1
|
Fang Y, Chen X, Chu CH, Yu OY, He J, Li M. Roles of Streptococcus mutans in human health: beyond dental caries. Front Microbiol 2024; 15:1503657. [PMID: 39749137 PMCID: PMC11693680 DOI: 10.3389/fmicb.2024.1503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Streptococcus mutans (S. mutans) is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of S. mutans are not restricted to the detriment of dental tissues. These traits can assist S. mutans in evading the immune system within body fluids; they empower S. mutans to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases. These traits mostly originate from some correlative findings, lacking a comprehensive evaluation of the impact of S. mutans on systemic diseases. Therefore, this review mainly centers on the dissemination route of S. mutans: "Entering the blood circulation - Occurrence of tissue adhesion - Extensive possible proinflammatory mechanisms - Concentration in individual organs" and analyses the specific effects and possible mechanisms of S. mutans in systemic diseases such as cerebral hemorrhage, inflammatory bowel disease, tumors, and infective endocarditis that have been identified hitherto.
Collapse
Affiliation(s)
- Yanke Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Karnjana K, Jewboonchu J, Niyomtham N, Tangngamsakul P, Bunluepuech K, Goodla L, Mordmuang A. The potency of herbal extracts and its green synthesized nanoparticle formulation as antibacterial agents against Streptococcus mutans associated biofilms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 37:e00777. [PMID: 36582762 PMCID: PMC9792395 DOI: 10.1016/j.btre.2022.e00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This study aims to determine the effects of the extracts of Streblus asper, Cymbopogon citratus, Syzygium aromaticum and its formulation of green synthesized silver nanoparticle (AgNPs) on Streptococcus mutans growth and biofilm formation. The ethanolic extracts of S. asper, C. citratus, S. aromaticum, and a mix of the three herbs demonstrated antibacterial activity against S. mutans isolates by reducing bacterial biofilm formation and decreasing bacterial cell surface hydrophobicity. The formulated AgNPs from the ethanolic extracts could enhance the antibacterial activities of the plant extracts. Molecular docking found the best interaction between luteolin isolated from C. citratus and glucosyltransferase protein (GtfB), assuming the promising anti-biofilm activity. The scanning electron microscopy revealed morphological changes in the biofilm structure and a significant decrease in the biofilm area of the AgNPs treated. The study suggested that the extracts and its application could be used as natural alternative agents with multi-action against S. mutans infections.
Collapse
Affiliation(s)
- Kulwadee Karnjana
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Juntamanee Jewboonchu
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Nattisa Niyomtham
- International College of Dentistry, Walailak University, Bangkok, 10400, Thailand
| | - Paveen Tangngamsakul
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kingkan Bunluepuech
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Lavnaya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States of America
| | - Auemphon Mordmuang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand,Corresponding author at: 222, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
3
|
Fernandes Forte CP, Oliveira FAF, Lopes CDB, Alves APNN, Mota MRL, de Barros Silva PG, Montenegro RC, Campos Ribeiro Dos Santos ÂK, Lobo Filho JG, Sousa FB. Streptococcus mutans in atherosclerotic plaque: Molecular and immunohistochemical evaluations. Oral Dis 2021; 28:1705-1714. [PMID: 33825326 DOI: 10.1111/odi.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To verify the presence of Streptococcus mutans (S. mutans) in atherosclerotic plaque (AP) using techniques with different sensitivities, correlating with histological changes in plaque and immunoexpression of inflammatory markers. MATERIALS AND METHODS Thirteen AP samples were subjected to real-time polymerase chain reaction (qRT-PCR), histopathological analyses, histochemical analysis by Giemsa staining (GS), and immunohistochemical analysis for S. mutans, IL-1β, and TNF-α (streptavidin-biotin-peroxidase method). Ten necropsy samples of healthy vessels were used as controls. RESULTS All AP samples showed histopathological characteristics of severe atherosclerosis and were positive for S. mutans (100.0%) in qRT-PCR and immunohistochemical analyses. GS showed that Streptococcus sp. colonized the lipid-rich core regions and fibrous tissue, while the control group was negative for Streptococcus sp. IL-1β and TNF-α were expressed in 100% and 92.3% of the AP tested, respectively. The control samples were positive for S. mutans in qRT-PCR analysis, but negative for S. mutans, IL-1β, and TNF-α in immunohistochemical analyses. CONCLUSION The detection of S. mutans in AP and the visualization of Streptococcus sp. suggested a possible association between S. mutans and atherosclerosis. The results obtained from the control samples suggested the presence of DNA fragments or innocuous bacteria that were not associated with tissue alteration. However, future studies are necessary to provide more information.
Collapse
Affiliation(s)
| | | | - Camile de Barros Lopes
- Department of Human and Medical Genetics, School of Biological Sciences, Federal University of Para, Belém, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Carvalho Montenegro
- Department of Human Cytogenetics, School of Biological Sciences, Federal University of Para, Belém, Brazil
| | | | | | - Fabrício Bitu Sousa
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Oliveira FAF, Fernandes Forte CP, Silva PGDB, Lopes CDB, Montenegro RC, Dos Santos ÂKCR, Mota MRL, Sousa FB, Alves APNN. Relationship of Streptococcus mutans with valvar cardiac tissue: A molecular and immunohistochemical study. J Oral Pathol Med 2019; 48:745-753. [PMID: 31323147 DOI: 10.1111/jop.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND The present study aimed to investigate the presence or absence of Streptococcus mutans in oral cavity and valvular samples associating with the histomorphologic alterations of calcified aortic stenosis. METHODOLOGY Dental plaque and cardiac valve samples were collected from 10 patients with calcified aortic stenosis for molecular analysis of S mutans by real-time polymerase chain reaction (PCR). Healthy valve tissue was also collected from five young cadavers and analyzed for S mutans. Moreover, fragments of all valvar specimens were submitted for histomorphological analysis and immunohistochemistry (anti-S mutans and anti-CD61). RESULTS Streptococcus mutans was present in 100% of the oral cavity samples from the patients with calcified aortic stenosis in the molecular analysis. The analysis by real-time PCR showed that S mutans presented the same proportion in healthy valves and those with calcified aortic stenosis (80%; P = 1.000). Conversely, the immunoexpression of S mutans was 37.40 (IC95% = 1.49-937.00) times superior in samples of patients with cardiac disease (P = .007). The immunoexpression analysis showed that CD61 was present in seven (70%) calcified aortic stenosis samples, all of which were also immunopositive for S mutans. CONCLUSIONS Streptococcus mutans was found in the oral cavity, healthy valve tissue, and calcified aortic stenosis samples. However, the microorganism was visualized by immunohistochemistry only in the calcified aortic stenosis samples, which may suggest viability and an increased bacterial density in this condition. The association of the presence of S mutans and positive CD61 immunoexpression suggests a probable relationship with calcified aortic stenosis.
Collapse
Affiliation(s)
- Francisco Artur Forte Oliveira
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Camile de Barros Lopes
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Brazil
| | - Raquel Carvalho Montenegro
- Department of Human Cytogenetics, School of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabrício Bitu Sousa
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
6
|
Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:22-29. [PMID: 29628998 PMCID: PMC5884221 DOI: 10.1016/j.jdsr.2017.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. An important virulence property of the bacterium is its ability to form biofilm known as dental plaque on tooth surfaces. In addition, this organism also produces glucosyltransferases, multiple glucan-binding proteins, protein antigen c, and collagen-binding protein, surface proteins that coordinate to produce dental plaque, thus inducing dental caries. Bacteria utilize quorum-sensing systems to modulate environmental stress responses. A major mechanism of response to signals is represented by the so called two-component signal transduction system, which enables bacteria to regulate their gene expression and coordinate activities in response to environmental stress. As for S. mutans, a signal peptide-mediated quorum-sensing system encoded by comCDE has been found to be a regulatory system that responds to cell density and certain environmental stresses by excreting a peptide signal molecule termed CSP (competence-stimulating peptide). One of its principal virulence factors is production of bacteriocins (peptide antibiotics) referred to as mutacins. Two-component signal transduction systems are commonly utilized by bacteria to regulate bacteriocin gene expression and are also related to biofilm formation by S. mutans.
Collapse
Affiliation(s)
- Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
7
|
Oliveira FAF, Forte CPF, Silva PGDB, Lopes CB, Montenegro RC, Santos ÂKCRD, Sobrinho CRMR, Mota MRL, Sousa FB, Alves APNN. Molecular Analysis of Oral Bacteria in Heart Valve of Patients With Cardiovascular Disease by Real-Time Polymerase Chain Reaction. Medicine (Baltimore) 2015; 94:e2067. [PMID: 26632711 PMCID: PMC5058980 DOI: 10.1097/md.0000000000002067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022] Open
Abstract
Structural deficiencies and functional abnormalities of heart valves represent an important cause of cardiovascular morbidity and mortality, and a number of diseases, such as aortic stenosis, have been recently associated with infectious agents. This study aimed to analyze oral bacteria in dental plaque, saliva, and cardiac valves of patients with cardiovascular disease. Samples of supragingival plaque, subgingival plaque, saliva, and cardiac valve tissue were collected from 42 patients with heart valve disease. Molecular analysis of Streptococcus mutans, Prevotella intermedia, Porphyromonas gingivalis, and Treponema denticola was performed through real-time PCR. The micro-organism most frequently detected in heart valve samples was the S. mutans (89.3%), followed by P. intermedia (19.1%), P. gingivalis (4.2%), and T. denticola (2.1%). The mean decayed, missing, filled teeth (DMFT) was 26.4 ± 6.9 (mean ± SD), and according to the highest score of periodontal disease observed for each patient, periodontal pockets > 4 mm and dental calculus were detected in 43.4% and 34.7% of patients, respectively. In conclusion, oral bacteria, especially S. mutans, were found in the cardiac valve samples of patients with a high rate of caries and gingivitis/periodontitis.
Collapse
Affiliation(s)
- Francisco Artur Forte Oliveira
- From the Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceara, Fortaleza, Ceará (FAFO, CPF, PGBS, MRLM, FBS); Department of Oral Pathology, School of Dentistry, Federal University of Ceara, Fortaleza, Ceará (APNNA); Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará (CRMRS); Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil (CBL, AKCRS); Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil (RCM)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis. Infect Immun 2014; 82:5223-34. [PMID: 25287921 DOI: 10.1128/iai.02164-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens.
Collapse
|
9
|
Fernandes CP, Oliveira FAF, Silva PGDB, Alves APNN, Mota MRL, Montenegro RC, Burbano RMR, Seabra AD, Lobo Filho JG, Lima DLF, Soares Filho AWE, Sousa FB. Molecular analysis of oral bacteria in dental biofilm and atherosclerotic plaques of patients with vascular disease. Int J Cardiol 2014; 174:710-2. [PMID: 24820755 DOI: 10.1016/j.ijcard.2014.04.201] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Oral bacteria have been detected in atherosclerotic plaques at a variable frequency; however, the connection between oral health and vascular and oral bacterial profiles of patients with vascular disease is not clearly established. The aim of this study was to evaluate the presence of oral bacterial DNA in the mouth and atherosclerotic plaques, in addition to assessing the patients' caries and periodontal disease history. METHODS Thirty samples of supragingival and subgingival plaque, saliva and atherosclerotic plaques of 13 patients with carotid stenosis or aortic aneurysm were evaluated, through real-time polymerase chain reaction, for the presence of Streptococcus mutans (SM), Prevotella intermedia (PI), Porphyromonas gingivalis (PG) and Treponema denticola (TD). All patients were submitted to oral examination using the DMFT (decayed, missing and filled teeth) and PSR (Periodontal Screening and Recording) indexes. Histopathological analysis of the atherosclerotic plaques was performed. RESULTS Most of the patients were edentulous (76.9%). SM, PI, PG and TD were detected in 100.0%, 92.0%, 15.3% and 30.7% of the oral samples, respectively. SM was the most prevalent targeted bacteria in atherosclerotic plaques, detected in 100% of the samples, followed by PI (7.1%). The vascular samples were negative for PG and TD. There was a statistically significant difference (p<0.05) between the presence of PG and TD in the oral cavity and vascular samples. CONCLUSION SM was found at a high frequency in oral and vascular samples, even in edentulous patients, and its presence in atherosclerotic plaques suggests the possible involvement of this bacterium in the disease progression.
Collapse
Affiliation(s)
- Clarissa Pessoa Fernandes
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Francisco Artur Forte Oliveira
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Mário Rogério Lima Mota
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquel Carvalho Montenegro
- Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | | | | | | | | | | | - Fabrício Bitu Sousa
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
10
|
Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 2014; 33:499-515. [PMID: 24154653 PMCID: PMC3953549 DOI: 10.1007/s10096-013-1993-7] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 01/01/2023]
Abstract
In some diseases, a very important role is played by the ability of bacteria to form multi-dimensional complex structure known as biofilm. The most common disease of the oral cavity, known as dental caries, is a top leader. Streptococcus mutans, one of the many etiological factors of dental caries, is a microorganism which is able to acquire new properties allowing for the expression of pathogenicity determinants determining its virulence in specific environmental conditions. Through the mechanism of adhesion to a solid surface, S. mutans is capable of colonizing the oral cavity and also of forming bacterial biofilm. Additional properties enabling S. mutans to colonize the oral cavity include the ability to survive in an acidic environment and specific interaction with other microorganisms colonizing this ecosystem. This review is an attempt to establish which characteristics associated with biofilm formation--virulence determinants of S. mutans--are responsible for the development of dental caries. In order to extend the knowledge of the nature of Streptococcus infections, an attempt to face the following problems will be made: Biofilm formation as a complex process of protein-bacterium interaction. To what extent do microorganisms of the cariogenic flora exemplified by S. mutans differ in virulence determinants "expression" from microorganisms of physiological flora? How does the environment of the oral cavity and its microorganisms affect the biofilm formation of dominant species? How do selected inhibitors affect the biofilm formation of cariogenic microorganisms?
Collapse
Affiliation(s)
- W Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Medical College, Jagiellonian University, UJCM 9 Medyczna St., 30-688, Krakow, Poland,
| | | | | | | | | |
Collapse
|
11
|
Krzyściak W, Pluskwa KK, Jurczak A, Kościelniak D. The pathogenicity of the Streptococcus genus. Eur J Clin Microbiol Infect Dis 2013; 32:1361-76. [PMID: 24141975 PMCID: PMC3824240 DOI: 10.1007/s10096-013-1914-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Streptococcus infections are still one of the important problems facing contemporary medicine. As the World Health Organization (WHO) warns, Streptococcus pneumoniae is responsible for the highest number of pneumonia cases all over the world. Despite an increasing number of pneumococcal vaccinations, incidences of disease connected to this pathogen's infection stay at the same level, which is related to a constantly increasing number of infections caused by nonvaccinal serotypes. Unfortunately, the pathogenicity of bacteria of the Streptococcus genus is also connected to species considered to be physiological flora in humans or animals and, additionally, new species exhibiting pathogenic potential have been discovered. This paper presents an opinion concerning the epidemiology of streptococci infections based on case studies and other publications devoted to this problem. It also sheds new light based on recent reports on the prevention of protective vaccinations application in the case of streptococci infections.
Collapse
Affiliation(s)
- W Krzyściak
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland,
| | | | | | | |
Collapse
|
12
|
Lapirattanakul J, Nomura R, Nemoto H, Naka S, Ooshima T, Nakano K. Multilocus sequence typing of Streptococcus mutans strains with the cbm gene encoding a novel collagen-binding protein. Arch Oral Biol 2013; 58:989-96. [PMID: 23506778 DOI: 10.1016/j.archoralbio.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Streptococcus mutans, an oral pathogen associated with infective endocarditis (IE), possesses two genes encoding collagen-binding proteins, namely cnm and cbm. In this study, we used multilocus sequence typing (MLST) of S. mutans with the cbm gene. DESIGN Forty-five S. mutans strains including 15 strains with the cnm gene, 15 strains with the cbm gene, and 15 strains without these two genes were analysed by MLST. In addition, the collagen-binding properties as well as the abilities to adhere to and invade human umbilical vein endothelial cells (HUVEC) were also evaluated for all strains. RESULTS In the groups of cnm-positive and cbm-positive strains, all properties, including collagen binding, adhesion, and invasion were significantly greater than those of the cnm-cbm-negative group. Moreover, MLST revealed three clonal complexes of S. mutans possessing the cbm gene. These three clones showed no close relatedness with clones of strains containing the cnm gene. Among three clones harbouring the cbm gene, two clones belong to serotype k, and appeared to be associated with the pathogenesis of IE due to their strong collagen binding and relatively enhanced abilities to adhere to and invade endothelial cells. However, such properties were relatively weak in the other non-serotype k clone possessing the cbm gene. CONCLUSIONS MLST indicated a difference in evolution between S. mutans strains with the cbm gene and those with the cnm gene. In addition, this technique also suggested the importance of cbm-positive S. mutans clones relative to the pathogenesis of IE.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | | | | | | | | | | |
Collapse
|
13
|
Lapirattanakul J, Nakano K, Nomura R, Leelataweewud P, Chalermsarp N, Klaophimai A, Srisatjaluk R, Hamada S, Ooshima T. Multilocus sequence typing analysis of Streptococcus mutans strains with the cnm gene encoding collagen-binding adhesin. J Med Microbiol 2011; 60:1677-1684. [PMID: 21680768 DOI: 10.1099/jmm.0.033415-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is one of the oral pathogens associated with infective endocarditis (IE). With respect to bacterial binding ability to the extracellular matrix, the Cnm protein, a cell surface collagen-binding adhesin of S. mutans, is known as one of the possible virulence factors with regard to IE. In this study, we aimed to determine the distribution of the cnm gene, which encodes Cnm, in a large number of clinical isolates of S. mutans from Thai subjects. Then, the cnm-positive strains were classified using a multilocus sequence typing (MLST) scheme, which we constructed previously. In addition, the data were analysed together with our previous MLST data of cnm-positive strains from Japan and Finland in order to evaluate the clonal relationship among S. mutans strains harbouring the cnm gene. The cnm gene was detected in 12.4 % of all 750 Thai isolates, and serotype f showed the highest rate of detection (54.5 %). According to the MLST data, two clonal complex groups were revealed as the important clones related to cnm-positive S. mutans from various origins of isolation. Moreover, the collagen-binding properties of S. mutans strains with the cnm gene were significantly greater than those of strains without the gene, although four cnm-negative strains classified into two sequence types (STs), ST110 and ST136, showed extremely high collagen-binding rates suggesting the presence of additional genes involved with collagen binding in these STs. Taken together, these results provided information on both epidemiological as well as evolutional aspects of S. mutans possessing the cnm gene.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | | | - Narumon Chalermsarp
- Department of Oral Medicine, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Arthit Klaophimai
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Ratchapin Srisatjaluk
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infection, Nonthaburi 11000, Thailand
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Larson MR, Rajashankar KR, Crowley PJ, Kelly C, Mitchell TJ, Brady LJ, Deivanayagam C. Crystal structure of the C-terminal region of Streptococcus mutans antigen I/II and characterization of salivary agglutinin adherence domains. J Biol Chem 2011; 286:21657-66. [PMID: 21505225 DOI: 10.1074/jbc.m111.231100] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C(1), C(2), and C(3). Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C(1) and C(2)) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C(1) and C(2) domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C(1) and C(2) domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.
Collapse
Affiliation(s)
- Matthew R Larson
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, Allaire E, Thorsteinsdottir U, Cockerill G, Swedenborg J. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 2011; 90:18-27. [PMID: 21037321 PMCID: PMC3058728 DOI: 10.1093/cvr/cvq337] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/04/2010] [Accepted: 10/20/2010] [Indexed: 01/22/2023] Open
Abstract
Aneurysm of the abdominal aorta (AAA) is a particular, specifically localized form of atherothrombosis, providing a unique human model of this disease. The pathogenesis of AAA is characterized by a breakdown of the extracellular matrix due to an excessive proteolytic activity, leading to potential arterial wall rupture. The roles of matrix metalloproteinases and plasmin generation in progression of AAA have been demonstrated both in animal models and in clinical studies. In the present review, we highlight recent studies addressing the role of the haemoglobin-rich, intraluminal thrombus and the adventitial response in the development of human AAA. The intraluminal thrombus exerts its pathogenic effect through platelet activation, fibrin formation, binding of plasminogen and its activators, and trapping of erythrocytes and neutrophils, leading to oxidative and proteolytic injury of the arterial wall. These events occur mainly at the intraluminal thrombus-circulating blood interface, and pathological mediators are conveyed outwards, where they promote matrix degradation of the arterial wall. In response, neo-angiogenesis, phagocytosis by mononuclear cells, and a shift from innate to adaptive immunity in the adventitia are observed. Abdominal aortic aneurysm thus represents an accessible spatiotemporal model of human atherothrombotic progression towards clinical events, the study of which should allow further understanding of its pathogenesis and the translation of pathogenic biological activities into diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jean-Baptiste Michel
- Inserm Unit 698, Cardiovascular Remodelling, Denis Diderot University, Hôpital X. Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Biswas S, Bowler ICJW, Bunch C, Prendergast B, Webster DP. Streptococcus mutans infective endocarditis complicated by vertebral discitis following dental treatment without antibiotic prophylaxis. J Med Microbiol 2010; 59:1257-1259. [DOI: 10.1099/jmm.0.020974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report what we believe is the first reported case of Streptococcus mutans endocarditis complicated by vertebral discitis. The case is particularly interesting and topical as it occurred in a patient with pre-existing cardiac valvular disease who had recently had a dental procedure without antibiotic prophylaxis following a dramatic shift in the UK guidelines.
Collapse
Affiliation(s)
- Sujata Biswas
- Department of Acute General Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Christopher Bunch
- Department of Acute General Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Daniel P. Webster
- Department of Microbiology, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
McNicol A, Israels SJ. Mechanisms of oral bacteria-induced platelet activation. Can J Physiol Pharmacol 2010; 88:510-24. [DOI: 10.1139/y10-029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The oral cavity is inhabited by over 500 different bacterial species that normally exist in ecological balance both with each other and with the host. When this equilibrium is disturbed, an overgrowth of individual organisms can occur, which, in turn, can lead to the onset of pathological processes, notably dental caries and periodontitis. Generally, bacteraemias occur more frequently in individuals with periodontal disease, and these bacteraemias have been implicated in the development of a range of systemic diseases, including atherothrombotic disorders. The mechanism underlying this relationship remains to be precisely defined, although studies have shown a link between bacteria of oral origin and platelet activation. Several orally derived species of bacteria interact with platelets, including those of the Streptococcus ( Streptococcus sanguinis , Streptococcus mutans , Streptococcus agalactiae , Streptococcus pyogenes , Streptococcus gordonii , Streptococcus pneumoniae , Streptococcus mitis ) and Staphylococcus ( Staphylococcus epidermidis , Staphylococcus capitis ) genera, as well as Pseudomonas aeruginosa and Porphyromonas gingivalis . In addition, some members of both the Streptococcus and the Staphylococcus genera, as well as Porphyromonas gingivalis , can activate platelets in vitro. The current review describes the heterogeneous mechanisms of platelet activation employed by individual bacterial species. The pathological and clinical implications of platelet activation by orally derived bacteria are discussed.
Collapse
Affiliation(s)
- Archibald McNicol
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- International Centre for Oral Systemic Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Sara J. Israels
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- International Centre for Oral Systemic Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
18
|
Defect of glucosyltransferases reduces platelet aggregation activity of Streptococcus mutans: analysis of clinical strains isolated from oral cavities. Arch Oral Biol 2010; 55:410-6. [PMID: 20398892 DOI: 10.1016/j.archoralbio.2010.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/13/2010] [Accepted: 03/18/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Streptococcus mutans is a major pathogen of dental caries and occasionally isolated from the blood of patients with infective endocarditis, though the association of its cell-surface glucosyltransferases (GTFB, GTFC, and GTFD) with pathogenicity for infective endocarditis remains to be elucidated. In this study, we investigated the contribution of S. mutans GTFs to platelet aggregation and analysed GTF expression profiles in a large number of clinical oral isolates. DESIGN The platelet aggregation properties of GTF-defective isogenic mutant strains constructed from S. mutans reference strain MT8148 were evaluated using whole blood and platelet-rich plasma (PRP) taken from mice, as well as human PRP. In addition, GTF expression profiles for 396 S. mutans strains isolated from the oral cavities of 396 subjects were analysed by western blotting using antisera specific for each GTF. RESULTS The platelet aggregation activities of the GTF-defective isogenic mutants were significantly lower than that of MT8148 when added to a large number of cells. Western blotting revealed no strains without GTF expression, though six strains had alterations of GTFB and GTFC as compared to MT8148. PCR analyses indicated that the gtfB-gtfC region length was approximately 4.5 kb shorter in those strains as compared to MT8148. These were designated as "GTFBC-fusion" strains and they demonstrated lower levels of platelet aggregation. CONCLUSIONS Our findings indicate that GTFs are associated with platelet aggregation. Although the clinical detection frequency of S. mutans strains with altered expressions is extremely low, GTFBC-fusion strains have activities similar to GTF-defective mutant strains.
Collapse
|