known about the biological importance of specific cell wall components in the response. Here, we demonstrate a specific function of β-1,4-galactan in salt hypersensitivity. We found that salt stress induces the accumulation of β-1,4-galactan in root cell walls by up regulating the expression of GALACTAN SYNTHASE 1 (GALS1), which encodes a β-1,4-galactan synthase. The accumulation of β-1,4-galactan negatively affects salt tolerance. Exogenous application of D-galactose (D-Gal) causes an increase in β-1,4-galactan levels in the wild type and GALS1 mutants, especially in GALS1 overexpressors, which correlated with the aggravated salt hypersensitivity. Furthermore, we discovered that the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factors BPC1/BPC2 positively regulate plant salt tolerance by repressing GALS1 expression and β-1,4-galactan accumulation. Genetic analysis suggested that GALS1 is genetically epistatic to BPC1/BPC2 with respect to the control of salt sensitivity as well as accumulation of β-1,4-galactan. Taken together, our results reveal a new regulatory mechanism by which β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
31
|
Akhatar J, Goyal A, Kaur N, Atri C, Mittal M, Singh MP, Kaur R, Rialch I, Banga SS. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Sci Rep 2021; 11:4278. [PMID: 33608616 PMCID: PMC7896068 DOI: 10.1038/s41598-021-83689-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Indu Rialch
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
32
|
Sun S, Yi C, Ma J, Wang S, Peirats-Llobet M, Lewsey MG, Whelan J, Shou H. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean ( Glycine max) Tissues during Early Seed Development. Int J Mol Sci 2020; 21:E7603. [PMID: 33066688 PMCID: PMC7589660 DOI: 10.3390/ijms21207603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023] Open
Abstract
Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.
Collapse
Affiliation(s)
- Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Changyu Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Jing Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marta Peirats-Llobet
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia;
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| |
Collapse
|
33
|
Yan B, Lv Y, Zhao C, Wang X. Knowing When to Silence: Roles of Polycomb-Group Proteins in SAM Maintenance, Root Development, and Developmental Phase Transition. Int J Mol Sci 2020; 21:E5871. [PMID: 32824274 PMCID: PMC7461556 DOI: 10.3390/ijms21165871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are the major complexes composed of polycomb-group (PcG) proteins in plants. PRC2 catalyzes trimethylation of lysine 27 on histone 3 to silence target genes. Like Heterochromatin Protein 1/Terminal Flower 2 (LHP1/TFL2) recognizes and binds to H3K27me3 generated by PRC2 activities and enrolls PRC1 complex to further silence the chromatin through depositing monoubiquitylation of lysine 119 on H2A. Mutations in PcG genes display diverse developmental defects during shoot apical meristem (SAM) maintenance and differentiation, seed development and germination, floral transition, and so on so forth. PcG proteins play essential roles in regulating plant development through repressing gene expression. In this review, we are focusing on recent discovery about the regulatory roles of PcG proteins in SAM maintenance, root development, embryo development to seedling phase transition, and vegetative to reproductive phase transition.
Collapse
Affiliation(s)
| | | | | | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
34
|
Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix JD, Miao Y, Sun X. Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing. MOLECULAR PLANT 2020; 13:1178-1193. [PMID: 32592820 DOI: 10.1016/j.molp.2020.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
The regulation of stomatal lineage cell development has been extensively investigated. However, a comprehensive characterization of this biological process based on single-cell transcriptome analysis has not yet been reported. In this study, we performed RNA sequencing on 12 844 individual cells from the cotyledons of 5-day-old Arabidopsis seedlings. We identified 11 cell clusters corresponding mostly to cells at specific stomatal developmental stages using a series of marker genes. Comparative analysis of genes with the highest variable expression among these cell clusters revealed transcriptional networks that regulate development from meristemoid mother cells to guard mother cells. Examination of the developmental dynamics of marker genes via pseudo-time analysis revealed potential interactions between these genes. Collectively, our study opens the door for understanding how the identified novel marker genes participate in the regulation of stomatal lineage cell development.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jinggong Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiaoai Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Zixia Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yongjian Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yijing Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yan Shangguan
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Weiqiang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Tao Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yunhe Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
35
|
Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, Tadini L, Kater MM, Gregis V. BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:582-599. [PMID: 31909505 DOI: 10.1111/tpj.14673] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
The BASIC PENTACYSTEINE (BPC) GAGA (C-box) binding proteins belong to a small plant transcription factor family. We previously reported that class I BPCs bind directly to C-boxes in the SEEDSTICK (STK) promoter and the mutagenesis of these cis-elements affects STK expression in the flower. The MADS-domain factor SHORT VEGETATIVE PHASE (SVP) is another key regulator of STK. Direct binding of SVP to CArG-boxes in the STK promoter are required to repress its expression during the first stages of flower development. Here we show that class II BPCs directly interact with SVP and that MADS-domain binding sites in the STK promoter region are important for the correct spatial and temporal expression of this homeotic gene. Furthermore, we show that class I and class II BPCs act redundantly to repress STK expression in the flower, most likely by recruiting TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) and mediating the establishment and the maintenance of H3K27me3 repressive marks on DNA. We investigate the role of LHP1 in the regulation of STK expression. In addition to providing a better understanding of the role of BPC transcription factors in the regulation of STK expression, our results suggest the existence of a more general regulatory complex composed of BPCs, MADS-domain factors and Polycomb Repressive Complexes that co-operate to regulate gene expression in reproductive tissues. We believe that our data along with the molecular model described here could provide significant insights for a more comprehensive understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Francesca Caselli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Irma Roig-Villanova
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
- Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agricultural Engineering, UPC, Esteve Terrades 8, Building 4, 08860, Castelldefels, Spain
| | - Valentina Vignati
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
36
|
Hu Z, Fu Q, Zheng J, Zhang A, Wang H. Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. HORTICULTURE RESEARCH 2020; 7:79. [PMID: 32528691 PMCID: PMC7261800 DOI: 10.1038/s41438-020-0293-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/03/2020] [Accepted: 03/20/2020] [Indexed: 05/17/2023]
Abstract
Melatonin has been shown to alleviate the effects of abiotic stress and to regulate plant development. Copper, a common heavy metal and soil pollutant, can suppress plant growth and development. In this work, we explored the protective effects of exogenous melatonin on lateral root formation in response to copper stress using melon seeds subjected to three germination treatments: CK1 (control), CK2 (300 μmol/L CuSO4), and MT3 (300 μmol/L melatonin + 300 μmol/L CuSO4). Melatonin pretreatment increased the antioxidant enzyme activities and root vigor, and decreased the proline and malondialdehyde (MDA) contents in the roots of copper-stressed melon seedlings. We then used transcriptomic and metabolomic analyses to explore the mechanisms by which exogenous melatonin protects against copper stress. There were 70 significant differentially expressed genes (DEGs) (28 upregulated, 42 downregulated) and 318 significantly differentially expressed metabolites (DEMs) (168 upregulated, 150 downregulated) between the MT3 and CK2 treatments. Melatonin pretreatment altered the expression of genes related to redox and cell wall formation processes. In addition, we found that members of the AP2/ERF, BBR/BPC, GRAS, and HD-ZIP transcription factor families may have vital roles in lateral root development. Melatonin also increased the level of Glutathione (GSH), which chelates excess Cu2+. The combined transcriptomic and metabolomic analysis revealed DEGs and DEMs involved in jasmonic acid (JA) biosynthesis, including four lipoxygenase-related genes and two metabolites (linoleic acid and lecithin) related to melatonin's alleviation effect on copper toxicity. This research elucidated the molecular mechanisms of melatonin's protective effects in copper-stressed melon.
Collapse
Affiliation(s)
- Zhicheng Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jing Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Aiai Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
37
|
Zhao J, Shen F, Gao Y, Wang D, Wang K. Parallel Bud Mutation Sequencing Reveals that Fruit Sugar and Acid Metabolism Potentially Influence Stress in Malus. Int J Mol Sci 2019; 20:E5988. [PMID: 31795097 PMCID: PMC6928686 DOI: 10.3390/ijms20235988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Apple sugar and acid are the most important traits of apple fruit. Bud sport cultivars can provide abundant research materials for functional gene studies in apple. In this study, using bud sport materials with a rather different sugar and acid flavor, i.e., "Jonathan" and "Sweet Jonathan", we profiled the whole genome variations and transcriptional regulatory network during fruit developmental stages using whole genome sequencing and RNA-sequencing. Variation analysis identified 4,198,955 SNPs, 319,494 InDels, and 32,434 SVs between the two cultivars. In total, 4313 differentially expressed genes among all of the d 44,399 genes expressed were identified between the two cultivars during fruit development, and functional analysis revealed stress response and signal transduction related genes were enriched. Using 24,047 genes with a more variable expression value, we constructed 28 co-expression modules by weighted correlation network analysis. Deciphering of 14 co-expression modules associated with sugar or acid accumulation during fruit development revealed the hub genes associated with sugar and acid metabolism, e.g., MdDSP4, MdINVE, and MdSTP7. Furthermore, exploration of the intra network of the co-expression module indicated the close relationship between sugar and acid metabolism or sugar and stress. Motif-based sequence analysis of the 17 differentially expressed ATP-binding cassette transporter genes and Yeast one-hybrid assay identified and confirmed a transcription factor, MdBPC6, regulating the ATP-binding cassette (ABC) transporter genes and potentially participating in the apple fruit development or stress response. Collectively, all of the results demonstrated the use of parallel bud mutation sequencing and identified hub genes, and inferred regulatory relationships providing new information about apple fruit sugar and acid accumulation or stress response.
Collapse
Affiliation(s)
- Jirong Zhao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
- College of Life Science, Yan’an University, Shanxi Key Lab of Chinese Jujube, Yan’an 716000, China
| | - Fei Shen
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China;
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| | - Dajiang Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| |
Collapse
|
38
|
Genome-Wide Identification and Characterization of Cucumber BPC Transcription Factors and Their Responses to Abiotic Stresses and Exogenous Phytohormones. Int J Mol Sci 2019; 20:ijms20205048. [PMID: 31614627 PMCID: PMC6829308 DOI: 10.3390/ijms20205048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BASIC PENTACYSTEINE (BPC) is a small transcription factor family that functions in diverse growth and development processes in plants. However, the roles of BPCs in plants, especially cucumber (Cucumis sativus L.), in response to abiotic stress and exogenous phytohormones are still unclear. Here, we identified four BPC genes in the cucumber genome, and classified them into two groups according to phylogenetic analysis. We also investigated the gene structures and detected five conserved motifs in these CsBPCs. Tissue expression pattern analysis revealed that the four CsBPCs were expressed ubiquitously in both vegetative and reproductive organs. Additionally, the transcriptional levels of the four CsBPCs were induced by various abiotic stress and hormone treatments. Overexpression of CsBPC2 in tobacco (Nicotiana tabacum) inhibited seed germination under saline, polyethylene glycol, and abscisic acid (ABA) conditions. The results suggest that the CsBPC genes may play crucial roles in cucumber growth and development, as well as responses to abiotic stresses and plant hormones. CsBPC2 overexpression in tobacco negatively affected seed germination under hyperosmotic conditions. Additionally, CsBPC2 functioned in ABA-inhibited seed germination and hypersensitivity to ABA-mediated responses. Our results provide fundamental information for further research on the biological functions of BPCs in development and abiotic stress responses in cucumber and other plant species.
Collapse
|
39
|
Wang J, Hossain MS, Lyu Z, Schmutz J, Stacey G, Xu D, Joshi T. SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data. PLANT DIRECT 2019; 3:e00167. [PMID: 31549018 PMCID: PMC6747016 DOI: 10.1002/pld3.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 05/04/2023]
Abstract
The Soybean Gene Atlas project provides a comprehensive map for understanding gene expression patterns in major soybean tissues from flower, root, leaf, nodule, seed, and shoot and stem. The RNA-Seq data generated in the project serve as a valuable resource for discovering tissue-specific transcriptome behavior of soybean genes in different tissues. We developed a computational pipeline for Soybean context-specific network (SoyCSN) inference with a suite of prediction tools to analyze, annotate, retrieve, and visualize soybean context-specific networks at both transcriptome and interactome levels. BicMix and Cross-Conditions Cluster Detection algorithms were applied to detect modules based on co-expression relationships across all the tissues. Soybean context-specific interactomes were predicted by combining soybean tissue gene expression and protein-protein interaction data. Functional analyses of these predicted networks provide insights into soybean tissue specificities. For example, under symbiotic, nitrogen-fixing conditions, the constructed soybean leaf network highlights the connection between the photosynthesis function and rhizobium-legume symbiosis. SoyCSN data and all its results are publicly available via an interactive web service within the Soybean Knowledge Base (SoyKB) at http://soykb.org/SoyCSN. SoyCSN provides a useful web-based access for exploring context specificities systematically in gene regulatory mechanisms and gene relationships for soybean researchers and molecular breeders.
Collapse
Affiliation(s)
- Juexin Wang
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
| | - Md Shakhawat Hossain
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Divisions of Plant Science and BiochemistryUniversity of MissouriSt. LouisMOUSA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
| | - Jeremy Schmutz
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
- DOE Joint Genome InstituteWalnut CreekCAUSA
| | - Gary Stacey
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Divisions of Plant Science and BiochemistryUniversity of MissouriSt. LouisMOUSA
| | - Dong Xu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Informatics InstituteUniversity of MissouriSt. LouisMOUSA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Informatics InstituteUniversity of MissouriSt. LouisMOUSA
- Department of Health Management and Informatics and Office of ResearchSchool of MedicineUniversity of MissouriSt. LouisMOUSA
| |
Collapse
|
40
|
Panchy NL, Azodi CB, Winship EF, O'Malley RC, Shiu SH. Expression and regulatory asymmetry of retained Arabidopsis thaliana transcription factor genes derived from whole genome duplication. BMC Evol Biol 2019; 19:77. [PMID: 30866803 PMCID: PMC6416927 DOI: 10.1186/s12862-019-1398-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs. Results Here we assessed what features may explain differences in the retention of TF duplicates and other genes using Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one “ancestral” TF duplicate retains most ancestral expression and cis-regulatory sites, while the “non-ancestral” duplicate is enriched for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained. Conclusions These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for novel, adaptive traits. Electronic supplementary material The online version of this article (10.1186/s12862-019-1398-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: NIMBioS, University of Tennessee, Claxton Bldg. 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eamon F Winship
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Present address: MYcroarray, 5692 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | | | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Plant Biology Laboratories, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
41
|
Wang W, Gao T, Chen J, Yang J, Huang H, Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:277-286. [PMID: 30593000 DOI: 10.1016/j.plaphy.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 05/20/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse family of polypeptides that play important roles in plant growth, development and stress responses. At present, LEA gene families have been identified and systematically characterized in many plant species. However, the LEA gene family in tea plant has not been revealed, and the biological functions of the members of this family remain unknown. In this study, 33 CsLEA genes were identified from tea plant via a genome-wide study, and they were clustered into seven groups according to analyses of their phylogenetic relationships, gene structures and protein conserved motifs. In addition, expression analysis revealed that the CsLEA genes were specifically expressed in one or more tissues and significantly induced under cold and dehydration stresses, implying that CsLEA genes play important roles in tea plant growth, development and response to cold and dehydration stresses. Furthermore, a potential transcriptional regulatory network, including DREB/CBF, MYB, bZIP, bHLH, BPC and other transcription factors, is directly associated with the expression of CsLEA genes, which may be ubiquitous and important in the above mentioned processes. This study could help to increase our understanding of CsLEA proteins and their contributions to stress tolerance in tea plant.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangfei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiankun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyu Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D. Phylogenetic Analyses and GAGA-Motif Binding Studies of BBR/BPC Proteins Lend to Clues in GAGA-Motif Recognition and a Regulatory Role in Brassinosteroid Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:466. [PMID: 31057577 PMCID: PMC6477699 DOI: 10.3389/fpls.2019.00466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.
Collapse
Affiliation(s)
- Marius L. Theune
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ulrich Bloss
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | - Luise H. Brand
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | | | - Dierk Wanke
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
- *Correspondence: Dierk Wanke,
| |
Collapse
|
43
|
Shanks CM, Hecker A, Cheng CY, Brand L, Collani S, Schmid M, Schaller GE, Wanke D, Harter K, Kieber JJ. Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:458-473. [PMID: 29763523 DOI: 10.1111/tpj.13962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes. One potential set of co-regulators modulating the cytokinin response are the BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family of plant-specific transcription factors. Here, we show that disruption of multiple BPCs results in reduced sensitivity to cytokinin. Further, the BPCs are necessary for the induction of a subset of genes in response to cytokinin. We identified direct in vivo targets of BPC6 using ChIP-Seq and found an enrichment of promoters of genes differentially expressed in response to cytokinin. Further, a significant number of BPC6 regulated genes are also direct targets of the type-B ARRs. Potential cis-binding elements for a number of other transcription factors linked to cytokinin action are enriched in the BPC binding fragments, including those for the cytokinin response factors (CRFs). In addition, several BPCs interact with a subset of type-A ARRs. Consistent with these results, a significant number of genes whose expression is altered in bpc mutant roots are also mis-expressed in crf1,3,5,6 and type-A arr3,4,5,6,7,8,9,15 mutant roots. These results suggest that the BPCs are part of a complex network of transcription factors that are involved in the response to cytokinin.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Hecker
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Luise Brand
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755 (603) 646-1347, USA
| | - Dierk Wanke
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Saarland University, Molecular Plant Biology, Campus A2.4, 66123, Saarbrücken, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
44
|
Gong R, Cao H, Zhang J, Xie K, Wang D, Yu S. Divergent functions of the GAGA-binding transcription factor family in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:32-47. [PMID: 29383786 DOI: 10.1111/tpj.13837] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
OsGBPs are a small family of four genes in rice (Oryza sativa L.) that function as transcription factors recognizing the GAGA motif; however, their functions in plant growth and development remain unclear. Here we report the functions of OsGBPs in plant growth and grain development. Knock-down and knock-out of OsGBP1 promoted seedling growth and enhanced grain length, whereas overexpression of OsGBP1 exhibited the opposite effect on seedling growth and grain length, indicating that OsGBP1 repressed grain length and seedling growth. In addition, overexpression of OsGBP1 led to delayed flowering time and suppressed plant height. OsGBP1 could regulate OsLFL1 expression through binding to the (GA)12 element of its promoter. In contrast, OsGBP3 induced grain length and plant height. Grain length and plant height were decreased in OsGBP3RNAi lines and were increased in OsGBP3 overexpression lines. We also found a synergistic effect of these two genes on grain width and plant growth. RNAi of both OsGBP1 and OsGBP3 resulted in severe dwarfism, compared with RNAi of a single gene. These results suggest the presence of functional divergence of OsGBPs in the regulation of grain size and plant growth; these results enrich our understanding of the roles of GAGA-binding transcription factors in the regulatory pathways of plant development.
Collapse
Affiliation(s)
- Rong Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianing Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
45
|
Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet 2017; 49:1546-1552. [DOI: 10.1038/ng.3937] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
|
46
|
Mu Y, Liu Y, Bai L, Li S, He C, Yan Y, Yu X, Li Y. Cucumber CsBPCs Regulate the Expression of CsABI3 during Seed Germination. FRONTIERS IN PLANT SCIENCE 2017; 8:459. [PMID: 28421094 PMCID: PMC5376566 DOI: 10.3389/fpls.2017.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/16/2017] [Indexed: 05/11/2023]
Abstract
Cucumber seeds with shallow dormancy start to germinate in fruit that are harvested late. ABSCISIC ACID INSENSITIVE3 (ABI3), a transcription factor in the abscisic acid (ABA) signaling pathway, is one of the most important regulators in the transition from late embryogenesis to germination. Our analysis found a candidate cis-regulatory motif for cucumber BASIC PENTACYSTEINE (CsBPC) in the promoter of CsABI3. Yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays showed that CsBPCs bound to the promoter of CsABI3. Examination of β-glucuronidase (GUS) activity driven by the CsABI3 promoter in transgenic Arabidopsis thaliana plants overexpressing CsBPCs and a Nicotiana benthamiana (tobacco) luciferase assay indicated that CsBPCs inhibited the expression of CsABI3. Transgenic plants overexpressing CsBPCs were constructed to confirm that CsBPCs participates in the control of seed germination. This study of the cucumber BPC-ABI3 pathway will help to explore and characterize the molecular mechanisms underlying seed germination and will provide necessary information for seed conservation in agriculture and forestry.
Collapse
|
47
|
Kumar S, Bhatia S. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 2016; 6:33280. [PMID: 27623355 PMCID: PMC5020687 DOI: 10.1038/srep33280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| |
Collapse
|
48
|
Nagler M, Nukarinen E, Weckwerth W, Nägele T. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:284. [PMID: 26628055 PMCID: PMC4667452 DOI: 10.1186/s12870-015-0668-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND The variation of growth and cold tolerance of two natural Arabidopsis accessions, Cvi (cold sensitive) and Rschew (cold tolerant), was analysed on a proteomic, phosphoproteomic and metabolomic level to derive characteristic information about genotypically distinct strategies of metabolic reprogramming and growth maintenance during cold acclimation. RESULTS Growth regulation before and after a cold acclimation period was monitored by recording fresh weight of leaf rosettes. Significant differences in the shoot fresh weight of Cvi and Rschew were detected both before and after acclimation to low temperature. During cold acclimation, starch levels were found to accumulate to a significantly higher level in Cvi compared to Rschew. Concomitantly, statistical analysis revealed a cold-induced decrease of beta-amylase 3 (BAM3; AT4G17090) in Cvi but not in Rschew. Further, only in Rschew we observed an increase of the protein level of the debranching enzyme isoamylase 3 (ISA3; AT4G09020). Additionally, the cold response of both accessions was observed to severely affect ribosomal complexes, but only Rschew showed a pronounced accumulation of carbon and nitrogen compounds. The abundance of the Cold Regulated (COR) protein COR78 (AT5G52310) as well as its phosphorylation was observed to be positively correlated with the acclimation state of both accessions. In addition, transcription factors being involved in growth and developmental regulation were found to characteristically separate the cold sensitive from the cold tolerant accession. Predicted protein-protein interaction networks (PPIN) of significantly changed proteins during cold acclimation allowed for a differentiation between both accessions. The PPIN revealed the central role of carbon/nitrogen allocation and ribosomal complex formation to establish a new cold-induced metabolic homeostasis as also observed on the level of the metabolome and proteome. CONCLUSION Our results provide evidence for a comprehensive multi-functional molecular interaction network orchestrating growth regulation and cold acclimation in two natural accessions of Arabidopsis thaliana. The differential abundance of beta-amylase 3 and isoamylase 3 indicates a central role of transitory starch degradation in the coordination of growth regulation and the development of stress tolerance. Finally, our study indicates naturally occurring differential patterns of C/N balance and protein synthesis during cold acclimation.
Collapse
Affiliation(s)
- Matthias Nagler
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Ella Nukarinen
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Chung Y, Kwon SI, Choe S. Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses. Mol Cells 2014; 37:795-803. [PMID: 25377253 PMCID: PMC4255099 DOI: 10.14348/molcells.2014.0127] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 11/27/2022] Open
Abstract
To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.
Collapse
Affiliation(s)
- Yuhee Chung
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Soon Il Kwon
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon 443-270,
Korea
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon 443-270,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|
50
|
Jover-Gil S, Paz-Ares J, Micol JL, Ponce MR. Multi-gene silencing in Arabidopsis: a collection of artificial microRNAs targeting groups of paralogs encoding transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:149-160. [PMID: 25040904 DOI: 10.1111/tpj.12609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Functional redundancy often hampers the analysis of gene families. To overcome this difficulty, we constructed Arabidopsis thaliana lines that expressed artificial microRNAs designed to simultaneously target two to six paralogous genes encoding members of transcription factor families. Of the 576 genes that we chose as targets, only 122 had already been functionally studied at some level. As a simple indicator of the inhibitory effects of our amiRNAs on their targets, we examined the amiRNA-expressing transgenic lines for morphological phenotypes at the rosette stage. Of 338 transgenes tested, 21 caused a visible morphological phenotype in leaves, a proportion that is much higher than that expected as a result of insertional mutagenesis. Also, our collection probably represents many other mutant phenotypes, not just those in leaves. This robust, versatile method enables functional examination of redundant transcription factor paralogs, and is particularly useful for genes that occur in tandem.
Collapse
Affiliation(s)
- Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Alicante, Spain
| | | | | | | |
Collapse
|