1
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2025; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
2
|
Choi E, Song J, Lee Y, Jeong Y, Jang W. Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study. Hum Genomics 2024; 18:34. [PMID: 38566255 PMCID: PMC10985920 DOI: 10.1186/s40246-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
3
|
Hu T, Lv X, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Wang S, Sun W. Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. BIOLOGY 2022; 12:biology12010065. [PMID: 36671756 PMCID: PMC9855062 DOI: 10.3390/biology12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Sox18 is a developmental gene that encodes transcription factors. It has been indicated as be a key gene affecting the growth and development of hair follicles, in which dermal papilla cells (DPCs) have been demonstrated to play an important role through their ability to induce the formation of hair follicles. Pre-laboratory studies have found that Sox18 is differentially expressed in the dermal papilla cells of different pattern types of Hu sheep. We speculated that Sox18 plays an important role in the dermal papilla cells of Hu sheep. In our study, we analyzed the effect of Sox18 on the induction ability of DPCs in order to elucidate the function and molecular mechanism of Sox18 in the DPCs of Hu sheep. We first identified the expression of Sox18 in the DPCs of Hu sheep by immunofluorescence staining. We then used alkaline phosphatase staining, cell morphology observations and RT-PCR to detect the effect of Sox18 on the induction of DPCs after overexpression of or interference with Sox18. We also used RT-PCR, WB and immunofluorescence staining to detect the effect of Sox18 on the Wnt/β-catenin signal pathway in DPCs. We found that Sox18 was specifically expressed in the DPCs of Hu sheep, and that Sox18 could enhance the alkaline phosphatase activity in the DPCs of Hu sheep and accelerate cell agglutination. The results of RT-PCR revealed that Sox18 promoted the mRNA expression of Versican, HHIP and FGFRI, and inhibited the mRNA expression of BMP4 and WIF1. Further studies showed that Sox18 promoted the expression of β-catenin and activated the Wnt/β-catenin signal pathway in DPCs. When the Wnt/β-catenin signal pathway of DPCs was activated, the induction ability of DPCs was enhanced. Overall, we believe that Sox18 could enhance the induction ability of DPCs in Hu sheep and regulate the induction ability of DPCs through the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450060, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia 4067, Australia
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (W.S.)
| |
Collapse
|
4
|
Blumeyer A, Tosti A, Messenger A, Reygagne P, Del Marmol V, Spuls PI, Trakatelli M, Finner A, Kiesewetter F, Trüeb R, Rzany B, Blume-Peytavi U. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. J Dtsch Dermatol Ges 2012; 9 Suppl 6:S1-57. [PMID: 21980982 DOI: 10.1111/j.1610-0379.2011.07802.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgenetic alopecia is the most common hair loss disorder, affecting both men and women. Initial signs of androgenetic alopecia usually develop during teenage years leading to progressive hair loss with a pattern distribution. Moreover, its frequency increases with age and affects up to 80 % Caucasian men and 42 % of women. Patients diagnosed with androgenetic alopecia may undergo significant impairment of quality of life. Despite the high prevalence and the variety of therapeutic options available, there have been no national or international evidence-based guidelines for the treatment of androgenetic alopecia in men and women so far. Therefore, the European Dermatology Forum (EDF) initiated a project to develop an evidence-based S3 guideline for the treatment of andro-genetic alopecia. Based on a systematic literature research the efficacy of the currently available therapeutic options was assessed and therapeutic recommendations were passed in a consensus conference. The purpose of the guideline is to provide dermatologists as well as general practitioners with an evidence-based tool for choosing an efficacious and safe therapy for patients with androgenetic alopecia.
Collapse
Affiliation(s)
- Anja Blumeyer
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité- Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The role of neurohormones and neuropeptides in human hair follicle (HF) pigmentation extends far beyond the control of melanin synthesis by α-MSH and ACTH and includes melanoblast differentiation, reactive oxygen species scavenging, maintenance of HF immune privilege, and remodeling of the HF pigmentary unit (HFPU). It is now clear that human HFs are not only a target of multiple neuromediators, but also are a major non-classical production site for neurohormones such as CRH, proopiomelanocortin, ACTH, α-MSH, ß-endorphin, TRH, and melatonin. Moreover, human HFs have established a functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis. By charting the author's own meanderings through the jungle of hair pigmentation research, the current perspectives essay utilizes four clinical observations - hair repigmentation, canities, poliosis, and 'overnight greying'- as points of entry into the enigmas and challenges of .pigmentary HF neuroendocrinology. After synthesizing key principles and defining major open questions in the field, selected research avenues are delineated that appear clinically most promising. In this context, novel neuroendocrinological strategies to retard or reverse greying and to reduce damage to the HFPU are discussed.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|