1
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Eggermann T, Yapici E, Bliek J, Pereda A, Begemann M, Russo S, Tannorella P, Calzari L, de Nanclares GP, Lombardi P, Temple IK, Mackay D, Riccio A, Kagami M, Ogata T, Lapunzina P, Monk D, Maher ER, Tümer Z. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenetics 2022; 14:41. [PMID: 35296332 PMCID: PMC8928698 DOI: 10.1186/s13148-022-01259-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs. However, as the literature is fragmented, we reviewed the molecular and clinical data of 55 previously reported or newly identified MLID families with putative pathogenic variants in maternal effect genes (NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6) and in other candidate genes (ZFP57, ARID4A, ZAR1, UHRF1, ZNF445). RESULTS In 55 families, a total of 68 different candidate pathogenic variants were identified (7 in NLRP2, 16 in NLRP5, 7 in NLRP7, 17 in PADI6, 15 in ZFP57, and a single variant in each of the genes ARID4A, ZAR1, OOEP, UHRF1, KHDC3L and ZNF445). Clinical diagnoses of affected offspring included Beckwith-Wiedemann syndrome spectrum, Silver-Russell syndrome spectrum, transient neonatal diabetes mellitus, or they were suspected for an imprinting disorder (undiagnosed). Some families had recurrent pregnancy loss. CONCLUSIONS Genomic maternal effect and foetal variants causing MLID allow insights into the mechanisms behind the imprinting cycle of life, and the spatial and temporal function of the different factors involved in oocyte maturation and early development. Further basic research together with identification of new MLID families will enable a better understanding of the link between the different reproductive issues such as recurrent miscarriages and preeclampsia in maternal effect variant carriers/families and aneuploidy and the MLID observed in the offsprings. The current knowledge can already be employed in reproductive and genetic counselling in specific situations.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Elzem Yapici
- grid.1957.a0000 0001 0728 696XInstitute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jet Bliek
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, Netherlands
| | - Arrate Pereda
- grid.468902.10000 0004 1773 0974Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava Spain
| | - Matthias Begemann
- grid.1957.a0000 0001 0728 696XInstitute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Silvia Russo
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Pierpaola Tannorella
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luciano Calzari
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Guiomar Perez de Nanclares
- grid.468902.10000 0004 1773 0974Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava Spain
| | - Paola Lombardi
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, Netherlands
| | - I. Karen Temple
- grid.123047.30000000103590315Wessex Clinical Genetics Service, University Hospital Southampton, Southampton, UK ,grid.430506.40000 0004 0465 4079Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deborah Mackay
- grid.430506.40000 0004 0465 4079Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrea Riccio
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Caserta, Italy ,grid.419869.b0000 0004 1758 2860Institute of Genetics and Biophysics ‘Adriano Buzzati–Traverso’ CNR, Naples, Italy
| | - Masayo Kagami
- grid.63906.3a0000 0004 0377 2305Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Ohkura, Setagayaku, Tokyo, Japan
| | - Tsutomu Ogata
- grid.413553.50000 0004 1772 534XDepartment of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan ,grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Pablo Lapunzina
- grid.81821.320000 0000 8970 9163CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain ,ERN-Ithaca, European Reference Networks, Madrid, Spain
| | - David Monk
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eamonn R. Maher
- grid.24029.3d0000 0004 0383 8386Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK ,grid.24029.3d0000 0004 0383 8386Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Zeynep Tümer
- grid.475435.4Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
4
|
Fuke T, Nakamura A, Inoue T, Kawashima S, Hara KI, Matsubara K, Sano S, Yamazawa K, Fukami M, Ogata T, Kagami M. Role of Imprinting Disorders in Short Children Born SGA and Silver-Russell Syndrome Spectrum. J Clin Endocrinol Metab 2021; 106:802-813. [PMID: 33236057 PMCID: PMC7947753 DOI: 10.1210/clinem/dgaa856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND (Epi)genetic disorders associated with small-for-gestational-age with short stature (SGA-SS) include imprinting disorders (IDs). Silver-Russell syndrome (SRS) is a representative ID in SGA-SS and has heterogenous (epi)genetic causes. SUBJECTS AND METHODS To clarify the contribution of IDs to SGA-SS and the molecular and phenotypic spectrum of SRS, we recruited 269 patients with SGA-SS, consisting of 103 and 166 patients referred to us for genetic testing for SGA-SS and SRS, respectively. After excluding 20 patients with structural abnormalities detected by comparative genomic hybridization analysis using catalog array, 249 patients were classified into 3 subgroups based on the Netchine-Harbison clinical scoring system (NH-CSS), SRS diagnostic criteria. We screened various IDs by methylation analysis for differentially methylated regions (DMRs) related to known IDs. We also performed clinical analysis. RESULTS These 249 patients with SGA-SS were classified into the "SRS-compatible group" (n = 148), the "non-SRS with normocephaly or relative macrocephaly at birth group" (non-SRS group) (n = 94), or the "non-SRS with relative microcephaly at birth group" (non-SRS with microcephaly group) (n = 7). The 44.6% of patients in the "SRS-compatible group," 21.3% of patients in the "non-SRS group," and 14.3% in the "non-SRS with microcephaly group" had various IDs. Loss of methylation of the H19/IGF2:intergenic-DMR and uniparental disomy chromosome 7, being major genetic causes of SRS, was detected in 30.4% of patients in the "SRS-compatible group" and in 13.8% of patients in the "non-SRS group." CONCLUSION We clarified the contribution of IDs as (epi)genetic causes of SGA-SS and the molecular and phenotypic spectrum of SRS. Various IDs constitute underlying factors for SGA-SS, including SRS.
Collapse
Affiliation(s)
- Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Isono Hara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Correspondence and Reprint Requests: Masayo Kagami, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2–10–1 Okura, Setagaya, Tokyo 157–8535, Japan. E-mail:
| |
Collapse
|
5
|
Perrera V, Martello G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front Cell Dev Biol 2019; 7:76. [PMID: 31143763 PMCID: PMC6521591 DOI: 10.3389/fcell.2019.00076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.
Collapse
Affiliation(s)
- Valentina Perrera
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Mackay DJ, Bliek J, Lombardi MP, Russo S, Calzari L, Guzzetti S, Izzi C, Selicorni A, Melis D, Temple K, Maher E, Brioude F, Netchine I, Eggermann T. Discrepant molecular and clinical diagnoses in Beckwith-Wiedemann and Silver-Russell syndromes. Genet Res (Camb) 2019; 101:e3. [PMID: 30829192 PMCID: PMC7044970 DOI: 10.1017/s001667231900003x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two imprinting disorders associated with opposite molecular alterations in the 11p15.5 imprinting centres. Their clinical diagnosis is confirmed by molecular testing in 50-70% of patients. The authors from different reference centres for BWS and SRS have identified single patients with unexpected and even contradictory molecular findings in respect to the clinical diagnosis. These patients clinically do not fit the characteristic phenotypes of SRS or BWS, but illustrate their clinical heterogeneity. Thus, comprehensive molecular testing is essential for accurate diagnosis and appropriate management, to avoid premature clinical diagnosis and anxiety for the families.
Collapse
Affiliation(s)
- Deborah J.G. Mackay
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK and Wessex Regional Genetics Laboratory, Salisbury SP2 8BJ, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Paola Lombardi
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Sara Guzzetti
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Izzi
- Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Daniela Melis
- Department of Pediatrics, University “Federico II”, Napoli, Italy
| | - Karen Temple
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK and Wessex Regional Genetics Laboratory, Salisbury SP2 8BJ, UK
| | - Eamonn Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Frédéric Brioude
- Sorbonne Université, INSERM, UMR 938, Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, 75012 Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, UMR 938, Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, 75012 Paris, France
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Aachen, Germany
| |
Collapse
|
7
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
8
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
9
|
Begemann M, Rezwan FI, Beygo J, Docherty LE, Kolarova J, Schroeder C, Buiting K, Chokkalingam K, Degenhardt F, Wakeling EL, Kleinle S, González Fassrainer D, Oehl-Jaschkowitz B, Turner CLS, Patalan M, Gizewska M, Binder G, Bich Ngoc CT, Chi Dung V, Mehta SG, Baynam G, Hamilton-Shield JP, Aljareh S, Lokulo-Sodipe O, Horton R, Siebert R, Elbracht M, Temple IK, Eggermann T, Mackay DJG. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497-504. [PMID: 29574422 PMCID: PMC6047157 DOI: 10.1136/jmedgenet-2017-105190] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Background Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. Methods Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. Results We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. Conclusion The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.
Collapse
Affiliation(s)
- Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Faisal I Rezwan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Louise E Docherty
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Julia Kolarova
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christopher Schroeder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kamal Chokkalingam
- Department of Diabetic Medicine, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | - Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, London, UK
| | | | | | | | - Claire L S Turner
- Peninsula Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Michal Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Gizewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Can Thi Bich Ngoc
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Vu Chi Dung
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals Trust, Cambridge, UK
| | - Gareth Baynam
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia.,Genetic Services of Western Australian and Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
| | | | - Sara Aljareh
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oluwakemi Lokulo-Sodipe
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Rachel Horton
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Isabel Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
10
|
Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624953 DOI: 10.1007/s11427-017-9079-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver-Russell Syndrome (SRS) is clinically heterogeneous disorder characterized by low birth weight, postnatal growth restriction, and variable dysmorphic features. Current evidence strongly implicates imprinted genes as an important etiology of SRS. Although almost half of the patients showed DNA hypomethylation at the H19/IGF2 imprinted domain, and approximately 7%-10% of SRS patients have maternal uniparental disomy of chromosome 7 (UPD (7) mat); the rest of the SRS patients shows unknown etiology. In this study, we investigate whether there are further DNA methylation defects in SRS patients. We measured DNA methylation in seven SRS patients and five controls at more than 485,000 CpG sites using DNA methylation microarrays. We analyzed methylation changes genome-wide and identified the differentially methylated regions (DMRs) using bisulfite sequencing and digital PCR. Our analysis identifies epimutations at the previously characterized domains of H19/IGF2, providing proof of principle that our methodology can detect the changes in DNA methylation at imprinted loci. In addition, our results showed a novel SRS associated imprinted gene OSBPL5 located on chromosome 11p14 with the probe cg25963939, which is hypomethylated in 4/7 patients (P=0.023, β=-0.243). We also report DMRs in other genes including TGFβ3, HSF1, GAP43, NOTCH4 and MYH14. These DMRs were found to be associated with SRS using GO pathway analysis. In this study, we identified the probe cg25963939, located at the 5'UTR of imprinted gene OSBPL5, as a novel DMR that is associated with SRS. This finding provides new insights into the mechanism of SRS etiology and aid the further stratification of SRS patients by molecular phenotypes.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China.
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| |
Collapse
|
11
|
Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, Canton APM, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Grønskov K, Hokken-Koelega ACS, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tümer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJG, Netchine I. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13:105-124. [PMID: 27585961 DOI: 10.1038/nrendo.2016.138] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.
Collapse
Affiliation(s)
- Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Oluwakemi Lokulo-Sodipe
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Susan M O'Connell
- Department of Paediatrics and Child Health, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Jennifer Salem
- MAGIC Foundation, 6645 W. North Avenue, Oak Park, Illinois 60302, USA
| | - Jet Bliek
- Academic Medical Centre, Department of Clinical Genetics, Laboratory for Genome Diagnostics, Meibergdreef 15, 1105AZ Amsterdam, Netherlands
| | - Ana P M Canton
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Justin H Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Renuka P Dias
- Institutes of Metabolism and Systems Research, Vincent Drive, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Vincent Drive, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Paediatric Endocrinology and Diabetes, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Béatrice Dubern
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Nutrition and Gastroenterology Department, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Trousseau Hospital, HUEP, APHP, UPMC, 75012 Paris, France
| | - Miriam Elbracht
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Suite 11NW30, Philadelphia, Pennsylvania 19104, USA
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Anita C S Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Alexander A Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagayaku, Tokyo 157-8535, Japan
| | - Agnes Linglart
- APHP, Department of Pediatric Endocrinology, Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud Maladies Rares, Hospital Bicêtre Paris Sud, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mohamad Maghnie
- IRCCS Istituto Giannina Gaslini, University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Klaus Mohnike
- Otto-von-Guericke University, Department of Pediatrics, Leipziger Street 44, 39120 Magdeburg, Germany
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Gran via 199-203, Hospital Duran i Reynals, 08908, Barcelona, Spain
| | - Gudrun E Moore
- Fetal Growth and Development Group, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip G Murray
- Centre for Paediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isabelle Oliver Petit
- Pediatric Endocrinology, Genetic, Bone Disease &Gynecology Unit, Children's Hospital, TSA 70034, 31059 Toulouse, France
| | - Silvia Russo
- Instituto Auxologico Italiano, Cytogenetic and Molecular Genetic Laboratory, via Ariosto 13 20145 Milano, Italy
| | - Edith Said
- Department of Anatomy &Cell Biology, Centre for Molecular Medicine &Biobanking, Faculty of Medicine &Surgery, University of Malta, Msida MSD2090, Malta
- Section of Medical Genetics, Department of Pathology, Mater dei Hospital, Msida MSD2090, Malta
| | - Meropi Toumba
- IASIS Hospital, 8 Voriou Ipirou, 8036, Paphos, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Gerhard Binder
- University Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Strasse 1, 72070 Tuebingen, Germany
| | - Thomas Eggermann
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Madeleine D Harbison
- Mount Sinai School of Medicine, 5 E 98th Street #1192, New York, New York 10029, USA
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Grafodatskaya D, Choufani S, Basran R, Weksberg R. An Update on Molecular Diagnostic Testing of Human Imprinting Disorders. J Pediatr Genet 2016; 6:3-17. [PMID: 28180023 DOI: 10.1055/s-0036-1593840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
Imprinted genes are expressed in a parent of origin manner. Dysregulation of imprinted genes expression causes various disorders associated with abnormalities of growth, neurodevelopment, and metabolism. Molecular mechanisms leading to imprinting disorders and strategies for their diagnosis are discussed in this review article.
Collapse
Affiliation(s)
- Daria Grafodatskaya
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raveen Basran
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sano S, Matsubara K, Nagasaki K, Kikuchi T, Nakabayashi K, Hata K, Fukami M, Kagami M, Ogata T. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J Hum Genet 2016; 61:765-9. [PMID: 27121328 DOI: 10.1038/jhg.2016.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Although recent studies have often revealed the presence of multilocus imprinting disturbance (MLID) at differentially methylated regions (DMRs) in patients with imprinting disorders (IDs), most patients exhibit clinical features of the original ID only. Here we report a Japanese female patient with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib. Molecular studies revealed marked methylation defects (MDs) at the Kv-DMR and the GNAS-DMRs and variable MDs at four additional DMRs, in the absence of a mutation in ZFP57, NLRP2, NLRP7, KHDC3L and NLRP5. It is likely that the MDs at the Kv-DMR and the GNAS-DMRs were sufficient to cause clinically recognizable IDs, whereas the remaining MDs were insufficient to result in clinical consequences or took place at DMRs with no disease-causing imprinted gene(s). The development of MLID and the two IDs of this patient may be due to a mutation in a hitherto unknown gene for MLID, or to a reduced amount of DNA methyltransferase-1 (DNMT1) available for the methylation maintenance of DMRs because of the consumption of DNMT1 by the maintenance of X-inactivation. In support of the latter possibility, such co-existence of two IDs has primarily been identified in female patients, and MLID has predominantly been identified as loss of methylations.
Collapse
Affiliation(s)
- Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Kikuchi
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
14
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, Gillessen-Kaesbach G, Prawitt D, Thiele-Schmitz S, Begemann M, Enklaar T, Gutwein J, Haake A, Paul U, Richter J, Soellner L, Vater I, Monk D, Horsthemke B, Ammerpohl O, Siebert R. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016; 8:801-16. [PMID: 27323310 DOI: 10.2217/epi-2016-0007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.
Collapse
Affiliation(s)
- Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | | | - Dirk Prawitt
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Susanne Thiele-Schmitz
- Division of Experimental Paediatric Endocrinology & Diabetes, Department of Paediatrics, University of Lübeck, D 23562 Lübeck, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Thorsten Enklaar
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Ulrike Paul
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Inga Vater
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - David Monk
- Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Cancer Epigenetic & Biology Program (PEBC), Catalan Institute of Oncology, Hospital Duran i Reynals Barcelona, Barcelona, ES 08907, Spain
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| |
Collapse
|
16
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
17
|
Ishida M. New developments in Silver-Russell syndrome and implications for clinical practice. Epigenomics 2016; 8:563-80. [PMID: 27066913 DOI: 10.2217/epi-2015-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver-Russell syndrome is a clinically and genetically heterogeneous disorder, characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. It is one of the imprinting disorders, which results as a consequence of aberrant imprinted gene expressions. Currently, maternal uniparental disomy of chromosome 7 accounts for approximately 10% of Silver-Russell syndrome cases, while ~50% of patients have hypomethylation at imprinting control region 1 at chromosome 11p15.5 locus, leaving ~40% of cases with unknown etiologies. This review aims to provide a comprehensive list of molecular defects in Silver-Russell syndrome reported to date and to highlight the importance of multiple-loci/tissue testing and trio (both parents and proband) screening. The epigenetic and phenotypic overlaps with other imprinting disorders will also be discussed.
Collapse
Affiliation(s)
- Miho Ishida
- University College London, Institute of Child Health, Genetics & Genomic Medicine programme, Genetics & Epigenetics in Health & Diseases Section, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
18
|
Riess A, Binder G, Ziegler J, Begemann M, Soellner L, Eggermann T. First report on concordant monozygotic twins with Silver-Russell syndrome and ICR1 hypomethylation. Eur J Med Genet 2015; 59:1-4. [PMID: 26691664 DOI: 10.1016/j.ejmg.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Twin pairs with the imprinting disorder Silver-Russell syndrome (SRS) have rarely been reported. All six monozygotic (MZ) twin pairs described so far were clinically discordant. In two of the four SRS twin pairs with molecularly proven 11p15.5 epimutation, the healthy twin also showed the molecular alteration in blood cells, but not in the other tested tissues. The clinical discordance is a well-known but poorly understood observation because MZ twins derive from the same zygote. For the second 11p15.5-associated imprinting disorder, Beckwith-Wiedemann syndrome, a larger number of twins has been described, here the majority of pairs are MZ but clinically discordant as well. Interestingly, there is a considerable preponderance of females among the MZ twins with BWS, and a functional link between altered imprinting and X chromosome inactivation has been suggested. We now describe two further MZ SRS twins with H19/IGF2:IG-DMR hypomethylation, including the first clinically concordant pair. By summarizing the existing data, an excess of females in MZ twins with SRS is observed, thus confirming the hypothesis that X-chromosome inactivation might trigger the inaccurate methylation of imprinted loci at least in female twin conceptions. The occurrence of a MZ concordant SRS twin pair is exceptional. The detailed molecular characterization of both siblings of a twin pair enables a reliable diagnosis, furthermore it allows insights in the etiology of twinning in association with (aberrant) imprinting marking.
Collapse
Affiliation(s)
- Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Gerhard Binder
- University-Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Str. 1, 72072 Tübingen, Germany
| | - Julian Ziegler
- University-Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Str. 1, 72072 Tübingen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Lukas Soellner
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
19
|
Soellner L, Monk D, Rezwan FI, Begemann M, Mackay D, Eggermann T. Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Mol Cell Probes 2015; 29:282-90. [DOI: 10.1016/j.mcp.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
20
|
Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 2015; 6:8086. [PMID: 26323243 PMCID: PMC4568303 DOI: 10.1038/ncomms9086] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 01/20/2023] Open
Abstract
Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. Genomic imprinting disturbance can give rise to complex congenital disorders affecting growth, metabolism and behaviour. Here the authors report mutations in NLRP5, which suggests a connection between imprinting, maternal reproductive fitness and zygotic development.
Collapse
|
21
|
Heckmann D, Urban C, Weber K, Kannenberg K, Binder G. Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation. Clin Epigenetics 2015; 7:5. [PMID: 25657826 PMCID: PMC4318184 DOI: 10.1186/s13148-014-0038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022] Open
Abstract
Background The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were analyzed. Cell proliferation, IGF-II secretion, and IGF2 and H19 expression were measured, and a microarray expression analysis was performed. Results Single-cell expansion established severely ICR1 hypomethylated clones (SRShypo) and normomethylated clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the quantitative real-time PCR (qRT-PCR) assay, whereas H19 expression was detectable, without differences between fibroblast clones. Cell count-related IGF-II release was comparable in SRShypo and Cnormo supernatants. Cell proliferation was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis. Conclusions The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-014-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doreen Heckmann
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Christina Urban
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Karin Weber
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Kai Kannenberg
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| |
Collapse
|
22
|
Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, Begemann M, Soellner L. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 2015; 92:769-77. [PMID: 24658748 DOI: 10.1007/s00109-014-1141-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs. KEY MESSAGE Molecular disturbances in patients with imprinting disorders are often not restricted to the disease-specific locus but also affect other chromosomal regions. These additional disturbances include methylation defects, uniparental disomies as well as chromosomal imbalances. The identification of these additional alterations is mandatory for a well-directed genetic counseling. Furthermore, these findings help to decipher the complex regulation of imprinting.
Collapse
|
23
|
Azzi S, Blaise A, Steunou V, Harbison MD, Salem J, Brioude F, Rossignol S, Habib WA, Thibaud N, Neves CD, Jule ML, Brachet C, Heinrichs C, Bouc YL, Netchine I. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation. Hum Mutat 2014; 35:1211-20. [PMID: 25044976 DOI: 10.1002/humu.22623] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/02/2014] [Indexed: 01/13/2023]
Abstract
Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, F-75012, France; APHP, Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med 2014; 6:60. [PMID: 25484923 PMCID: PMC4254430 DOI: 10.1186/s13073-014-0060-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Monozygotic (MZ) twins share nearly all of their genetic variants and many similar environments before and after birth. However, they can also show phenotypic discordance for a wide range of traits. Differences at the epigenetic level may account for such discordances. It is well established that epigenetic states can contribute to phenotypic variation, including disease. Epigenetic states are dynamic and potentially reversible marks involved in gene regulation, which can be influenced by genetics, environment, and stochastic events. Here, we review advances in epigenetic studies of discordant MZ twins, focusing on disease. The study of epigenetics and disease using discordant MZ twins offers the opportunity to control for many potential confounders encountered in general population studies, such as differences in genetic background, early-life environmental exposure, age, gender, and cohort effects. Recently, analysis of disease-discordant MZ twins has been successfully used to study epigenetic mechanisms in aging, cancer, autoimmune disease, psychiatric, neurological, and multiple other traits. Epigenetic aberrations have been found in a range of phenotypes, and challenges have been identified, including sampling time, tissue specificity, validation, and replication. The results have relevance for personalized medicine approaches, including the identification of prognostic, diagnostic, and therapeutic targets. The findings also help to identify epigenetic markers of environmental risk and molecular mechanisms involved in disease and disease progression, which have implications both for understanding disease and for future medical research.
Collapse
Affiliation(s)
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH UK
| |
Collapse
|
25
|
European guidance for the molecular diagnosis of pseudohypoparathyroidism not caused by point genetic variants at GNAS: an EQA study. Eur J Hum Genet 2014; 23:438-44. [PMID: 25005735 DOI: 10.1038/ejhg.2014.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
Pseudohypoparathyroidism is a rare endocrine disorder that can be caused by genetic (mainly maternally inherited inactivating point mutations, although intragenic and gross deletions have rarely been reported) or epigenetic alterations at GNAS locus. Clinical and molecular characterization of this disease is not that easy because of phenotypic, biochemical and molecular overlapping features between both subtypes of the disease. The European Consortium for the study of PHP (EuroPHP) designed the present work with the intention of generating the standards of diagnostic clinical molecular (epi)genetic testing in PHP patients. With this aim, DNA samples of eight independent PHP patients carrying GNAS genetic and/or epigenetic defects (three patients with GNAS deletions, two with 20q uniparental disomy and three with a methylation defect of unknown origin) without GNAS point mutations were anonymized and sent to the five participant laboratories for their routine genetic analysis (methylation-specific (MS)-MLPA, pyrosequencing and EpiTYPER) and interpretations. All laboratories were able to detect methylation defects and, after the data analysis, the Consortium compared the results to define technical advantages and disadvantages of different techniques. To conclude, we propose as first-level investigation in PHP patients copy number and methylation analysis by MS-MLPA. Then, in patients with partial methylation defect, the result should be confirmed by single CpG bisulphite-based methods (ie pyrosequencing), whereas in case of a complete methylation defect without detectable deletion, microsatellites or SNP genotyping should be performed to exclude uniparental disomy 20.
Collapse
|
26
|
Cordeiro A, Neto AP, Carvalho F, Ramalho C, Dória S. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet 2014; 31:1361-8. [PMID: 24986528 DOI: 10.1007/s10815-014-0278-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To study the relationship of imprinted gene expression (CDKN1C, H19, IGF2, KCNQ1 and PHLDA2) with human fetal growth. METHODS RNA was extracted from fetuses with intrauterine growth restriction (IUGR) and from the controls without growth restriction. The gene expression pattern of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 genes was evaluated using RT-PCR. MS-MLPA was also performed to assess the IC1 and IC2 DNA methylation status on chromosome 11p15.5. RESULTS The samples were divided according to their tissue type in placental or fetal tissue. Within each group, IUGR cases and controls were compared. In the IUGR cases, in both fetal and placental tissue groups IGF2 was observed to be down regulated. In another approach, the samples were divided in IUGR and control groups and for each of them placental and fetal tissue was compared. Within the IUGR group up regulation of CDKN1C, KCNQ1, and PHLDA2 was determined in placental samples. IUGR group presented a statistically lower methylation status in both IC1 and in IC2. Regarding differences between fetal and placental samples within this group, methylation status of placental samples was statistically significant down regulated in the imprinting center 1 (IC1). CONCLUSIONS Genomic imprinting is a phenomenon that plays an important role in fetal and placental development. This study emphasizes the importance of imprinted genes during pregnancy. Differences between tissues could reflect different mechanisms, either compensatory or adverse, that should be investigated in more detail.
Collapse
|
27
|
Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif 2014; 47:189-99. [PMID: 24738971 DOI: 10.1111/cpr.12106] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
Igf2 (insulin-like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene-cluster that leads to parent-specific expression, with current models including parental allele-specific DNA methylation and chromatin modifications, DNA-binding of insulator proteins (CTCFs) and three-dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. 'The enhancer competition model', 'the boundary model' and 'the chromatin-loop model' are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.
Collapse
Affiliation(s)
- M Nordin
- Faculty of Veterinary Medicine, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Lepshin MV, Sazhenova EA, Lebedev IN. Multiple epimutations in imprinted genes in the human genome and congenital disorders. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Mosaicism for maternal uniparental disomy 15 in a boy with some clinical features of Prader-Willi syndrome. Eur J Med Genet 2014; 57:279-83. [PMID: 24704109 DOI: 10.1016/j.ejmg.2014.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022]
Abstract
Prader-Willi syndrome (PWS) is caused by the lack of paternal expression of imprinted genes in the human chromosomal region 15q11.2-q13.2, which can be due to an interstitial deletion at 15q11.2-q13 of paternal origin (65-75%), maternal uniparental disomy (matUPD) of chromosome 15 (20-30%), or an imprinting defect (1-3%). The majority of PWS-associated matUPD15 cases represent a complete heterodisomy of chromosome 15 or a mixture of hetero- and isodisomic regions across the chromosome 15. Pure maternal isodisomy is observed in only a few matUPD15 patients. Here we report a case of an 18-year-old boy with some clinical features of Prader-Willi syndrome, such as overweight, muscular hypotonia, facial dysmorphism and psychiatric problems, but there was no reason to suspect PWS in the patient based solely on the phenotype estimation. However, chromosomal microarray analysis (CMA) revealed mosaic loss of heterozygosity of the entire chromosome 15. Methylation-specific multiplex ligation-dependant probe amplification (MS-MLPA) analysis showed hypermethylation of the SNRPN and NDN genes in the PWS/AS critical region of chromosome 15 in this patient. Taking into consideration the MS-MLPA results and the presence of PWS features in the patient, we concluded that it was matUPD15, although the patient's parents were not enrolled in the study. According to CMA and karyotyping, no trisomic or monosomic cells were present. To the best of our knowledge, only two PWS cases with mosaic maternal isodisomy 15 and without trisomic/monosomic cell lines have been reported so far.
Collapse
|
30
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
31
|
Dias RP, Maher ER. Genes, assisted reproductive technology and trans-illumination. Epigenomics 2013; 5:331-40. [PMID: 23750647 DOI: 10.2217/epi.13.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is a parent-of-origin allele-specific epigenetic process that is critical for normal development and health. The establishment and maintenance of normal imprinting is dependent on both cis-acting imprinting control centers, which are marked by differentially (parental allele specific) methylated marks, and trans mechanisms, which regulate the establishment and/or maintenance of the correct methylation epigenotype at the imprinting control centers. Studies of rare human imprinting disorders such as familial hydatidiform mole, Beckwith-Wiedemann syndrome and familial transient neonatal diabetes mellitus have enabled the identification of genetic (e.g., mutations in KHDC3L [C6ORF221], NLRP2 [NALP2], NLRP7 [NALP7] and ZFP57) and environmental (assisted reproductive technologies) factors that can disturb the normal trans mechanisms for imprinting establishment and/or maintenance. Here we review the clinical and molecular aspects of these imprinting disorders in order to demonstrate how the study of rare inherited disorders can illuminate the molecular characteristics of fundamental epigenetic processes, such as genomic imprinting.
Collapse
Affiliation(s)
- Renuka P Dias
- Centre for Rare Diseases & Personalised Medicine, School of Clinical & Experimental Medicine, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
32
|
Eggermann T, Elbracht M, Schröder C, Reutter H, Soellner L, Spengler S, Begemann M. Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders. J Pediatr 2013; 163:1202-7. [PMID: 23809048 DOI: 10.1016/j.jpeds.2013.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/15/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, RWTH Technical University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Poole RL, Docherty LE, Al Sayegh A, Caliebe A, Turner C, Baple E, Wakeling E, Harrison L, Lehmann A, Temple IK, Mackay DJG. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders. Am J Med Genet A 2013; 161A:2174-82. [PMID: 23913548 DOI: 10.1002/ajmg.a.36049] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/13/2013] [Indexed: 11/11/2022]
Abstract
Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management.
Collapse
Affiliation(s)
- Rebecca L Poole
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boonen SE, Mackay DJG, Hahnemann JMD, Docherty L, Grønskov K, Lehmann A, Larsen LG, Haemers AP, Kockaerts Y, Dooms L, Vu DC, Ngoc CTB, Nguyen PB, Kordonouri O, Sundberg F, Dayanikli P, Puthi V, Acerini C, Massoud AF, Tümer Z, Temple IK. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 2013; 36:505-12. [PMID: 23150280 PMCID: PMC3579357 DOI: 10.2337/dc12-0700] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Transient neonatal diabetes mellitus 1 (TNDM1) is the most common cause of diabetes presenting at birth. Approximately 5% of the cases are due to recessive ZFP57 mutations, causing hypomethylation at the TNDM locus and other imprinted loci (HIL). This has consequences for patient care because it has impact on the phenotype and recurrence risk for families. We have determined the genotype, phenotype, and epigenotype of the first 10 families to alert health professionals to this newly described genetic subgroup of diabetes. RESEARCH DESIGN AND METHODS The 10 families (14 homozygous/compound heterozygous individuals) with ZFP57 mutations were ascertained through TNDM1 diagnostic testing. ZFP57 was sequenced in probands and their relatives, and the methylation levels at multiple maternally and paternally imprinted loci were determined. Medical and family histories were obtained, and clinical examination was performed. RESULTS The key clinical features in probands were transient neonatal diabetes, intrauterine growth retardation, macroglossia, heart defects, and developmental delay. However, the finding of two homozygous relatives without diabetes and normal intelligence showed that the phenotype could be very variable. The epigenotype always included total loss of methylation at the TNDM1 locus and reproducible combinations of differential hypomethylation at other maternally imprinted loci, including tissue mosaicism. CONCLUSIONS There is yet no clear genotype-epigenotype-phenotype correlation to explain the variable clinical presentation, and this results in difficulties predicting the prognosis of affected individuals. However, many cases have a more severe phenotype than seen in other causes of TNDM1. Further cases and global epigenetic testing are needed to clarify this.
Collapse
Affiliation(s)
- Susanne E Boonen
- Center for Applied Human Molecular Genetics, The Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, Guitart M, Perez de Nanclares G, Lapunzina P, Monk D. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 2013; 34:595-602. [PMID: 23335487 DOI: 10.1002/humu.22276] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022]
Abstract
Genomic imprinting is the parent-of-origin-specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Zusammenfassung
Bei allen derzeit bekannten Imprintingerkrankungen wurde über eine Assoziation mit molekularen Veränderungen an krankheitsspezifischen chromosomalen Loci berichtet. Die locusspezifische Zuordnung einiger dieser Krankheitsbilder wird erschwert durch den Nachweis so genannter Multilocusmethylierungsdefekte (MLMD): Dabei besteht nicht nur an krankheitsspezifischen geprägten Genorten eine aberrante Methylierung, sondern auch an anderen Loci. Klinisch zeigt sich mehrheitlich die Symptomatik nur einer Imprintingerkrankung, in einzelnen Fällen überlappen sich jedoch verschiedene Krankheitsbilder. Umgekehrt wurden auch Fälle mit gleichartigem MLMD-Muster, aber unterschiedlichen Krankheitsbildern beschrieben. Zur Abklärung von MLMD sollten daher Testverfahren eingesetzt werden, die auf Methylierungsveränderungen an verschiedenen geprägten Loci ausgerichtet sind. Aber auch bei der MLMD-Testung ist eine eindeutige Unterscheidung des zugrunde liegenden Mutationstyps als Basis für eine gezielte genetische Beratung erforderlich.
Collapse
|
37
|
Eggermann T, Spengler S, Gogiel M, Begemann M, Elbracht M. Epigenetic and genetic diagnosis of Silver-Russell syndrome. Expert Rev Mol Diagn 2012; 12:459-71. [PMID: 22702363 DOI: 10.1586/erm.12.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver-Russell syndrome (SRS) is a congenital imprinting disorder characterized by intrauterine and postnatal growth restriction and further characteristic features. SRS is genetically heterogenous: 7-10% of patients carry a maternal uniparental disomy of chromosome 7; >38% show a hypomethylation in imprinting control region 1 in 11p15; and a further class of mutations are copy number variations affecting different chromosomes, but mainly 11p15 and 7. The diagnostic work-up should thus aim to detect these three molecular subtypes. Numerous techniques are currently applied in genetic SRS testing, but none of them covers all known (epi)mutations, and they should therefore be used synergistically. However, future next-generation sequencing approaches will allow a comprehensive analysis of all types of alterations in SRS.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Frequency and characterization of DNA methylation defects in children born SGA. Eur J Hum Genet 2012; 21:838-43. [PMID: 23232699 DOI: 10.1038/ejhg.2012.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 11/01/2012] [Indexed: 11/08/2022] Open
Abstract
Various genes located at imprinted loci and regulated by epigenetic mechanisms are involved in the control of growth and differentiation. The broad phenotypic variability of imprinting disorders suggests that individuals with inborn errors of imprinting might remain undetected among patients born small for gestational age (SGA). We evaluated quantitative DNA methylation analysis at differentially methylated regions (DMRs) of 10 imprinted loci (PLAGL1, IGF2R DMR2, GRB10, H19 DMR, IGF2, MEG3, NDN, SNRPN, NESP, NESPAS) by bisulphite pyrosequencing in 98 patients born SGA and 50 controls. For IGF2R DMR2, methylation patterns of additional 47 parent pairs and one mother (95 individuals) of patients included in the SGA cohort were analyzed. In six out of 98 patients born SGA, we detected DNA methylation changes at single loci. In one child, the diagnosis of upd(14)mat syndrome owing to an epimutation of the MEG3 locus in 14q32 could be established. The remaining five patients showed hypomethylation at GRB10 (n=2), hypomethylation at the H19 3CTCF-binding site (n=1), hypermethylation at NDN (n=1) and hypermethylation at IGF2 (n=1). IGF2R DMR2 hypermethylation was detected in five patients, six parents of patients in the SGA cohort and two controls. We conclude that aberrant methylation at imprinted loci in children born SGA exists but seems to be rare if known imprinting syndromes are excluded. Further investigations on the physiological variations and the functional consequences of the detected aberrant methylation are necessary before final conclusions on the clinical impact can be drawn.
Collapse
|
39
|
Beckwith Wiedemann imprinting defect found in leucocyte but not buccal DNA in a child born small for gestational age. BMC MEDICAL GENETICS 2012; 13:99. [PMID: 23116464 PMCID: PMC3514203 DOI: 10.1186/1471-2350-13-99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/31/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Loss of methylation (LOM) at imprinting control region (ICR) 1 or LOM at ICR 2 on chromosome 11p15 in leucocyte DNA is commonly used to diagnose the imprinting disorders Silver Russell syndrome (SRS) characterized by growth restriction or Beckwith Wiedemann syndrome (BWS) characterized by overgrowth, respectively. CASE PRESENTATION A child was normally conceived and born by caesarian section to a healthy 19 year old smoking mother (G2P1) at 38 weeks gestation, with SGA (birthweight SDS -2.44), placenta weight 250g (normal histology), with an umbilical hernia and transient neonatal hypoglycemia but no other features of BWS.The methylation status at 11p15 region was initially investigated by multiplex ligation dependent probe amplification (MLPA). Subsequently, methylation-specific (ms) PCR was performed to screen for this and other imprinted loci abnormalities at PLAG1 (6q24), IGF2R (6q27), GRB10 (7p12), PEG1/MEST (7q32), DLK1 (14q32), SNRPN (15q11); PEG3 (19q32), NESPAS/GNAS (20q13).Leucocyte DNA methylation was normal at ICR1 but markedly reduced at ICR2 using both MLPA and ms-PCR, and no other anomalies of imprinting were detected. Buccal DNA methylation was normal at all imprinted sites tested. CONCLUSION This is the first report of an isolated LOM at ICR2 in leucocyte but not buccal DNA in a normally conceived singleton SGA child without overt SRS or BWS.
Collapse
|
40
|
IGF2/H19 hypomethylation is tissue, cell, and CpG site dependent and not correlated with body asymmetry in adolescents with Silver-Russell syndrome. Clin Epigenetics 2012; 4:15. [PMID: 22989232 PMCID: PMC3523983 DOI: 10.1186/1868-7083-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth failure and frequent body asymmetry. Half of the patients with SRS carry a DNA hypomethylation of the imprinting center region 1 (ICR1) of the insulin-like growth factor 2 (IGF2)/H19 locus, and the clinical phenotype is most severe in these patients. We aimed to elucidate the epigenetic basis of asymmetry in SRS and the cellular consequences of the ICR1 hypomethylation. Results The ICR1 methylation status was analyzed in blood and in addition in buccal smear probes and cultured fibroblasts obtained from punch biopsies taken from the two body halves of 5 SRS patients and 3 controls. We found that the ICR1 hypomethylation in SRS patients was stronger in blood leukocytes and oral mucosa cells than in fibroblasts. ICR1 CpG sites were affected differently. The severity of hypomethylation was not correlated to body asymmetry. IGF2 expression and IGF-II secretion of fibroblasts were not correlated to the degree of ICR1 hypomethylation. SRS fibroblasts responded well to stimulation by recombinant human IGF-I or IGF-II, with proliferation rates comparable with controls. Clonal expansion of primary fibroblasts confirmed the complexity of the cellular mosaicism. Conclusions We conclude that the ICR1 hypomethylation SRS is tissue, cell, and CpG site specific. The correlation of the ICR1 hypomethylation to IGF2 and H19 expression is not strict, may depend on the investigated tissue, and may become evident only in case of more severe methylation defects. The body asymmetry in juvenile SRS patients is not related to a corresponding ICR1 hypomethylation gradient, rendering more likely an intrauterine origin of asymmetry. Overall, it may be instrumental to consider not only the ICR1 methylation status as decisive for IGF2/H19 expression regulation.
Collapse
|
41
|
Ishida M, Moore GE. The role of imprinted genes in humans. Mol Aspects Med 2012; 34:826-40. [PMID: 22771538 DOI: 10.1016/j.mam.2012.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Genomic imprinting, a process of epigenetic modification which allows the gene to be expressed in a parent-of-origin specific manner, has an essential role in normal growth and development. Imprinting is found predominantly in placental mammals, and has potentially evolved as a mechanism to balance parental resource allocation to the offspring. Therefore, genetic and epigenetic disruptions which alter the specific dosage of imprinted genes can lead to various developmental abnormalities often associated with fetal growth and neurological behaviour. Over the past 20 years since the first imprinted gene was discovered, many different mechanisms have been implicated in this special regulatory mode of gene expression. This review includes a brief summary of the current understanding of the key molecular events taking place during imprint establishment and maintenance in early embryos, and their relationship to epigenetic disruptions seen in imprinting disorders. Genetic and epigenetic causes of eight recognised imprinting disorders including Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS), and also their association with Assisted reproductive technology (ART) will be discussed. Finally, the role of imprinted genes in fetal growth will be explored by investigating their relationship to a common growth disorder, intrauterine growth restriction (IUGR) and also their potential role in regulating normal growth variation.
Collapse
Affiliation(s)
- Miho Ishida
- Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | |
Collapse
|
42
|
Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 2012; 131:1565-89. [PMID: 22740325 PMCID: PMC3432200 DOI: 10.1007/s00439-012-1189-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Changes in epigenetic marks such as DNA methylation and histone acetylation are associated with a broad range of disease traits, including cancer, asthma, metabolic disorders, and various reproductive conditions. It seems plausible that changes in epigenetic state may be induced by environmental exposures such as malnutrition, tobacco smoke, air pollutants, metals, organic chemicals, other sources of oxidative stress, and the microbiome, particularly if the exposure occurs during key periods of development. Thus, epigenetic changes could represent an important pathway by which environmental factors influence disease risks, both within individuals and across generations. We discuss some of the challenges in studying epigenetic mediation of pathogenesis and describe some unique opportunities for exploring these phenomena.
Collapse
Affiliation(s)
- Victoria K. Cortessis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Duncan C. Thomas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., SSB-202F, Los Angeles, CA 90089-9234 USA
| | - A. Joan Levine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90089-9234 USA
| | - Thomas M. Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90089-9234 USA
| | - Robert W. Haile
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Peter W. Laird
- Departments of Surgery, Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Epigenome Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
43
|
Begemann M, Leisten I, Soellner L, Zerres K, Eggermann T, Spengler S. Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci. Epigenetics 2012; 7:473-81. [PMID: 22419125 DOI: 10.4161/epi.19719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A number of diseases have been found to be linked to aberrant methylation of specific genes. However, most of the routine diagnostic techniques to detect epigenetic disturbances are restricted to single loci. Additionally, a precise quantification of the methylation status is often hampered. A considerable fraction of patients with Silver-Russell syndrome, Beckwith-Wiedemann syndrome and transient neonatal diabetes mellitus exhibit loss of methylation at further imprinted loci in addition to the disease specific ones (multilocus methylation defects, MLMD). As the currently available tests are mainly focused on single imprinted loci on different chromosomes and thereby make the detection of multilocus methylation defects time-consuming and expensive, we established methylation-specific single nucleotide primer extension (MS-SNuPE) assays for a simultaneous quantification of methylation at multiple methylated loci. We chose loci generally affected in patients with MLMD. The method was validated by screening 66 individuals with known (epi)genetic disturbances. In comparison to other methylation-specific techniques, multilocus methylation-specific single nucleotide primer extension allows the quantitative analysis of numerous CpG islands of different loci in one assay and is, therefore, suitable for the simultaneous diagnostic testing for different congenital imprinting disorders in parallel, as well as for MLMD.
Collapse
|
44
|
Eggermann T, Leisten I, Binder G, Begemann M, Spengler S. Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. Epigenomics 2012; 3:625-37. [PMID: 22126250 DOI: 10.2217/epi.11.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The widely accepted association between aberrant methylation at specific imprinted loci and distinct imprinting disorders has recently been brought into question by the identification of methylation defects at multiple loci (multilocus methylation defect [MLMD]). Strikingly, in different imprinting disorders, the same MLMD patterns can be observed. The cause for this ambiguous epigenotype-phenotype correlation is currently unknown. Future strategies to solve this enigma have to include all levels of imprinting regulation, ranging from DNA methylation to chromatin organization, as any disturbance of the balanced interaction between the different players in imprinting regulation might cause disturbed expression of imprinted factors. The molecular analysis of MLMD will help in discovering these interactions and contribute to the understanding of genomic imprinting and its disturbances.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Baynam G, Claes P, Craig JM, Goldblatt J, Kung S, Le Souef P, Walters M. Intersections of Epigenetics, Twinning and Developmental Asymmetries: Insights Into Monogenic and Complex Diseases and a Role for 3D Facial Analysis. Twin Res Hum Genet 2012; 14:305-15. [DOI: 10.1375/twin.14.4.305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For decades the relationships of twinning and alterations in body patterning, such as laterality and asymmetry, have been investigated. However, the tools to define and quantify these relationships have been limited and the majority of these studies have relied on associations with subjectively defined phenotypes. The emerging technologies of 3-dimensional (3D) facial scanning and geometric morphometrics are providing the means to establish objective criteria, including measures of asymmetry, which can be used for phenotypic classification and investigations. Additionally, advances in molecular epigenetics provide new opportunities for novel investigations of mechanisms central to early developmental processes, twinning and related phenotypes. We review the evidence for overlapping etiologies of twinning, asymmetry and selected monogenic and complex diseases, and we suggest that the combination of epigenetic investigations with detailed and objective phenotyping, utilizing 3D facial analysis tools, can reveal insights into the genesis of these phenomena.
Collapse
|
46
|
Kannenberg K, Urban C, Binder G. Increased incidence of aberrant DNA methylation within diverse imprinted gene loci outside of IGF2/H19 in Silver-Russell syndrome. Clin Genet 2012; 81:366-77. [DOI: 10.1111/j.1399-0004.2012.01844.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Begemann M, Spengler S, Kordaß U, Schröder C, Eggermann T. Segmental maternal uniparental disomy 7q associated with DLK1/GTL2 (14q32) hypomethylation. Am J Med Genet A 2012; 158A:423-8. [DOI: 10.1002/ajmg.a.34412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022]
|
48
|
Spengler S, Begemann M, Binder G, Eggermann T. Testing of Buccal Swab DNA Does Not Increase the Detection Rate for Imprinting Control Region 1 Hypomethylation in Silver-Russell Syndrome. Genet Test Mol Biomarkers 2011; 15:725-6. [DOI: 10.1089/gtmb.2011.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Boonen SE, Hahnemann JMD, Mackay D, Tommerup N, Brøndum-Nielsen K, Tümer Z, Grønskov K. No evidence for pathogenic variants or maternal effect of ZFP57 as the cause of Beckwith-Wiedemann Syndrome. Eur J Hum Genet 2011; 20:119-21. [PMID: 21863059 DOI: 10.1038/ejhg.2011.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome, which, in 50-60% of sporadic cases, is caused by hypomethylation of KCNQ1OT1 differentially methylated region (DMR) at chromosome 11p15.5. The underlying defect of this hypomethylation is largely unknown. Recently, recessive mutations of the ZFP57 gene were reported in patients with transient neonatal diabetes mellitus type 1, showing hypomethylation at multiple imprinted loci, including KCNQ1OT1 DMR in some. The aim of our study was to determine whether ZFP57 alterations were a genetic cause of the hypomethylation at KCNQ1OT1 DMR in patients with BWS. We sequenced ZFP57 in 27 BWS probands and in 23 available mothers to test for a maternal effect. We identified three novel, presumably benign sequence variants in ZFP57; thus, we found no evidence for ZFP57 alterations as a major cause in sporadic BWS cases.
Collapse
Affiliation(s)
- Susanne E Boonen
- Center for Applied Human Molecular Genetics, The Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | |
Collapse
|
50
|
Ideraabdullah FY, Abramowitz LK, Thorvaldsen JL, Krapp C, Wen SC, Engel N, Bartolomei MS. Novel cis-regulatory function in ICR-mediated imprinted repression of H19. Dev Biol 2011; 355:349-57. [PMID: 21600199 DOI: 10.1016/j.ydbio.2011.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/25/2011] [Accepted: 04/30/2011] [Indexed: 11/27/2022]
Abstract
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|