1
|
Leonardi R, Pellino G, Floridia E, Lo Bianco M, Ruggieri M, Cho SY, Pavone V, Pavone P, Polizzi A. Polydactyly and syndactyly linked to GLI3 and TBX5 mutations: A pediatric case report. Glob Med Genet 2025; 12:100033. [PMID: 39925448 PMCID: PMC11800310 DOI: 10.1016/j.gmg.2024.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
Background Polydactyly and syndactyly, which are commonly encountered congenital limb deformities, rarely occur together and are linked with significant genetic mutations. This report sheds light on a unique co-presentation involving mutations in both the GLI3 and TBX5 genes, offering a deeper understanding of the genetic interactions that may influence limb development. This case report is important to increase our knowledge on genetic bases of limb malformations. Case presentation We report the case of an 8-month-old boy, born to non-consanguineous parents, presenting with both polydactyly and syndactyly in his limbs, in particular, complete syndactyly between the third to fifth fingers and post-axial polydactyly of the feet. His father showed a similar phenotype. Genetic testing identified a pathogenic heterozygous variant in the GLI3 gene (c .3762 T > A, p.(Tyr1254 *)) and a variant of uncertain significance in the TBX5 gene (c .1063 C>T, p.(Arg355Cys)). Conclusions This case highlights the complex nature of diagnosing and managing congenital limb deformities driven by genetic factors. It underscores the critical importance of comprehensive genetic testing in determining the etiology of limb malformations. The GLI3 variant, classified according to ACMG guidelines as a class IV mutation, likely results in a truncated protein due to a premature stop codon, confirmed by family segregation analysis indicating its paternal origin, suggesting autosomal dominant inheritance. Notably, the TBX5 gene variant, often associated with Holt-Oram syndrome-which is characterized by only hand skeletal anomalies and early-onset atrial fibrillation-suggests a risk of developing cardiac issues that are not currently present but may emerge as the child grows. This potential for evolving clinical manifestations necessitates vigilant long-term monitoring and may influence future medical management and therapeutic approaches.
Collapse
Affiliation(s)
- R. Leonardi
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - G. Pellino
- Postgraduate Training Program in Genetics, Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, Italy
| | - E. Floridia
- School of Medicine, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - M. Lo Bianco
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - M. Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - SY. Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - V. Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopedics and Traumatology, A.O.U. Policlinico, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| | - P. Pavone
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Unit of Catania, Institute for Biomedical Research and Innovation, National Council of Research, Catania, Italy
| | - A. Polizzi
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Department of Educational Science, University of Catania, Catania 95100, Italy
| |
Collapse
|
2
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Zhao C, Gao C, Zhu Y, Zhang Q, Lin P. A novel GLI3 frameshift mutation in a Chinese pedigree with polydactyly: A case report. Heliyon 2024; 10:e28638. [PMID: 38571622 PMCID: PMC10988035 DOI: 10.1016/j.heliyon.2024.e28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Background GLI3 gene mutations can result in various forms of polysyndactyly, such as Greig cephalopolysyndactyly syndrome (GCPS, MIM: #175700), Pallister-Hall syndrome (PHS, MIM: #146510), and isolated polydactyly (IPD, MIM: #174200, #174700). Reports on IPD-associated GLI3 mutations are rare. In this study, a novel GLI3 mutation was identified in a Chinese family with IPD. Results We report a family with six members affected by IPD. The family members demonstrated several special phenotypes, including sex differences, abnormal finger joint development, and different polydactyly types. We identified a novel frameshift variant in the GLI3 gene (NM_000168.6: c.1820_1821del, NP_000159.3: p.Tyr607Cysfs*9) by whole-exome sequencing. Further analysis suggested that this mutation was the cause of polydactyly in this family. Conclusions The discovery of this novel frameshift variant in our study further solidifies the relationship between IPD and GLI3 and expands the previously established spectrum of GLI3 mutations and associated phenotypes.
Collapse
Affiliation(s)
- Chi Zhao
- Department of Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Chengcheng Gao
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, 310030, China
| | - Yijun Zhu
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Qi Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, 310030, China
| | - Ping Lin
- Department of Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| |
Collapse
|
4
|
Guo X, Shi T, Lin M, Liu B, Pan Y. Two Novel Frameshift Mutations in the GLI3 Gene Underlie Non-Syndromic Polydactyly in Chinese Families. Genet Test Mol Biomarkers 2023; 27:299-305. [PMID: 37768332 DOI: 10.1089/gtmb.2023.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Objective: Polydactyly is characterized by multiple distinct heterogeneous phenotypes, the etiologies of which involve several genes. This study aimed to explore the genetic defects and further clarify the molecular mechanism of polydactyly in several Chinese families. Methods: Three families with diverse phenotypes of non-syndromic polydactyly were analyzed: two were cases of familial disease, whereas one was sporadic. PCR and Sanger sequencing were used to screen for pathogenic mutations in two known disease-associated genes, GLI3 and HOXD13, while bioinformatic analyses predicted the pathogenicity of the identified variants. Reverse transcription PCR was used to analyze the splicing effect of an intronic variant. Results: Two novel heterozygous frameshift mutations (c.4478delG/p.S1493Tfs*18; c.846_c.847insC/p.R283Qfs*21) were identified in the GLI3 gene from two of the pedigrees. Both c.4478delG and c.846_c.847insC were later confirmed in affected and unaffected members and normal controls, to truncate and disrupt the integrity of the GLI3 protein, reduce its level of expression, and disrupt its biological function through nonsense-mediated mRNA decay (NMD). In addition, a deep intron mutation (c.125-47 C>A) was detected in the GLI3 gene from the sporadic case, however, both bioinformatics analysis (HSF, splice AI, and CBS) and RT-PCR indicated that the variant c.125-47 C>A had minimal if any impact on splicing of the GLI3 gene. Conclusion: Two newly identified heterozygous frameshift mutations in the GLI3 gene were detected in two families with non-syndromic polydactyly, further extending the mutational spectrum of the GLI3 gene in non-syndromic polydactyly. Moreover, our study further expanded the phenotypic spectrum of non-syndromic polydactyly.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Laboratory Medicine, Fuzhou Second Hospital, Fuzhou, P.R. China
- Department of Laboratory Medicine, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, P.R. China
- Department of Laboratory Medicine, The Third Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Tengfei Shi
- Department of Laboratory Medicine, Fuzhou Second Hospital, Fuzhou, P.R. China
| | - Mingrui Lin
- Intensive Care Unit, The Affiliated People's Hospital of Fujian Traditional Medical University, Fuzhou, P.R. China
| | - Boling Liu
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, P.R. China
| | - Yuancheng Pan
- Department of Orthopaedics, Fuzhou Second Hospital, Fuzhou, P.R. China
| |
Collapse
|
5
|
Kyriazis Z, Kollia P, Grivea I, Stefanou N, Sotiriou S, Dailiana ZH. Polydactyly: Clinical and molecular manifestations. World J Orthop 2023; 14:13-22. [PMID: 36686282 PMCID: PMC9850794 DOI: 10.5312/wjo.v14.i1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
Polydactyly is a malformation during the development of the human limb, which is characterized by the presence of more than the normal number of fingers or toes. It is considered to be one of the most common inherited hand disorders. It can be divided into two major groups: Non-syndromic polydactyly or syndromic polydactyly. According to the anatomical location of the duplicated digits, polydactyly can be generally subdivided into pre-, post-axial, and mesoaxial forms. Non-syndromic polydactyly is often inherited with an autosomal dominant trait and defects during the procedure of anterior-posterior patterning of limb development are incriminated for the final phenotype of the malformation. There are several forms of polydactyly, including hand and foot extra digit manifestations. The deformity affects upper limbs with a higher frequency than the lower, and the left foot is more often involved than the right. The treatment is always surgical. Since the clinical presentation is highly diverse, the treatment combines single or multiple surgical operations, depending on the type of polydactyly. The research attention that congenital limb deformities have recently attracted has resulted in broadening the list of isolated gene mutations associated with the disorders. Next generation sequencing technologies have contributed to the correlation of phenotype and genetic profile of the multiple polydactyly manifestations and have helped in early diagnosis and screening of most non-syndromic and syndromic disorders.
Collapse
Affiliation(s)
- Zisis Kyriazis
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Ioanna Grivea
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Nikolaos Stefanou
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Sotiriou
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
6
|
Duan R, Hijazi H, Gulec EY, Eker HK, Costa SR, Sahin Y, Ocak Z, Isikay S, Ozalp O, Bozdogan S, Aslan H, Elcioglu N, Bertola DR, Gezdirici A, Du H, Fatih JM, Grochowski CM, Akay G, Baylor-Hopkins Center for Mendelian Genomics, Jhangiani SN, Karaca E, Gu S, Coban-Akdemir Z, Posey JE, Bayram Y, Sutton VR, Carvalho CM, Pehlivan D, Gibbs RA, Lupski JR. Developmental genomics of limb malformations: Allelic series in association with gene dosage effects contribute to the clinical variability. HGG ADVANCES 2022; 3:100132. [PMID: 36035248 PMCID: PMC9403727 DOI: 10.1016/j.xhgg.2022.100132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Genetic heterogeneity, reduced penetrance, and variable expressivity, the latter including asymmetric body axis plane presentations, have all been described in families with congenital limb malformations (CLMs). Interfamilial and intrafamilial heterogeneity highlight the complexity of the underlying genetic pathogenesis of these developmental anomalies. Family-based genomics by exome sequencing (ES) and rare variant analyses combined with whole-genome array-based comparative genomic hybridization were implemented to investigate 18 families with limb birth defects. Eleven of 18 (61%) families revealed explanatory variants, including 7 single-nucleotide variant alleles and 3 copy number variants (CNVs), at previously reported "disease trait associated loci": BHLHA9, GLI3, HOXD cluster, HOXD13, NPR2, and WNT10B. Breakpoint junction analyses for all three CNV alleles revealed mutational signatures consistent with microhomology-mediated break-induced replication, a mechanism facilitated by Alu/Alu-mediated rearrangement. Homozygous duplication of BHLHA9 was observed in one Turkish kindred and represents a novel contributory genetic mechanism to Gollop-Wolfgang Complex (MIM: 228250), where triplication of the locus has been reported in one family from Japan (i.e., 4n = 2n + 2n versus 4n = 3n + 1n allelic configurations). Genes acting on limb patterning are sensitive to a gene dosage effect and are often associated with an allelic series. We extend an allele-specific gene dosage model to potentially assist, in an adjuvant way, interpretations of interconnections among an allelic series, clinical severity, and reduced penetrance of the BHLHA9-related CLM spectrum.
Collapse
Affiliation(s)
- Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | | | - Silvia R. Costa
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
| | - Yavuz Sahin
- Medical Genetics, Genoks Genetics Center, Ankara, Turkey
| | - Zeynep Ocak
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul, Turkey
- Eastern Mediterranean University Medical School, Magosa, 10 Mersin, Turkey
| | - Débora R. Bertola
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
- Genetics Unit, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Baylor-Hopkins Center for Mendelian Genomics
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Medical Genetics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
- Department of Medical Genetics, Konya City Hospital, Konya, Turkey
- Human Genome and Stem Cell Research Center, Institute of Bioscience, Universidade de São Paulo, São Paulo, Brazil
- Medical Genetics, Genoks Genetics Center, Ankara, Turkey
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
- Department of Pediatric Neurology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul, Turkey
- Eastern Mediterranean University Medical School, Magosa, 10 Mersin, Turkey
- Genetics Unit, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Zeng L, Jin JY, Luo FM, Sheng Y, Wu PF, Xiang R. ZPA Regulatory Sequence Variants in Chinese Patients With Preaxial Polydactyly: Genetic and Clinical Characteristics. Front Pediatr 2022; 10:797978. [PMID: 35652055 PMCID: PMC9149355 DOI: 10.3389/fped.2022.797978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Preaxial polydactyly (PPD) is a common congenital abnormality with an incidence of 0.8-1.4% in Asians, characterized by the presence of extra digit(s) on the preaxial side of the hand or foot. PPD is genetically classified into four subtypes, PPD type I-IV. Variants in six genes/loci [including GLI family zinc finger 3 (GLI3), ZPA regulatory sequence (ZRS), and pre-ZRS region] have been identified in PPD cases. Among these loci, ZRS is, perhaps, the most special and well known, but most articles only reported one or a few cases. There is a lack of reports on the ZRS-variant frequency in patients with PPD. In this study, we recruited 167 sporadic or familial cases (including 154 sporadic patients and 13 families) with PPD from Central-South China and identified four ZRS variants in four patients (2.40%, 4/167), including two novel variants (ZRS131A > T/chr7:g.156584439A > T and ZRS474C > G/chr7:g.156584096C > G) and two known variants (ZRS428T > A/chr7:g.156584142T > A and ZRS619C > T/chr7:g.156583951C > T). ZRS131A > T and ZRS428T > A were detected in PPD I cases and ZRS474C > G and ZRS619C > T combinedly acted to cause PPD II. The detectable rate of ZRS variants in PPD I was 1.60% (2/125), while PPD II was significantly higher (9.52%, 2/21). Three bilateral PPD cases harbored ZRS variants (13.64%, 3/22), suggesting that bilateral PPD was more possibly caused by genetic etiologies. This study identified two novel ZRS variants, further confirmed the association between ZRS and PPD I and reported a rare PPD II case resulted from the compound heterozygote of ZRS. This investigation preliminarily evaluated a ZRS variants rate in patients with PPD and described the general picture of PPD in Central-South China.
Collapse
Affiliation(s)
- Lei Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Yuan Jin
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Fang-Mei Luo
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yue Sheng
- School of Life Sciences, Central South University, Changsha, China
| | - Pan-Feng Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
9
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
10
|
Chen X, Yuan L, Xu H, Hu P, Yang Y, Guo Y, Guo Z, Deng H. Novel GLI3 Mutations in Chinese Patients with Non-syndromic Post-axial Polydactyly. Curr Mol Med 2020; 19:228-235. [PMID: 30848202 DOI: 10.2174/1566524019666190308110122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Polydactyly, characterized by supernumerary digits in the upper or lower extremities, is the most common congenital digital abnormalities. It derives from the defective patterning of anteroposterior axis of the developing limb, with various etiology and clinical heterogeneity. The patients with post-axial polydactyly type A (PAPA) have the typical symptom of a well-formed supernumerary digit outside the fifth digit. OBJECTIVE The aim of present study was to identify the causative mutations of two unrelated Han Chinese patients with non-syndromic PAPA. METHODS Two unrelated Han Chinese patients and 100 ethnicity-matched, unrelated normal controls were recruited for this study. BGISEQ-500 exome sequencing was performed in the two patients, followed by validation in the patients and 100 controls by using Sanger sequencing. RESULTS Two mutations in the GLI family zinc finger 3 gene (GLI3), including a frameshift mutation c.3437_3453delTCGAGCAGCCCTGCCCC (p.L1146RfsX95) and a nonsense mutation c.3997C>T (p.Q1333X), were identified in two patients but were absent in the 100 healthy controls. CONCLUSION The two GLI3 mutations, p.L1146RfsX95 and p.Q1333X, may account for non-syndromic PAPA in the two patients, respectively. The findings of this study may expand the mutational spectrum of GLI3-PAPA and provide novel insights into the genetic basis of polydactyly.
Collapse
Affiliation(s)
- X Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - L Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - P Hu
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Guo
- Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Z Guo
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Abstract
BACKGROUND GLI3 encodes a transcription factor in the sonic hedgehog signaling pathway, which is essential in regulating the human limb bud development, especially on the anteroposterior axis. Mutations in GLI3 have been confirmed to be associated with various human congenital malformations, including Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, and isolated polydactyly. A robust gene-phenotype relationship between GLI3 and Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome has been well elucidated, and less is known about GLI3 mutation-caused isolated polydactyly. This study intended to perform a mutation analysis of GLl3 in a family with isolated polydactyly. METHODS A 3-generation Chinese family with 19 members was recruited in this study, of which the proband and her mother were affected with polydactyly. The whole-exon sequencing was performed to find mutations, and Sanger sequencing was performed to validate the mutations. RESULTS We found a novel heterozygous frameshift mutation of GLI3 (c.1180C > TT, p.P394fs18x) in the proband of a Chinese family with isolated postaxial polydactyly. No mutation was detected in the proband's father or another 2 patients with sporadic preaxial polydactyly. CONCLUSIONS By systematically reviewing the gene-phenotype relationship, we found that GLI3 p.P394fs18x mutation might be specific for isolated postaxial polydactyly.
Collapse
|
12
|
Xu C, Yang X, Zhou H, Li Y, Xing C, Zhou T, Zhong D, Lian C, Yan M, Chen T, Liao Z, Gao B, Su D, Wang T, Sharma S, Mohan C, Ahituv N, Malik S, Li QZ, Su P. A novel ZRS variant causes preaxial polydactyly type I by increased sonic hedgehog expression in the developing limb bud. Genet Med 2020; 22:189-198. [PMID: 31395945 PMCID: PMC6944640 DOI: 10.1038/s41436-019-0626-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Preaxial polydactyly (PPD) is a common congenital hand malformation classified into four subtypes (PPD I-IV). Variants in the zone of polarizing activity regulatory sequence (ZRS) within intron 5 of the LMBR1 gene are linked to most PPD types. However, the genes responsible for PPD I and the underlying mechanisms are unknown. METHODS A rare large four-generation family with isolated PPD I was subjected to genome-wide genotyping and sequence analysis. In vitro and in vivo functional studies were performed in Caco-2 cells, 293T cells, and a knockin transgenic mouse model. RESULTS A novel g.101779T>A (reference sequence: NG_009240.2; position 446 of the ZRS) variant segregates with all PPD I-affected individuals. The knockin mouse with this ZRS variant exhibited PPD I phenotype accompanying ectopic and excess expression of Shh. We confirmed that HnRNP K can bind the ZRS and SHH promoters. The ZRS mutant enhanced the binding affinity for HnRNP K and upregulated SHH expression. CONCLUSION Our results identify the first PPD I disease-causing variant. The variant leading to PPD I may be associated with enhancing SHH expression mediated by HnRNP K. This study adds to the ZRS-associated syndromes classification system for PPD and clarifies the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Caixia Xu
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiaoming Yang
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Hang Zhou
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yongyong Li
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taifeng Zhou
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Dongmei Zhong
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Chengjie Lian
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Chen
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiheng Liao
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Bo Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deying Su
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Tingting Wang
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California-San Francisco, San Francisco, CA, USA
| | - Sajid Malik
- Human Genetics Program, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Peiqiang Su
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
13
|
Wang T, Xuan Z, Dou Y, Liu Y, Fu Y, Ren J, Lu L. Identification of novel mutations in preaxial polydactyly patients through whole-exome sequencing. Mol Genet Genomic Med 2019; 7:e690. [PMID: 30993914 PMCID: PMC6565585 DOI: 10.1002/mgg3.690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Polydactyly is one of the most common hereditary limb malformation characterized by additional digits in hands and/or feet. With extra fingers/toes, which could be very problematic, polydactyly patients are usually treated in early childhood by removing of extra digits with surgery. Genetically, polydactyly is caused by mutations of genes that involve in digit formation. METHODS In the current report, we performed genetic analysis for polydactyly using DNA samples from a cohort of 20 Chinese patients. All patients show preaxial polydactyly in one of their hands. RESULTS With whole-exome sequencing (WES), we have identified two novel heterozygous mutations c.G2844A in GLI3 gene (OMIM 165240) and c.1409_1410del in EVC gene (OMIM 604831). Compound heterozygous mutations that affect KIAA0586 gene (OMIM 610178) are also detected. Proteins encoded by the genes have important roles in primary cilia and regulate sonic hedgehog signaling pathway. CONCLUSION Our study highlights the important roles of primary cilia in limb development, and helps to further understand the molecular mechanisms for polydactyly formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhaopeng Xuan
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yichen Dou
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yang Liu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanyan Fu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jingyan Ren
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Laijin Lu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
14
|
Rao C, Chen J, Peng Q, Mo Q, Xia X, Lu X. Mutational Screening of GLI3, SHH, and SHH ZRS in 78 Chinese Children with Nonsyndromic Polydactyly. Genet Test Mol Biomarkers 2018; 22:577-581. [PMID: 30235038 DOI: 10.1089/gtmb.2018.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polydactyly is one of the most common congenital limb abnormalities. Our objective was to identify the genetic causes of non-syndromic polydactyly in 78 Chinese children. MATERIALS AND METHODS Genomic DNA was isolated from 78 independent nonsyndromic polydactyly patients, of whom 71 had preaxial polydactyly (PPD), six had postaxial polydactyly (PAP), and one showed combined PPD1 and PAP-A/B. The coding areas and exon/intron boundaries of the GLI3 and SHH genes and the genomic region of SHH ZRS were amplified by polymerase chain reaction and sequenced. RESULTS The patient with combined PPD1 and PAP-A/B (subject DUO36) exhibited a heterozygous nonsense mutation in chr7: 42004164G>A (ENST00000395925, c.4507C>T, p.Gln1503Stop ) of the GLI3 gene that has not been previously recorded. We did not detect any mutations in GLI3, SHH, or SHH ZRS in the other 77 nonsyndromic polydactyly patients. CONCLUSION The novel mutation in GLI3 c.4507C>T is likely one of the causes of the PAP and PPD1 of subject DUO36. This important finding should facilitate the optimization of genetic testing for nonsyndromic polydactyly.
Collapse
Affiliation(s)
- Chunbao Rao
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| | - Jiahui Chen
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Qi Peng
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| | - Qineng Mo
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Xiansheng Xia
- 3 Department of Child Orthopaedics, Dongguan Children's Hospital , Dongguan, Guangdong, China
| | - Xiaomei Lu
- 1 Department of Center for Scientific Research, Dongguan Children's Hospital , Dongguan, Guangdong, China
- 2 Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics , Dongguan, Guangdong, China
| |
Collapse
|
15
|
Xiang Y, Jiang L, Wang B, Xu Y, Cai H, Fu Q. Mutational screening of GLI3, SHH, preZRS, and ZRS in 102 Chinese children with nonsyndromic polydactyly. Dev Dyn 2017; 246:392-402. [PMID: 28127823 DOI: 10.1002/dvdy.24488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polydactyly is a group of congenital limb malformations that show high degree of phenotypic variability and genetic heterogeneity. RESULTS In the present study, four genomic regions (exons of GLI3, SHH, and noncoding sequences of preZRS and ZRS) involved in hedgehog (Hh) signaling pathway were sequenced for 102 unrelated Chinese children with nonsyndromic polydactyly. Two GLI3 variants (c.2844 G > G/A; c.1486C > C/T) and four preZRS variants (chr7:156585336 A>G; chr7:156585421 C>A; chr7: 156585247 G>C; chr7:156585420 A > C) were observed in 2(2.0%) and 6(5.9%) patients, respectively. These variants are not over-represented in the Chinese healthy population. All the 8 cases showed preaxial polydactyly in hands. Additionally, no specific patterns of malformation predicted mutations in other candidate genes or sequences. CONCLUSIONS This is the first report of the assessment of the frequency of GLI3/SHH/preZRS/ZRS in Chinese patients to show any higher possibility of mutations or variants for the 4 genes or sequences in China. Developmental Dynamics 246:392-402, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Limin Jiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bo Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yunlan Xu
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haiqing Cai
- Department of Pediatric Orthopedic, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
16
|
Al-Qattan MM, Shamseldin HE, Salih MA, Alkuraya FS. GLI3-related polydactyly: a review. Clin Genet 2017; 92:457-466. [PMID: 28224613 DOI: 10.1111/cge.12952] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
GLI3 mutations are known to be associated with nine syndromes/conditions in which polydactyly is a feature. In this review, the embryology, pathogenesis, and animal models of GLI3-related polydactyly are discussed first. This is followed by a detailed review of the genotype-phenotype correlations. Based on our review of the literature and our clinical experiences, we recommend viewing GLI3-related syndromes/conditions as four separate entities; each characterized by a specific pattern of polydactyly. These four entities are: the preaxial polydactyly type IV-Greig-acrocallosal spectrum, postaxial polydactyly types A/B, Pallister-Hall syndrome (PHS), and oral-facial-digital overlap syndrome. We also provide illustrative clinical examples from our practice including a family with a novel GLI3 mutation causing PHS. The review also introduces the term 'Forme Fruste' preaxial polydactyly and gives several conclusions/recommendations including the recommendation to revise the current criteria for the clinical diagnosis of PHS.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - H E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - M A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Abstract
Polydactyly is one of the most common inherited limb abnormalities, characterised by supernumerary fingers or toes. It results from disturbances in the normal programme of the anterior-posterior axis of the developing limb, with diverse aetiology and variable inter- and intra-familial clinical features. Polydactyly can occur as an isolated disorder (non-syndromic polydactyly) or as a part of an anomaly syndrome (syndromic polydactyly). On the basis of the anatomic location of the duplicated digits, non-syndromic polydactyly is divided into three kinds, including preaxial polydactyly, axial polydactyly and postaxial polydactyly. Non-syndromic polydactyly frequently exhibits an autosomal dominant inheritance with variable penetrance. To date, in human, at least ten loci and four disease-causing genes, including the GLI3 gene, the ZNF141 gene, the MIPOL1 gene and the PITX1 gene, have been identified. In this paper, we review clinical features of non-syndromic polydactyly and summarise the recent progress in the molecular genetics, including loci and genes that are responsible for the disorder, the signalling pathways that these genetic factors are involved in, as well as animal models of the disorder. These progresses will improve our understanding of the complex disorder and have implications on genetic counselling such as prenatal diagnosis.
Collapse
|
18
|
The disruption of a novel limb cis-regulatory element of SHH is associated with autosomal dominant preaxial polydactyly-hypertrichosis. Eur J Hum Genet 2015; 24:37-43. [PMID: 25782671 DOI: 10.1038/ejhg.2015.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date. We report a family affected with a novel condition associating PPD and hypertrichosis of the upper back, following an autosomal dominant mode of inheritance. This phenotype is consistent with deregulation of SHH expression during limb and follicle development. In affected members, we identified a 2 kb deletion located ~240 kb upstream from the SHH promoter. The deleted sequence is capable of repressing the transcriptional activity of the SHH promoter in vitro, consistent with a silencer activity. We hypothesize that the deletion of this silencer could be responsible for SHH deregulation during development, leading to a PPD-hypertrichosis phenotype.
Collapse
|
19
|
Wang Z, Wang J, Li Y, Geng J, Fu Q, Xu Y, Shen Y. Novel frame-shift mutations of GLI3 gene in non-syndromic postaxial polydactyly patients. Clin Chim Acta 2014; 433:195-9. [DOI: 10.1016/j.cca.2014.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
|
20
|
Materna-Kiryluk A, Jamsheer A, Wisniewska K, Wieckowska B, Limon J, Borszewska-Kornacka M, Sawulicka-Oleszczuk H, Szwalkiewicz-Warowicka E, Latos-Bielenska A. Epidemiology of isolated preaxial polydactyly type I: data from the Polish Registry of Congenital Malformations (PRCM). BMC Pediatr 2013; 13:26. [PMID: 23421878 PMCID: PMC3654975 DOI: 10.1186/1471-2431-13-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Polydactyly represents a heterogeneous group of congenital hand and foot anomalies with variable clinical features and diverse etiology. Preaxial polydactyly type I (PPD1) is the most frequent form of preaxial polydactyly. The etiology of sporadic PPD1 remains largely unknown and the relative contribution of genetic and environmental factors is not clearly defined. The primary goals of this study are twofold: (1) to examine the epidemiology and clinical features of sporadic PPD1 in comparison to a healthy control group, and (2) to contrast the characteristics of sporadic PPD1 with familial forms of isolated polydactyly. Methods Among 2,530,349 live births registered in the Polish Registry of Congenital Malformations (PRCM), we identified 459 children with isolated sporadic PPD1 and 353 children with familial polydactyly, including 57 children with familial PPD1. Results In comparison with the matched group of 303 controls, sporadic PPD1 cases had significantly lower birth order (P = 0.01) and birthweight (P < 0.0001). Similarly, when compared to familial cases of polydactyly, lower birth order (P = 0.047) and lower birthweight (P < 0.0001) were characteristic of sporadic PPD1 cases. Moreover, our analyses suggested several additional risk factors for sporadic PPD1, including lower paternal education levels (P = 0.01), upper respiratory tract infections during the first trimester of pregnancy (P = 0.049), and maternal history of epilepsy (P = 0.01). Conclusions In summary, our study provides support to the hypothesis that non-genetic factors play an important role in the etiology of non-familiar PPD1.
Collapse
Affiliation(s)
- Anna Materna-Kiryluk
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Al-Qattan MM. A novel frameshift mutation of theGLI3gene in a family with broad thumbs with/without big toes, postaxial polydactyly and variable syndactyly of the hands/feet. Clin Genet 2012; 82:502-4. [DOI: 10.1111/j.1399-0004.2012.01866.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Johnston JJ, Sapp JC, Turner JT, Amor D, Aftimos S, Aleck KA, Bocian M, Bodurtha JN, Cox GF, Curry CJ, Day R, Donnai D, Field M, Fujiwara I, Gabbett M, Gal M, Graham JM, Hedera P, Hennekam RCM, Hersh JH, Hopkin RJ, Kayserili H, Kidd AMJ, Kimonis V, Lin AE, Lynch SA, Maisenbacher M, Mansour S, McGaughran J, Mehta L, Murphy H, Raygada M, Robin NH, Rope AF, Rosenbaum KN, Schaefer GB, Shealy A, Smith W, Soller M, Sommer A, Stalker HJ, Steiner B, Stephan MJ, Tilstra D, Tomkins S, Trapane P, Tsai ACH, Van Allen MI, Vasudevan PC, Zabel B, Zunich J, Black GCM, Biesecker LG. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 2010; 31:1142-54. [PMID: 20672375 PMCID: PMC2947617 DOI: 10.1002/humu.21328] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral-facial-digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype-phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria.
Collapse
Affiliation(s)
- Jennifer J Johnston
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4472, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baldridge D, Shchelochkov O, Kelley, B, Lee B. Signaling Pathways in Human Skeletal Dysplasias. Annu Rev Genomics Hum Genet 2010; 11:189-217. [DOI: 10.1146/annurev-genom-082908-150158] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
| | - Oleg Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Department of Pediatrics, Division of Genetics, University of Iowa, Iowa City, Iowa 52242
| | - Brian Kelley,
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| |
Collapse
|
24
|
Gorbach D, Mote B, Totir L, Fernando R, Rothschild M. Polydactyl inheritance in the pig. J Hered 2010; 101:469-75. [PMID: 20308080 DOI: 10.1093/jhered/esq037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two pigs were identified having "extra feet" (preaxial polydactyly) within a purebred population of Yorkshire pigs. Polydactyly is an inherited disorder in many species that may be controlled by either recessive or dominant genes. Experimental matings were conducted using pigs that had produced affected offspring with the result of 12 polydactyl offspring out of 95 piglets. One polydactyl-producing boar was also mated to 4 Duroc sows and 8 distantly related Yorkshire sows to produce 129 unaffected offspring. Together, these results suggest a recessive mode of inheritance, possibly with incomplete penetrance. Candidate genes, LMBR1, EN2, HOXA10-13, GLI3, WNT2, WNT16, and SHH, were identified based on association with similar phenotypes in other species. Homologues for these genes are all found on SSC18. Sequencing and linkage studies showed no evidence for association with HOXA10-13, WNT2, and WNT16. Results for the regions including GLI3, LMBR1, and SHH, however, were inconclusive. A whole genome scan was conducted on DNA samples from 10 affected pigs and 12 close relatives using the Illumina PorcineSNP60 BeadChip and compared with 69 more distantly related animals in the same population. No evidence was found for a major gene causing polydactyly. However, a 25-Mb stretch of homozygosity on SSC8 was identified as fairly unique to the family segregating for this trait. Therefore, this chromosome segment may play a role in development of polydactyly in concert with other genes.
Collapse
Affiliation(s)
- Danielle Gorbach
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Pediatricians deal with cases with the congenital malformations and malformation syndromes interest many of them. A lot of information about genes involved in development is available now. Genetics of hand development and genes involved in polydactyly syndromes is discussed in this article as a prototype to know about genetics of malformations: how it is studied and what is known. Genetic and chromosomal defects are often associated with congenital malformations. Polydactyly is one of the commonly seen malformations and genetic defects of many malformation syndromes associated with polydactyly are known. The role of genetic defect in polydactyly syndromes and the correlation between genotypes and phenotypes is discussed in this review article.
Collapse
Affiliation(s)
- Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | | |
Collapse
|
26
|
Timor-Tritsch IE, Kapp S, Berg R, Bejjani BA, Adams SA, Monteagudo A, Divon M, Pappas JG. Greig cephalopolysyndactyly syndrome: diagnosis based on prenatal sonographic features coupled with comparative genomic hybridization. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2009; 28:1735-1742. [PMID: 19933491 DOI: 10.7863/jum.2009.28.12.1735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Ilan E Timor-Tritsch
- Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Ave, NBV-9N26, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The study of patients with rare multiple congenital anomaly syndromes can provide illuminating insights into normal development and the pathogenesis of congenital anomalies. The GLI3 gene is a particularly good example as it illuminates the phenomena of pleiotropy, phenocopies, syndrome families, and evolutionary conservation of pathogenesis, and raises questions about how diagnoses are conceptualised. These topics are reviewed in turn, in the context of the clinical and biological data derived from patients with mutations in GLI3 and experimental work in model systems.
Collapse
Affiliation(s)
- L G Biesecker
- National Human Genome Research Institute, 49 Convent Drive Room 4A80, Bethesda, MD 20892-4472, USA.
| |
Collapse
|
28
|
|
29
|
Fujioka H, Ariga T. Response to Biesecker and Johnston. Clin Genet 2005. [DOI: 10.1111/j.1399-0004.2005.0485b.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|