1
|
Gong W, Wang Y, Zou H, Huang Y, Shen A, Zhai Q, Shi K, Yan R, Song M, Yao Z, Lu Q. Choroid plexus enlargement correlates with cognitive impairment and brain atrophy in patients with mood disorders. J Affect Disord 2025; 379:370-378. [PMID: 40088982 DOI: 10.1016/j.jad.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Patients with bipolar disorder (BD) and major depressive disorder (MDD) often exhibit cognitive impairments, with choroid plexus (ChP) volume linked to these deficits and cortical structures. However, the relationship between ChP volume, cognition, and brain morphology in mood disorders remains understudied. This study aimed to investigate these mechanisms. METHOD The study included 216 BD patients, 316 MDD patients, and 268 healthy controls who completed questionnaires, cognitive tests (e.g., the Symbol Digit Modalities Test (SDMT), the Verbal Fluency Test (VFT), the Chinese Revised Wechsler Memory Scale), and MRI scans. ChP volume, subcortical volume, and cortical thickness were measured, with group differences analyzed and correlations examined and compared. RESULTS BD and MDD patients had significantly larger ChP volume than healthy controls, with no difference between patient groups. In both groups, ChP volume negatively correlated with subcortical volume (r = -0.021 ∼ -0.285, q < 0.05) and cortical thickness (r = -0.149 ∼ -0.317, q < 0.05). Furthermore, ChP volume negatively correlated with logical memory (r = -0.154 ∼ -0.161, q < 0.05) and positively with visual reproduction (r = -0.159, q = 0.043) in BD, while negatively correlated with the SDMT (r = -0.122 ∼ -0.152, p < 0.05) and VFT (r = -0.118, p = 0.015) in MDD. Associations between ChP volume and right precentral gyrus thickness and memory quotient differed between the two groups. CONCLUSION Enlarged ChP volume in mood disorders was associated with brain atrophy and cognitive deficits, suggesting it could serve as a marker for structural and cognitive changes.
Collapse
Affiliation(s)
- Wenyue Gong
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiwen Wang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haowen Zou
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yinghong Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Azi Shen
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Zhai
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kaiyu Shi
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Moxuan Song
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
2
|
Gong W, Zhai Q, Wang Y, Shen A, Huang Y, Shi K, Huang Y, Song M, Yan R, Yao Z, Lu Q. Glymphatic function and choroid plexus volume is associated with systemic inflammation and oxidative stress in major depressive disorder. Brain Behav Immun 2025; 128:266-275. [PMID: 40220922 DOI: 10.1016/j.bbi.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Inflammatory processes were recognized as key factors in the pathophysiology of major depressive disorder (MDD). The choroid plexus (ChP) and glymphatic system played central roles in immune interactions between the brain and periphery. However, their specific roles in MDD and their relationship with systemic inflammation and oxidative stress remained unclear. METHODS This study finally included 665 MDD patients and 338 healthy controls. Clinical data and MRI scans were collected, and some patients also underwent blood routine and biochemical tests. ChP volume was manually segmented, and the diffusion tensor imaging along the perivascular space (DTI-ALPS) index, reflecting glymphatic function, was obtained through the FSL pipeline. The differences in these dices between groups were compared, and their associations with systemic inflammation and oxidative stress were analyzed. RESULTS MDD patients showed increased ChP volume (total: d = 0.316, p < 0.001; left: d = 0.317, p < 0.001; right: d = 0.268, p = 0.003) and decreased DTI-ALPS index (d = -0.144, p = 0.022), with a negative correlation between them (ρ = -0.135, p < 0.001). In MDD patients, lower DTI-ALPS index was correlated with higher LHR (ρ = -0.107, p = 0.025) and MHR (ρ = -0.126, p = 0.008). Larger right ChP volume was associated with higher MLR (ρ = 0.107, p = 0.009), SIRI (ρ = 0.086, p = 0.036), PIV (ρ = 0.086, p = 0.036), MHR (ρ = 0.136, p = 0.004), and PHR (ρ = 0.126, p = 0.008), while larger total ChP volume was correlated with higher MHR (ρ = 0.097, p = 0.042) and PHR (ρ = 0.114, p = 0.017). CONCLUSION MDD appeared to be accompanied by an increase in ChP volume and a decrease in glymphatic function, and these changes were related to systemic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Wenyue Gong
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Zhai
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiwen Wang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Azi Shen
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yinghong Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kaiyu Shi
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingying Huang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Moxuan Song
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
3
|
Cao Y, Lizano P, Li M, Opel N, Sen ZD, Colic L, Sun H, Zhou X, Aruci M, Chand T, Long X, Deng G, Mu J, Guo S, Sun H, Gong Q, Qiu C, Walter M, Jia Z. Association between peripheral inflammation and body mass index on white matter integrity and free water in bipolar II depression. Brain Behav Immun 2025; 128:208-218. [PMID: 40199429 DOI: 10.1016/j.bbi.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Immuno-metabolic dysregulation is implicated in mood disorders and elucidating non-invasive brain correlates may aid clinical translation of pathomechanism. This study aims to investigate the interrelationship between peripheral inflammation and body mass index (BMI) and their effects on white matter (WM) microstructure and free water (FW) in bipolar II depression (BDII-D). Voxel-wise FW and FW-corrected fractional anisotropy (FAt) were compared between 146 BDII-D and 151 healthy controls (HCs) using FSL Randomise. Partial correlations were used to explore associations between BMI, peripheral inflammation, FW measures, and psychiatric symptoms. Moderation analysis examined the interrelationships among BMI, peripheral inflammation, and FW measures. BDII-D showed lower FAt in the genu of the corpus callosum (CC) and bilateral anterior corona radiata, and higher FW in the body of the CC compared with HCs. Higher BMI was linked to lower global FAt (q < 0.001), while higher peripheral inflammation was associated with higher global FW (q ≤ 0.01) in BDII-D. Lower FAt in the genu of the CC and higher FW in the body of CC were significantly related to higher BMI, inflammation, and greater depressive symptoms (q < 0.05). Low-grade Inflammation moderated the relationship between higher BMI and lower FAt in the genu of the CC in BDII-D (B = -3.094e-05, p < 0.001). We found evidence for a mechanistic link between immune-metabolic dysregulation and altered connection in BDII-D. Next to mediating BMI effects on WM integrity, there seems to exist specific relationships between inflammation and BMI with different MR-based tract markers that need further investigation.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Germany
| | - Huan Sun
- Department of Psychiatry, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Merita Aruci
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana 131001, India
| | - Xipeng Long
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310008, China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China; Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Scalabrini A, Poletti S, Vai B, Paolini M, Gao Y, Hu YT, Liu DY, Song XM, Tan ZL, Mucci C, Colombo C, Benedetti F, Northoff G. Abnormally slow dynamics in occipital cortex of depression. J Affect Disord 2025; 374:523-530. [PMID: 39818334 DOI: 10.1016/j.jad.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
AIM Major depressive disorder (MDD) is characterized by altered activity in various higher-order regions like the anterior cingulate and prefrontal cortex. While some findings also show changes in lower-order sensory regions like the occipital cortex in MDD, the latter's exact neural and temporal, e.g., dynamic characterization and symptom severity remains yet unclear. METHODS We conducted resting state fMRI in MDD (N = 49) and healthy controls to investigate the global activity representation of the brain's spontaneous activity in occipital cortex including lower-order (V1) and higher-order (hMT+) regions in the hierarchy of the visual cortex. We further explored (i) these regions' functional connectivity to higher-order prefrontal and subcortical regions, (ii) global signal correlation differences between MDD and controls in different frequency bands, and (iii) their power spectrum's correlation (using median frequency/MF) with symptom severity. RESULTS Our findings in MDD show: (i) abnormally high functional connectivity of the occipital cortex to both subcortical and higher-order cortical regions; (ii) occipital global signal correlation is reduced mainly in the faster infraslow frequency range (slow 3: 0.073 to 0.198 Hz) as distinguished from the slower ones (slow 5 and 4: 0.01 to 0.027 Hz, and 0.027 to 0.073 Hz); (iii) the reduced neural dynamics in occipital cortex (MF) correlate with the severity of both overall depressive symptoms and psychomotor retardation scores. CONCLUSIONS MDD shows reduced global activity with abnormally slow neural dynamics in occipital cortex that is functionally connected with higher-order regions like the anterior cingulate cortex. The slow dynamics in occipital cortex relates to overall symptom severity and psychomotor retardation.
Collapse
Affiliation(s)
- Andrea Scalabrini
- University of Bergamo, Department of Human and Social Sciences, Bergamo, Italy.
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy.
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Ting Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Clara Mucci
- University of Bergamo, Department of Human and Social Sciences, Bergamo, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
Daniels A, Wellan SA, Beck A, Erk S, Wackerhagen C, Romanczuk-Seiferth N, Schwarz K, Schweiger JI, Meyer-Lindenberg A, Heinz A, Walter H. Anhedonia relates to reduced striatal reward anticipation in depression but not in schizophrenia or bipolar disorder: A transdiagnostic study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:501-514. [PMID: 39885092 PMCID: PMC11906564 DOI: 10.3758/s13415-024-01261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
Anhedonia, i.e., the loss of pleasure or lack of reactivity to reward, is a core symptom of major psychiatric conditions. Altered reward processing in the striatum has been observed across mood and psychotic disorders, but whether anhedonia transdiagnostically contributes to these deficits remains unclear. We investigated associations between self-reported anhedonia and neural activation during reward anticipation and consumption across patients with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MD), and healthy controls (HC). Using the Monetary Incentive Delay paradigm, we acquired functional magnetic resonance imaging data sets in 227 participants (18-65 years), including patients with SZ (n = 44), BD (n = 47), MD (n = 56), and HC (n = 80). To capture anhedonia, three items of the Symptom Checklist-90-R were entered into exploratory factor analysis, which resulted in a single anhedonia factor. Associations between anhedonia and neural activation were assessed within a striatal region-of-interest and exploratorily across the whole brain (pFWE < .05). Self-reported anhedonia was high in MD, low in HC, and intermediate in SZ and BD. During reward anticipation, anhedonia correlated with reduced striatal activation; however, the correlation depended on diagnostic group. Specifically, the effect was driven by a negative relationship between anhedonia and dorsal striatal (putamen) activity within the MD group; for reward consumption, no correlations were found. Our results indicate that anticipatory anhedonia in MD may relate to reduced behavioral motivation via disrupted encoding of motor plans in the dorsal striatum. Future transdiagnostic research should stratify participants by anhedonia levels to achieve more homogeneous samples in terms of underlying neurobiology.
Collapse
Affiliation(s)
- Anna Daniels
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany.
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany.
| | - Sarah A Wellan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| | - Anne Beck
- Health and Medical University Potsdam, Faculty of Health, Potsdam, Germany
| | - Susanne Erk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany
| | - Carolin Wackerhagen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany
| | | | - Kristina Schwarz
- Technische Universität Dresden, Institute of Clinical Psychology and Psychotherapy, Dresden, Germany
| | - Janina I Schweiger
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Department of Psychiatry and Psychotherapy, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Department of Psychiatry and Psychotherapy, Mannheim, Germany
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin-Potsdam, Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences | CCM, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| |
Collapse
|
6
|
Kraus A, Dohm K, Borgers T, Goltermann J, Grotegerd D, Winter A, Thiel K, Flinkenflügel K, Schürmeyer N, Hahn T, Langer S, Kircher T, Nenadić I, Straube B, Jamalabadi H, Alexander N, Jansen A, Stein F, Brosch K, Usemann P, Teutenberg L, Thomas-Odenthal F, Meinert S, Dannlowski U. Brain structural correlates of an impending initial major depressive episode. Neuropsychopharmacology 2025:10.1038/s41386-025-02075-6. [PMID: 40074869 DOI: 10.1038/s41386-025-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Neuroimaging research has yet to elucidate whether reported gray matter volume (GMV) alterations in major depressive disorder (MDD) exist already before the onset of the first episode. Recruitment of presently healthy individuals with a subsequent transition to MDD (converters) is extremely challenging but crucial to gain insights into neurobiological vulnerability. Hence, we compared converters to patients with MDD and sustained healthy controls (HC) to distinguish pre-existing neurobiological markers from those emerging later in the course of depression. Combining two clinical cohorts (n = 1709), voxel-based morphometry was utilized to analyze GMV of n = 45 converters, n = 748 patients with MDD, and n = 916 HC in a region-of-interest approach and exploratory whole-brain. By contrasting the subgroups and considering both remission state and reported recurrence at a 2-year clinical follow-up, we stepwise disentangled effects of (1) vulnerability, (2) the acute depressive state, and (3) an initial vs. a recurrent episode. Analyses revealed higher amygdala GMV in converters relative to HC (ptfce-FWE = 0.037, d = 0.447) and patients (ptfce-FWE = 0.005, d = 0.508), remaining significant when compared to remitted patients with imminent recurrence. Lower GMV in the dorsolateral prefrontal cortex (ptfce-FWE < 0.001, d = 0.188) and insula (ptfce-FWE = 0.010, d = 0.186) emerged in patients relative to HC but not to converters, driven by patients with acute MDD. By examining one of the largest available converter samples in psychiatric neuroimaging, this study allowed a first determination of neural markers for an impending initial depressive episode. Our findings suggest a temporary vulnerability, which in combination with other common risk factors might facilitate prediction and in turn improve prevention of depression.
Collapse
Affiliation(s)
- Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Navid Schürmeyer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Simon Langer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- Institute for Translational Neuroscience, University of Münster, Münster, Germany.
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Manelis A, Hu H, Satz S, Satish I, Swartz Holly A.. Distinct White Matter Fiber Density Patterns in Bipolar and Depressive Disorders: Insights from Fixel-Based Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.19.25322569. [PMID: 40034779 PMCID: PMC11875326 DOI: 10.1101/2025.02.19.25322569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Differentiating Bipolar (BD) and depressive (DD) disorders remains challenging in clinical practice due to overlapping symptoms. Our study employs fixel-based analysis (FBA) to examine fiber-specific white matter differences in BD and DD and gain insights into the ability of FBA metrics to predict future spectrum mood symptoms. Methods 163 individuals between 18 and 45 years with BD, DD, and healthy controls (HC) underwent Diffusion Magnetic Resonance Imaging. FBA was used to assess fiber density (FD), fiber cross-section (FC), and fiber density cross-section (FDC) in major white matter tracts. A longitudinal follow-up evaluated whether FBA measures predicted future spectrum depressive and hypomanic symptom trajectories over six months. Results Direct comparisons between BD and DD indicated lower FD in the right superior longitudinal and uncinate fasciculi and left thalamo-occipital tract in BD versus DD. Individuals with DD exhibited lower FD in the left arcuate fasciculus than those with BD. Compared to HC, both groups showed lower FD in the splenium of the corpus callosum and left striato-occipital and optic radiation tracts. FD in these tracts predicted future spectrum symptom severity. Exploratory analyses revealed associations between FD, medication use, and marijuana exposure. Conclusions Our findings highlight distinct and overlapping white matter alterations in BD and DD. Furthermore, FD in key tracts may serve as a predictor of future symptom trajectories, supporting the potential clinical utility of FD as a biomarker for mood disorder prognosis. Future longitudinal studies are needed to explore the impact of treatment and disease progression on white matter microstructure.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Hang Hu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Skye Satz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Iyengar Satish
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swartz Holly A.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Xiao W, Moncy JC, Ghazi-Noori AR, Woodham RD, Rezaei H, Bramon E, Ritter P, Bauer M, Young AH, Fu CHY. Enhanced network synchronization connectivity following transcranial direct current stimulation (tDCS) in bipolar depression: Effects on EEG oscillations and deep learning-based predictors of clinical remission. J Affect Disord 2025; 369:576-587. [PMID: 39293596 DOI: 10.1016/j.jad.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
AIM To investigate oscillatory networks in bipolar depression, effects of a home-based tDCS treatment protocol, and potential predictors of clinical response. METHODS 20 participants (14 women) with bipolar disorder, mean age 50.75 ± 10.46 years, in a depressive episode of severe severity (mean Montgomery-Åsberg Rating Scale (MADRS) score 24.60 ± 2.87) received home-based transcranial direct current stimulation (tDCS) treatment for 6 weeks. Clinical remission defined as MADRS score < 10. Resting-state EEG data were acquired at baseline, prior to the start of treatment, and at the end of treatment, using a portable 4-channel EEG device (electrode positions: AF7, AF8, TP9, TP10). EEG band power was extracted for each electrode and phase locking value (PLV) was computed as a functional connectivity measure of phase synchronization. Deep learning was applied to pre-treatment PLV features to examine potential predictors of clinical remission. RESULTS Following treatment, 11 participants (9 women) attained clinical remission. A significant positive correlation was observed with improvements in depressive symptoms and delta band PLV in frontal and temporoparietal regional channel pairs. An interaction effect in network synchronization was observed in beta band PLV in temporoparietal regions, in which participants who attained clinical remission showed increased synchronization following tDCS treatment, which was decreased in participants who did not achieve clinical remission. Main effects of clinical remission status were observed in several PLV bands: clinical remission following tDCS treatment was associated with increased PLV in frontal and temporal regions and in several frequency bands, including delta, theta, alpha and beta, as compared to participants who did not achieve clinical remission. The highest deep learning prediction accuracy 69.45 % (sensitivity 71.68 %, specificity 66.72 %) was obtained from PLV features combined from theta, beta, and gamma bands. CONCLUSIONS tDCS treatment enhances network synchronization, potentially increasing inhibitory control, which underscores improvement in depressive symptoms. Baseline EEG-based measures might aid predicting clinical response.
Collapse
Affiliation(s)
- Wenyi Xiao
- School of Psychology, University of East London, London, UK.
| | | | | | | | - Hakimeh Rezaei
- School of Psychology, University of East London, London, UK; Technische Universität Dresden, Dresden, Germany; Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elvira Bramon
- Department of Psychiatry, University College London, London, UK
| | | | | | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK; Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK.
| |
Collapse
|
9
|
Cao Y, Lizano P, Li M, Chand T, Sun H, Zhou X, Deng G, Long X, Mu J, Gong Q, Walter M, Qiu C, Jia Z. White matter microstructural and inflammation-based subgroups in bipolar disorder II depression differentiate in depressive and psychotic symptoms. J Affect Disord 2025; 368:493-502. [PMID: 39299597 DOI: 10.1016/j.jad.2024.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Elevated inflammation and impaired white matter (WM) microstructure have been observed in bipolar disorder (BD). The link between inflammation, WM integrity, and psychiatric symptoms in BD-II depression (BDII-D) remains unknown. We aimed to define BDII-D subgroups through the interplay of inflammation and WM microstructure, and to explore differences in psychiatric symptoms between subgroups, thus offering insight into elucidating the explanatory measures linked to BDII-D. METHODS WM differences were compared between 146 BDII-D individuals and 151 health controls (HCs) by Tract-Based Spatial Statistics. Partial correlation with multiple comparison corrections was used to explore associations between WM, inflammation, and psychiatric symptoms. The canonical correlation analysis metrics of WM and inflammation followed by k-means clustering were used to define WM microstructural-inflammation subgroups of BDII-D. The differences in clinical profiles were compared between the subgroups. RESULTS Compared with HCs, BDII-D showed significant WM alterations in the anterior thalamic radiation (ATR), cingulum, forceps, and inferior fronto-occipital fasciculus. In BDII-D, lower fraction anisotropy (FA) within the right ATR and cingulum were significantly associated with higher interleukin-6, while lower FA in the cingulum and lower axial diffusivity in the forceps major exhibited significant links with higher C-reactive protein. Among the subgroups identified, subgroup II characterized by elevated inflammation and impaired WM integrity displayed greater psychiatric symptoms. CONCLUSIONS WM alterations are concentrated in emotional neurocircuits and are linked to inflammation in BDII-D. WM-inflammation subgroups exhibit distinct variations in psychiatric symptoms. Thus, WM alterations and inflammation might be an explanatory process in the pathophysiology of BDII-D.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743 Jena, Germany; Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana 131029, India
| | - Huan Sun
- Department of Psychiatry, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Schneider K, Alexander N, Jansen A, Nenadić I, Straube B, Teutenberg L, Thomas-Odenthal F, Usemann P, Dannlowski U, Kircher T, Nagels A, Stein F. Brain structural associations of syntactic complexity and diversity across schizophrenia spectrum and major depressive disorders, and healthy controls. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:101. [PMID: 39487121 PMCID: PMC11530549 DOI: 10.1038/s41537-024-00517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Deviations in syntax production have been well documented in schizophrenia spectrum disorders (SSD). Recently, we have shown evidence for transdiagnostic subtypes of syntactic complexity and diversity. However, there is a lack of studies exploring brain structural correlates of syntax across diagnoses. We assessed syntactic complexity and diversity of oral language production using four Thematic Apperception Test pictures in a sample of N = 87 subjects (n = 24 major depressive disorder (MDD), n = 30 SSD patients both diagnosed according to DSM-IV-TR, and n = 33 healthy controls (HC)). General linear models were used to investigate the association of syntax with gray matter volume (GMV), fractional anisotropy (FA), axial (AD), radial (RD), and mean diffusivity (MD). Age, sex, total intracranial volume, group, interaction of group and syntax were covariates of no interest. Syntactic diversity was positively correlated with the GMV of the right medial pre- and postcentral gyri and with the FA of the left superior-longitudinal fasciculus (temporal part). Conversely, the AD of the left cingulum bundle and the forceps minor were negatively correlated with syntactic diversity. The AD of the right inferior-longitudinal fasciculus was positively correlated with syntactic complexity. Negative associations were observed between syntactic complexity and the FA of the left cingulum bundle, the right superior-longitudinal fasciculus, and the AD of the forceps minor and the left uncinate fasciculus. Our study showed brain structural correlates of syntactic complexity and diversity across diagnoses and HC. This contributes to a comprehensive understanding of the interplay between linguistic and neural substrates in syntax production in psychiatric disorders and HC.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany.
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Arne Nagels
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
11
|
Kjærstad HL, de Siqueira Rotenberg L, Macoveanu J, Coello K, Faurholt-Jepsen M, Bjertrup AJ, Knudsen GM, Fisher PM, Vinberg M, Kessing LV, Lafer B, Miskowiak KW. Stable neural underpinnings of emotional cognition subgroups in patients newly diagnosed with bipolar disorder: A prospective fMRI study. Bipolar Disord 2024; 26:556-569. [PMID: 38698448 DOI: 10.1111/bdi.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
OBJECTIVES This study aimed to investigate the neural underpinnings of emotional cognition subgroups in recently diagnosed patients with bipolar disorder (BD) and change over time over a 15-month follow-up period. METHODS Patients and healthy controls (HC) underwent emotional and nonemotional cognitive assessments and functional magnetic resonance imaging (fMRI) at the baseline (BD n = 87; HC n = 65) and at 15-month follow-up (BD n = 44; HC n = 38). Neural activity during emotion reactivity and regulation in response to aversive pictures was assessed during fMRI. Patients were clustered into subgroups based on their emotional cognition and, with HC, were compared longitudinally on cognition and neural activity during emotion reactivity and regulation. RESULTS Patients were optimally clustered into two subgroups: Subgroup 1 (n = 40, 46%) was characterized by heightened emotional reactivity in negative social scenarios, which persisted over time, but were otherwise cognitively intact. This subgroup exhibited stable left amygdala hyper-activity over time during emotion reactivity compared to subgroup 2. Subgroup 2 (n = 47, 54%) was characterized by global emotional cognitive impairments, including stable difficulties with emotion regulation over time. During emotion regulation across both time points, this group exhibited hypo-activity in the left dorsolateral prefrontal cortex. Additionally, patients in subgroup 2 had poorer nonemotional cognition, had more psychiatric hospital admissions and history of psychotic episodes than those in subgroup 1. CONCLUSIONS Broad impairments in emotional cognition in approximately half of BD patients and associated nonemotional cognitive deficits may originate from insufficient recruitment of prefrontal resources, contributing to poorer clinical outcomes.
Collapse
Affiliation(s)
- Hanne Lie Kjærstad
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Luisa de Siqueira Rotenberg
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Klara Coello
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Maria Faurholt-Jepsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Juul Bjertrup
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Gitte M Knudsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Mental Health Center, Northern Zealand, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Frederiksberg, Denmark
| |
Collapse
|
12
|
Casellas-Pujol E, Soler J, Schmidt C, Soriano J, Pascual JC. Long-lasting symptoms in borderline personality disorder: Defining an emergent population with differential clinical and therapeutic features. Personal Ment Health 2024; 18:248-258. [PMID: 38666509 DOI: 10.1002/pmh.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Although the clinical symptoms of borderline personality disorder (BPD) tend to remit over time, a substantial proportion continues to present "long-lasting symptoms" (LLS). This term refers to individuals who present some degree of clinical improvement, but low mood, feelings of emptiness, and poor psychosocial adjustment typically persist. The aim of this study was to compare the sociodemographic, clinical, and therapeutic variables in individuals with BPD with and without LLS. A total of 620 participants with BPD were included and subdivided into two groups: non-LLS group (n = 549, mean age = 28.02 [6.1] and range, 18-40 years) and LLS group (n = 71, mean age = 44.69 [3.6] and range, 41-56 years). The groups were compared in sociodemographic, clinical, and drug treatment characteristics. We also evaluated the impact of dialectical behavioral therapy-skills training (DBT-ST) on polypharmacy. The prevalence of individuals with long-lasting BPD symptoms increased significantly over a 20-year period (from <1% to 16%). The LLS group was characterized by less clinical severity, higher comorbidity with affective disorders but lower comorbidity with eating disorders, more disability, and more medication taking. Patients with LLS who received DBT-ST experienced a significant decrease in the use of benzodiazepines and the number of medications prescribed compared with those who did not receive DBT-ST. Clinicians should be aware of the specific features of older patients with BPD in order to better identify and address their specific therapeutic needs.
Collapse
Affiliation(s)
- Elisabet Casellas-Pujol
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Seville, Spain
| | - Joaquim Soler
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Seville, Spain
| | - Carlos Schmidt
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Soriano
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Juan C Pascual
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
13
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. The relationship between the size and asymmetry of the lateral ventricles and cortical myelin content in individuals with mood disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306621. [PMID: 38746112 PMCID: PMC11092679 DOI: 10.1101/2024.04.30.24306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Although enlargement of the lateral ventricles was previously observed in individuals with mood disorders, the link between ventricular size and asymmetry with other indices of brain structure remains underexplored. In this study, we examined the association of lateral ventricular size and asymmetry with cortical myelin content in individuals with bipolar (BD) and depressive (DD) disorders compared to healthy controls (HC). Methods Magnetic resonance imaging (MRI) was used to obtain T1w and T2w images from 149 individuals (age=27.7 (SD=6.1) years, 78% female, BD=38, DD=57, HC=54). Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post-hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. Results Individuals with mood disorders had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p<0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not other groups, ventricular enlargement was related to altered myelin content in the right insular regions. Conclusions Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus, potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
|
14
|
Borgers T, Enneking V, Klug M, Garbe J, Meinert H, Wulle M, König P, Zwiky E, Herrmann R, Selle J, Dohm K, Kraus A, Grotegerd D, Repple J, Opel N, Leehr EJ, Gruber M, Goltermann J, Meinert S, Bauer J, Heindel W, Kavakbasi E, Baune BT, Dannlowski U, Redlich R. Long-term effects of electroconvulsive therapy on brain structure in major depression. Psychol Med 2024; 54:940-950. [PMID: 37681274 DOI: 10.1017/s0033291723002647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.
Collapse
Affiliation(s)
- Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jasper Garbe
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Hannah Meinert
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Marius Wulle
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Philine König
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Esther Zwiky
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Rebekka Herrmann
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Janine Selle
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
- Deutsches Zentrum für Psychische Gesundheit, German Center of Mental Health, Site Halle, MLU Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528 Frankfurt am Main, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Building A16, 48149 Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Building A16, 48149 Münster, Germany
| | - Erhan Kavakbasi
- Department of Psychiatry, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
- Department of Psychiatry, University of Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
- Deutsches Zentrum für Psychische Gesundheit, German Center of Mental Health, Site Halle, MLU Halle, Halle, Germany
| |
Collapse
|
15
|
Thiel K, Lemke H, Winter A, Flinkenflügel K, Waltemate L, Bonnekoh L, Grotegerd D, Dohm K, Hahn T, Förster K, Kanske P, Repple J, Opel N, Redlich R, David F, Forstner AJ, Stein F, Brosch K, Thomas-Odenthal F, Usemann P, Teutenberg L, Straube B, Alexander N, Jamalabadi H, Jansen A, Witt SH, Andlauer TFM, Pfennig A, Bauer M, Nenadić I, Kircher T, Meinert S, Dannlowski U. White and gray matter alterations in bipolar I and bipolar II disorder subtypes compared with healthy controls - exploring associations with disease course and polygenic risk. Neuropsychopharmacology 2024; 49:814-823. [PMID: 38332015 PMCID: PMC10948847 DOI: 10.1038/s41386-024-01812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.
Collapse
Affiliation(s)
- Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Translational Psychotherapy, Institute of Psychology, University of Göttingen, Göttingen, Germany
| | - Linda Bonnekoh
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
- Department of Psychology, University of Halle, Halle, Germany
- Center for Intervention and Research on adaptive and maladaptive brain circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Halle, Germany
| | - Friederike David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TU Dresden University of Technology, Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TU Dresden University of Technology, Dresden, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute of Translational Neuroscience, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
16
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
17
|
Cao Y, Sun H, Lizano P, Deng G, Zhou X, Xie H, Mu J, Long X, Xiao H, Liu S, Wu B, Gong Q, Qiu C, Jia Z. Effects of inflammation, childhood adversity, and psychiatric symptoms on brain morphometrical phenotypes in bipolar II depression. Psychol Med 2024; 54:775-784. [PMID: 37671675 DOI: 10.1017/s0033291723002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND The neuroanatomical alteration in bipolar II depression (BDII-D) and its associations with inflammation, childhood adversity, and psychiatric symptoms are currently unclear. We hypothesize that neuroanatomical deficits will be related to higher inflammation, greater childhood adversity, and worse psychiatric symptoms in BDII-D. METHODS Voxel- and surface-based morphometry was performed using the CAT toolbox in 150 BDII-D patients and 155 healthy controls (HCs). Partial Pearson correlations followed by multiple comparison correction was used to indicate significant relationships between neuroanatomy and inflammation, childhood adversity, and psychiatric symptoms. RESULTS Compared with HCs, the BDII-D group demonstrated significantly smaller gray matter volumes (GMVs) in frontostriatal and fronto-cerebellar area, insula, rectus, and temporal gyrus, while significantly thinner cortices were found in frontal and temporal areas. In BDII-D, smaller GMV in the right middle frontal gyrus (MFG) was correlated with greater sexual abuse (r = -0.348, q < 0.001) while larger GMV in the right orbital MFG was correlated with greater physical neglect (r = 0.254, q = 0.03). Higher WBC count (r = -0.227, q = 0.015) and IL-6 levels (r = -0.266, q = 0.015) was associated with smaller GMVs in fronto-cerebellar area in BDII-D. Greater positive symptoms was correlated with larger GMVs of the left middle temporal pole (r = 0.245, q = 0.03). CONCLUSIONS Neuroanatomical alterations in frontostriatal and fronto-cerebellar area, insula, rectus, temporal gyrus volumes, and frontal-temporal thickness may reflect a core pathophysiological mechanism of BDII-D, which are related to inflammation, trauma, and psychiatric symptoms in BDII-D.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Huan Sun
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
| | - Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, P.R. China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, P.R. China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
18
|
Wu Y, Su YA, Zhu L, Li J, Si T. Advances in functional MRI research in bipolar disorder: from the perspective of mood states. Gen Psychiatr 2024; 37:e101398. [PMID: 38292862 PMCID: PMC10826570 DOI: 10.1136/gpsych-2023-101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression. Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disorder. However, the pathophysiology underlying mood instability, mood switching and the development of extreme mood states is less well understood. This review presents a comprehensive overview of current evidence from functional MRI studies from the perspective of mood states. We first summarise the disrupted brain activation patterns and functional connectivity that have been reported in bipolar disorder, irrespective of the mood state. We next focus on research that solely included patients in a single mood state for a better understanding of the pathophysiology of bipolar disorder and research comparing patients with different mood states to dissect mood state-related effects. Finally, we briefly summarise current theoretical models and conclude this review by proposing potential avenues for future research. A comprehensive understanding of the pathophysiology with consideration of mood states could not only deepen our understanding of how acute mood episodes develop at a neurophysiological level but could also facilitate the identification of biological targets for personalised treatment and the development of new interventions for bipolar disorder.
Collapse
Affiliation(s)
- Yankun Wu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linlin Zhu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jitao Li
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tianmei Si
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
19
|
Cao Y, Lizano P, Deng G, Sun H, Zhou X, Xie H, Zhan Y, Mu J, Long X, Xiao H, Liu S, Gong Q, Qiu C, Jia Z. Brain-derived subgroups of bipolar II depression associate with inflammation and choroid plexus morphology. Psychiatry Clin Neurosci 2023; 77:613-621. [PMID: 37585287 DOI: 10.1111/pcn.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
AIM Elevated inflammation and larger choroid plexus (ChP) volume has been previously identified in mood disorders. Connections between inflammation, ChP, and clinical symptoms in bipolar II depression (BDII-D) are unclear. Data-driven clustering based on neuroanatomical phenotypes may help to elucidate neurobiological associations in BDII-D. METHODS Inflammatory cytokines, clinical symptoms, and neuroanatomical features were assessed in 150 BDII-D patients. Sixty-eight cortical surface area (SA) and 19 subcortical volumes were extracted using FreeSurfer. The ChP volume was segmented manually using 3D Slicer. Regularized canonical correlation analysis was used to identify significantly correlated components between cortical SA and subcortical volumes (excluding the ChP), followed by k-means clustering to define brain-derived subgroups of BDII-D. Low-grade inflammation was derived by averaging the standardized z scores of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), which were computed to create a composite z-value score. Partial Pearson correlations followed by multiple comparison correction were conducted to explore associations between inflammation, clinical symptoms, and ChP volume. RESULTS Subgroup I demonstrated smaller subcortical volume and cortical SA, higher inflammation, and larger ChP volume compared with subgroup II. Greater ChP volume was associated with a higher low-grade inflammation (mean r = 0.289, q = 0.003), CRP (mean r = 0.249, q = 0.007), IL-6 (left r = 0.200, q = 0.03), and TNF-α (right r = 0.226, q = 0.01), while greater IL-1β was significantly associated with severe depressive symptoms in BDII-D (r = 0.218, q = 0.045). CONCLUSIONS Neuroanatomically-derived subgroups of BDII-D differed in their inflammation levels and ChP volume. These findings suggest an important role of elevated peripheral inflammation and larger ChP in BDII-D.
Collapse
Grants
- 81971595 National Natural Science Foundation of China
- 82271947 National Natural Science Foundation of China
- 2020HXFH005 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 Key Program of Natural Science Foundation of Sichuan Province
- 2020HXFH005 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 the Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 the Key Program of Natural Science Foundation of Sichuan Province
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Sun
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yaru Zhan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Winter A, Thiel K, Meinert S, Lemke H, Waltemate L, Breuer F, Culemann R, Pfarr JK, Stein F, Brosch K, Meller T, Ringwald KG, Thomas-Odenthal F, Jansen A, Nenadić I, Krug A, Repple J, Opel N, Dohm K, Leehr EJ, Grotegerd D, Kugel H, Hahn T, Kircher T, Dannlowski U. Familial risk for major depression: differential white matter alterations in healthy and depressed participants. Psychol Med 2023; 53:4933-4942. [PMID: 36052484 PMCID: PMC10476061 DOI: 10.1017/s003329172200188x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been associated with alterations in brain white matter (WM) microstructure. However, diffusion tensor imaging studies in biological relatives have presented contradicting results on WM alterations and their potential as biomarkers for vulnerability or resilience. To shed more light on associations between WM microstructure and resilience to familial risk, analyses including both healthy and depressed relatives of MDD patients are needed. METHODS In a 2 (MDD v. healthy controls, HC) × 2 (familial risk yes v. no) design, we investigated fractional anisotropy (FA) via tract-based spatial statistics in a large well-characterised adult sample (N = 528), with additional controls for childhood maltreatment, a potentially confounding proxy for environmental risk. RESULTS Analyses revealed a significant main effect of diagnosis on FA in the forceps minor and the left superior longitudinal fasciculus (ptfce-FWE = 0.009). Furthermore, a significant interaction of diagnosis with familial risk emerged (ptfce-FWE = 0.036) Post-hoc pairwise comparisons showed significantly higher FA, mainly in the forceps minor and right inferior fronto-occipital fasciculus, in HC with as compared to HC without familial risk (ptfce-FWE < 0.001), whereas familial risk played no role in MDD patients (ptfce-FWE = 0.797). Adding childhood maltreatment as a covariate, the interaction effect remained stable. CONCLUSIONS We found widespread increased FA in HC with familial risk for MDD as compared to a HC low-risk sample. The significant effect of risk on FA was present only in HC, but not in the MDD sample. These alterations might reflect compensatory neural mechanisms in healthy adults at risk for MDD potentially associated with resilience.
Collapse
Affiliation(s)
- Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute of Translational Neuroscience, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Regina Culemann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Kai Gustav Ringwald
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Muenster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry und Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Thiel K, Meinert S, Winter A, Lemke H, Waltemate L, Breuer F, Gruber M, Leenings R, Wüste L, Rüb K, Pfarr JK, Stein F, Brosch K, Meller T, Ringwald KG, Nenadić I, Krug A, Repple J, Opel N, Koch K, Leehr EJ, Bauer J, Grotegerd D, Hahn T, Kircher T, Dannlowski U. Reduced fractional anisotropy in bipolar disorder v. major depressive disorder independent of current symptoms. Psychol Med 2023; 53:4592-4602. [PMID: 35833369 PMCID: PMC10388324 DOI: 10.1017/s0033291722001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Patients with bipolar disorder (BD) show reduced fractional anisotropy (FA) compared to patients with major depressive disorder (MDD). Little is known about whether these differences are mood state-independent or influenced by acute symptom severity. Therefore, the aim of this study was (1) to replicate abnormalities in white matter microstructure in BD v. MDD and (2) to investigate whether these vary across depressed, euthymic, and manic mood. METHODS In this cross-sectional diffusion tensor imaging study, n = 136 patients with BD were compared to age- and sex-matched MDD patients and healthy controls (HC) (n = 136 each). Differences in FA were investigated using tract-based spatial statistics. Using interaction models, the influence of acute symptom severity and mood state on the differences between patient groups were tested. RESULTS Analyses revealed a main effect of diagnosis on FA across all three groups (ptfce-FWE = 0.003). BD patients showed reduced FA compared to both MDD (ptfce-FWE = 0.005) and HC (ptfce-FWE < 0.001) in large bilateral clusters. These consisted of several white matter tracts previously described in the literature, including commissural, association, and projection tracts. There were no significant interaction effects between diagnosis and symptom severity or mood state (all ptfce-FWE > 0.704). CONCLUSIONS Results indicated that the difference between BD and MDD was independent of depressive and manic symptom severity and mood state. Disruptions in white matter microstructure in BD might be a trait effect of the disorder. The potential of FA values to be used as a biomarker to differentiate BD from MDD should be further addressed in future studies using longitudinal designs.
Collapse
Affiliation(s)
- Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute of Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lucia Wüste
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kathrin Rüb
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai Gustav Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Förster K, Grotegerd D, Dohm K, Lemke H, Enneking V, Meinert S, Redlich R, Heindel W, Bauer J, Kugel H, Suslow T, Ohrmann P, Carballedo A, O'Keane V, Fagan A, Doolin K, McCarthy H, Kanske P, Frodl T, Dannlowski U. Association of hospitalization with structural brain alterations in patients with affective disorders over nine years. Transl Psychiatry 2023; 13:170. [PMID: 37202406 DOI: 10.1038/s41398-023-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Repeated hospitalizations are a characteristic of severe disease courses in patients with affective disorders (PAD). To elucidate how a hospitalization during a nine-year follow-up in PAD affects brain structure, a longitudinal case-control study (mean [SD] follow-up period 8.98 [2.20] years) was conducted using structural neuroimaging. We investigated PAD (N = 38) and healthy controls (N = 37) at two sites (University of Münster, Germany, Trinity College Dublin, Ireland). PAD were divided into two groups based on the experience of in-patient psychiatric treatment during follow-up. Since the Dublin-patients were outpatients at baseline, the re-hospitalization analysis was limited to the Münster site (N = 52). Voxel-based morphometry was employed to examine hippocampus, insula, dorsolateral prefrontal cortex and whole-brain gray matter in two models: (1) group (patients/controls)×time (baseline/follow-up) interaction; (2) group (hospitalized patients/not-hospitalized patients/controls)×time interaction. Patients lost significantly more whole-brain gray matter volume of superior temporal gyrus and temporal pole compared to HC (pFWE = 0.008). Patients hospitalized during follow-up lost significantly more insular volume than healthy controls (pFWE = 0.025) and more volume in their hippocampus compared to not-hospitalized patients (pFWE = 0.023), while patients without re-hospitalization did not differ from controls. These effects of hospitalization remained stable in a smaller sample excluding patients with bipolar disorder. PAD show gray matter volume decline in temporo-limbic regions over nine years. A hospitalization during follow-up comes with intensified gray matter volume decline in the insula and hippocampus. Since hospitalizations are a correlate of severity, this finding corroborates and extends the hypothesis that a severe course of disease has detrimental long-term effects on temporo-limbic brain structure in PAD.
Collapse
Affiliation(s)
- Katharina Förster
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, University of Halle, Halle, Germany
| | - Walter Heindel
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Harald Kugel
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Angela Carballedo
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Andrew Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Kelly Doolin
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Hazel McCarthy
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Frodl
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH University Aachen, Aachen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Massalha Y, Maggioni E, Callari A, Brambilla P, Delvecchio G. A review of resting-state fMRI correlations with executive functions and social cognition in bipolar disorder. J Affect Disord 2023; 334:337-351. [PMID: 37003435 DOI: 10.1016/j.jad.2023.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Deficits in executive functions (EF) and social cognition (SC) are often observed in bipolar disorder (BD), leading to a severe impairment in engaging a functional interaction with the others and the surrounding environment. Therefore, in recent years, resting-state functional magnetic resonance imaging (rs-fMRI) studies on BD tried to identify the neural underpinnings of these cognitive domains by exploring the association between the intrinsic functional connectivity (FC) and the scores in clinical scales evaluating these domains. METHODS A bibliographic search on PubMed and Scopus of studies evaluating the correlations between rs-fMRI findings and EF and/or SC in BD was conducted until March 2022. Ten studies met the inclusion criteria. RESULTS Overall, the results of the reviewed studies showed that BD patients had FC deficits compared to healthy controls (HC) in selective resting-state networks involved in EF and SC, which include the default mode network, especially the link between medial prefrontal cortex and posterior cingulate cortex, and the sensory-motor network. Finally, it also emerged the predominant role of alterations in prefrontal connections in explaining the cognitive deficits in BD patients. LIMITATIONS The heterogeneity of the reviewed studies, in terms of cognitive domains explored and neuroimaging acquisitions, limited the comparability of the findings. CONCLUSIONS rs-fMRI studies could help deepen the brain network alterations underlying EF and SC deficits in BD, pointing the attention on the neuronal underpinning of cognition, whose knowledge may lead to the development of new neurobiological-based approaches to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Yara Massalha
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Eleonora Maggioni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20122 Milan, Italy
| | - Antonio Callari
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy.
| |
Collapse
|
24
|
Alawi M, Lee PF, Deng ZD, Goh YK, Croarkin PE. Modelling the differential effects of age on transcranial magnetic stimulation induced electric fields. J Neural Eng 2023; 20. [PMID: 36240726 DOI: 10.1088/1741-2552/ac9a76] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Objective. The therapeutic application of noninvasive brain stimulation modalities such as transcranial magnetic stimulation (TMS) has expanded in terms of indications and patient populations. Often neurodevelopmental and neurodegenerative changes are not considered in research studies and clinical applications. This study sought to examine TMS dosing across time points in the life cycle.Approach. TMS induced electric fields with a figure-of-eight coil was simulated at left dorsolateral prefrontal cortex regions and taken in vertex as a control region. Realistic magnetic resonance imaging-based head models (N= 48) were concurrently examined in a cross-sectional study of three different age groups (children, adults, and elderlies).Main results. Age had a negative correlation with electric field peaks in white matter, grey matter and cerebrospinal fluid (P< 0.001). Notably, the electric field map in children displayed the widest cortical surface spread of TMS induced electric fields.Significance. Age-related anatomical geometry beneath the coil stimulation site had a significant impact on the TMS induced electric fields for different age groups. Safety considerations for TMS applications and protocols in children are warranted based on the present electric field findings.
Collapse
Affiliation(s)
- Mansour Alawi
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, NIH, Bethesda, MD, United States of America
| | - Yong Kheng Goh
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Minnesota, MN, United States of America
| |
Collapse
|
25
|
Seitz KI, Ueltzhöffer K, Rademacher L, Paulus FM, Schmitz M, Herpertz SC, Bertsch K. Your smile won't affect me: Association between childhood maternal antipathy and adult neural reward function in a transdiagnostic sample. Transl Psychiatry 2023; 13:70. [PMID: 36828811 PMCID: PMC9958053 DOI: 10.1038/s41398-023-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Aberrant activation in the ventral striatum (VS) during reward anticipation may be a key mechanism linking adverse childhood experiences (ACE) to transdiagnostic psychopathology. This study aimed to elucidate whether retrospectively reported ACE, specifically maternal antipathy, relate to monetary and social reward anticipation in a transdiagnostic adult sample. A cross-sectional neuroimaging study was conducted in 118 participants with varying levels of ACE, including 25 participants with posttraumatic stress disorder (PTSD), 32 with major depressive disorder (MDD), 29 with somatic symptom disorder (SSD), and 32 healthy volunteers (HVs). Participants underwent functional magnetic resonance imaging during a monetary and social incentive delay task, and completed a self-report measure of ACE, including maternal antipathy. Neural correlates of monetary and social reward anticipation and their association with ACE, particularly maternal antipathy, were analyzed. Participants showed elevated activation in brain regions underlying reward processing, including the VS, only while anticipating social, but not monetary rewards. Participants reporting higher levels of maternal antipathy exhibited reduced activation in the brain reward network, including the VS, only during social, but not monetary reward anticipation. Group affiliation moderated the association between maternal antipathy and VS activation to social reward anticipation, with significant associations found in participants with PTSD and HVs, but not in those with MDD and SSD. Results were not associated with general psychopathology or psychotropic medication use. Childhood maternal antipathy may confer risk for aberrant social reward anticipation in adulthood, and may thus be considered in interventions targeting reward expectations from social interactions.
Collapse
Affiliation(s)
- Katja I. Seitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Kai Ueltzhöffer
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Lena Rademacher
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Frieder M. Paulus
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Marius Schmitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine C. Herpertz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
26
|
Müller-Miny L, Thiel K, Meinert S, Hahn T, Kircher T, Nenadić I, Krug A, Hufschmidt F, Liao H, Neumann H, Dannlowski U, Lünemann JD. Association of polysialic acid serum levels with schizophrenia spectrum and bipolar disorder-related structural brain changes and hospitalization. Sci Rep 2023; 13:2085. [PMID: 36747002 PMCID: PMC9902615 DOI: 10.1038/s41598-023-29242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Expression of polysialic acid (polySia) in the adult brain is enriched in areas of continuous neurogenesis and plasticity such as the hippocampus. Genome-wide association studies identified variants of glycosylation enzyme-encoding genes, required for the generation of polySia, to be associated with the development of schizophrenia and bipolar disorder. Here, we report that serum levels of polySia are increased in patients with schizophrenia spectrum disorder compared to patients with major depressive disorders or demographically matched healthy controls. Furthermore, elevated polySia serum levels are associated with structural hippocampal gray matter decline in schizophrenia spectrum and bipolar disorder. In patients with schizophrenia spectrum disorder, polySia serum levels correlate with the number, duration of disease-related hospitalizations, early retirement and medical leave as estimators of detrimental long-term disease trajectories. Our data show that polySia serum levels are linked to structural hippocampal brain changes in schizophrenia spectrum and bipolar disorders, and suggest a contribution of polySia to the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Louisa Müller-Miny
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Felix Hufschmidt
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jan D Lünemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
27
|
Ehrlich TJ, Ryan KA, Burdick KE, Langenecker SA, McInnis MG, Marshall DF. Cognitive subgroups and their longitudinal trajectories in bipolar disorder. Acta Psychiatr Scand 2022; 146:240-250. [PMID: 35690884 PMCID: PMC9545624 DOI: 10.1111/acps.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cognitive functioning in bipolar disorder is heterogeneous with evidence for multiple subgroups. However, cognitive subgroup change patterns over time remains unknown. While prior work suggests minimal differences in cognitive functioning patterns over time between those with bipolar disorder and controls, group-based analyses may obscure unique subgroup-based changes. MATERIAL AND METHODS Participants diagnosed with bipolar disorder (I, II, NOS; n = 568) and unaffected controls (n = 234) completed baseline, one- and five-year neuropsychological assessments. Data reduction techniques were used to limit the number of neuropsychological variables. Bipolar disorder participant baseline neuropsychological data were entered into hierarchical cluster analyses and resultant clusters were entered in multilevel models, which tested for differences in baseline and longitudinal cognitive changes in cognition among the cluster groups and with controls. RESULTS Results were consistent with bipolar disorder participants forming three subgroups with high (n = 209), mid (n = 259), and low (n = 100) cognition. These groups were associated with unique clinical characteristics. Multilevel models demonstrated that over a five-year period, the low group improved, relative to the high and mid groups, and with controls, in auditory memory. Over the five-year period, the mid group, in comparison with the high group, improved in visual memory; additionally, the high group remained stable, in comparison with a slight decline in the control group, in inhibitory control. CONCLUSION These results demonstrate that cognition-based subgroups of bipolar disorder participants have minimal differences in their longitudinal course in relation to each other and with unaffected controls.
Collapse
Affiliation(s)
- Tobin J. Ehrlich
- Heinz C Prechter Bipolar Research Program, Eisenberg Family Depression Center, and Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Kelly A. Ryan
- Heinz C Prechter Bipolar Research Program, Eisenberg Family Depression Center, and Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Katherine E. Burdick
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Melvin G. McInnis
- Heinz C Prechter Bipolar Research Program, Eisenberg Family Depression Center, and Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - David F. Marshall
- Heinz C Prechter Bipolar Research Program, Eisenberg Family Depression Center, and Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
28
|
Manelis A, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Levine MD. The interaction between depression diagnosis and BMI is related to altered activation pattern in the right inferior frontal gyrus and anterior cingulate cortex during food anticipation. Brain Behav 2022; 12:e2695. [PMID: 35962573 PMCID: PMC9480896 DOI: 10.1002/brb3.2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression and overweight/obesity often cooccur but the underlying neural mechanisms for this bidirectional link are not well understood. METHODS In this functional magnetic resonance imaging study, we scanned 54 individuals diagnosed with depressive disorders (DD) and 48 healthy controls (HC) to examine how diagnostic status moderates the relationship between body mass index (BMI) and brain activation during anticipation and pleasantness rating of food versus nonfood stimuli. RESULTS We found a significant BMI-by-diagnosis interaction effect on activation in the right inferior frontal gyrus (RIFG) and anterior cingulate cortex (ACC) during food versus nonfood anticipation (p < .0125). Brain activation in these regions was greater in HC with higher BMI than in HC with lower BMI. Individuals with DD showed an opposite pattern of activation. Structural equation modeling revealed that the relationship between BMI, activation in the RIFG and ACC, and participants' desire to eat food items shown in the experiment depended on the diagnostic status. CONCLUSIONS Considering that food anticipation is an important component of appetitive behavior and that the RIFG and ACC are involved in emotion regulation, response inhibition and conflict monitoring necessary to control this behavior, we propose that future clinical trials targeting weight loss in DD should investigate whether adequate mental preparation positively affects subsequent food consumption behaviors in these individuals.
Collapse
Affiliation(s)
- A Manelis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - YO Halchenko
- Department of Psychological and Brain SciencesDartmouth CollegeHanoverNew Hampshire
| | - S Satz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - R Ragozzino
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - S Iyengar
- Department of StatisticsUniversity of PittsburghPittsburghPennsylvania
| | - HA Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - MD Levine
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| |
Collapse
|
29
|
Lemke H, Klute H, Skupski J, Thiel K, Waltemate L, Winter A, Breuer F, Meinert S, Klug M, Enneking V, Winter NR, Grotegerd D, Leehr EJ, Repple J, Dohm K, Opel N, Stein F, Meller T, Brosch K, Ringwald KG, Pfarr JK, Thomas-Odenthal F, Hahn T, Krug A, Jansen A, Heindel W, Nenadić I, Kircher T, Dannlowski U. Brain structural correlates of recurrence following the first episode in patients with major depressive disorder. Transl Psychiatry 2022; 12:349. [PMID: 36030219 PMCID: PMC9420111 DOI: 10.1038/s41398-022-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Former prospective studies showed that the occurrence of relapse in Major Depressive Disorder (MDD) is associated with volume loss in the insula, hippocampus and dorsolateral prefrontal cortex (DLPFC). However, these studies were confounded by the patient's lifetime disease history, as the number of previous episodes predict future recurrence. In order to analyze neural correlates of recurrence irrespective of prior disease course, this study prospectively examined changes in brain structure in patients with first-episode depression (FED) over 2 years. N = 63 FED patients and n = 63 healthy controls (HC) underwent structural magnetic resonance imaging at baseline and after 2 years. According to their disease course during the follow-up interval, patients were grouped into n = 21 FED patients with recurrence (FEDrec) during follow-up and n = 42 FED patients with stable remission (FEDrem). Gray matter volume changes were analysed using group by time interaction analyses of covariance for the DLPFC, hippocampus and insula. Significant group by time interactions in the DLPFC and insula emerged. Pairwise comparisons showed that FEDrec had greater volume decline in the DLPFC and insula from baseline to follow-up compared with FEDrem and HC. No group by time interactions in the hippocampus were found. Cross-sectional analyses at baseline and follow-up revealed no differences between groups. This longitudinal study provides evidence for neural alterations in the DLPFC and insula related to a detrimental course in MDD. These effects of recurrence are already detectable at initial stages of MDD and seem to occur without any prior disease history, emphasizing the importance of early interventions preventing depressive recurrence.
Collapse
Affiliation(s)
- Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Klute
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jennifer Skupski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R. Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Walter Heindel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
30
|
Wong KS, Chou T, Peters AT, Ellard KK, Nierenberg AA, Dougherty DD, Deckersbach T. Convergence between behavioral, neural, and self-report measures of cognitive control: The Frontal Systems Behavior Scale in bipolar disorder. J Psychiatr Res 2022; 150:317-323. [PMID: 35447525 DOI: 10.1016/j.jpsychires.2022.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
The Frontal Systems Behavior Scale (FrSBe) is a self-report measure that assesses difficulties with cognitive and emotional control such as apathetic behavior, lack of inhibitory control, and executive dysfunction. Previous neuroimaging studies highlight the involvement of the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and dorsolateral prefrontal cortex (DLPFC) in these processes. In this study, we investigated whether there was convergence across subjective and objective measures of apathy, disinhibition, and executive dysfunction. Specifically, we studied whether ACC, OFC, and DLPFC activation during a modified version of the Multi-Source Interference Task (MSIT), is associated with FrSBe apathy, disinhibition, and executive dysfunction scores, in healthy controls (HC) and individuals with Bipolar Disorder (BD), who commonly exhibit difficulties in these domains. Individuals with BD (n = 31) and HCs (n = 31) with no current or past psychiatric illness completed the FrSBe and the MSIT during fMRI scanning. We investigated task-specific changes in the ACC, DLPFC, and OFC and their correlations with FrSBe apathy, disinhibition, and executive dysfunction subscale scores, respectively. Individuals with BD and the HC group demonstrated greater ACC, DLPFC, and OFC activation during MSIT interference conditions compared with non-interference conditions. Furthermore, there was a significant negative correlation between OFC activation and disinhibition scores, which remained significant after accounting for medication load. Together, these results demonstrate the FrSBe disinhibition subscale, in particular, can be a self-report measure that converges with behavioral and neural markers of disinhibition in BD.
Collapse
Affiliation(s)
- Karianne Sretavan Wong
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Amy T Peters
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
Höflich A, Kautzky A, Slamanig R, Kampshoff J, Unger A. Depressive symptoms as a transdiagnostic mediator of mother-to-infant bonding: Results from a psychiatric mother-baby unit. J Psychiatr Res 2022; 149:37-43. [PMID: 35219874 DOI: 10.1016/j.jpsychires.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Maternal symptoms of depression can interfere with the establishment of healthy mother-infant-bonding, which negatively affects developmental trajectories of the child and maternal wellbeing. However, current evidence about the effects of treatment in severely affected women is still lacking and the transdiagnostic prognostic value of depressive symptoms is not fully clear. Therefore, a naturalistic clinical sample of 140 mother-infant-dyads in inpatient treatment at a mother-baby-unit was analyzed with instruments being administered at admission and before dismissal. Linear mixed effects models were calculated in order to assess the longitudinal influence of scores on the Edingburgh Postpartum Depression Scale (EPDS) on post-partum-bonding measured with the postpartum bonding questionnaire (PBQ). Furthermore, interaction-effects with psychiatric diagnosis of the mothers (depression vs. psychosis) and their partners were assessed. Successful treatment of depressive symptoms was paralleled by a significant decrease of impaired bonding, with only 6.4% of the women having PBQ total scores above cut-off at discharge. Overall, higher scores on the EPDS were associated with a significantly poorer outcome on the PBQ (p = < 0.001), irrespective of diagnosis (p = 0.93). Importantly, there was an interaction effect of EPDS and a psychiatric diagnosis of the partner on the PBQ (p = 0.017). Thus, our results further emphasize the significance of postpartum symptoms of depression for mother-child bonding, which can be effectively improved by comprehensive treatment even in severely affected women. Optimizing treatment and diagnostics as early as possible and enabling access for all women must become a priority.
Collapse
Affiliation(s)
- A Höflich
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Social Psychiatry, Austria.
| | - A Kautzky
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Social Psychiatry, Austria
| | - R Slamanig
- Anton Proksch Institute, Vienna, Austria
| | - J Kampshoff
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Social Psychiatry, Austria
| | - A Unger
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Social Psychiatry, Austria
| |
Collapse
|
32
|
Lemke H, Romankiewicz L, Förster K, Meinert S, Waltemate L, Fingas SM, Grotegerd D, Redlich R, Dohm K, Leehr EJ, Thiel K, Enneking V, Brosch K, Meller T, Ringwald K, Schmitt S, Stein F, Steinsträter O, Bauer J, Heindel W, Jansen A, Krug A, Nenadic I, Kircher T, Dannlowski U. Association of disease course and brain structural alterations in major depressive disorder. Depress Anxiety 2022; 39:441-451. [PMID: 35485921 DOI: 10.1002/da.23260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The investigation of disease course-associated brain structural alterations in Major Depressive Disorder (MDD) have resulted in heterogeneous findings, possibly due to low reliability of single clinical variables used for defining disease course. The present study employed a principal component analysis (PCA) on multiple clinical variables to investigate effects of cumulative lifetime illness burden on brain structure in a large and heterogeneous sample of MDD patients. METHODS Gray matter volumes (GMV) was estimated in n = 681 MDD patients (mean age: 35.87 years; SD = 12.89; 66.6% female) using voxel-based-morphometry. Five clinical variables were included in a PCA to obtain components reflecting disease course to associate resulting components with GMVs. RESULTS The PCA yielded two main components: Hospitalization reflected by patients' frequency and duration of inpatient treatment and Duration of Illness reflected by the frequency and duration of depressive episodes. Hospitalization revealed negative associations with bilateral dorsolateral prefrontal cortex (DLPFC) and left insula volumes. Duration of Illness showed significant negative associations with left hippocampus and right DLPFC volumes. Results in the DLPFC and hippocampus remained significant after additional control for depressive symptom severity, psychopharmacotherapy, psychiatric comorbidities, and remission status. CONCLUSION This study shows that a more severe and chronic lifetime disease course in MDD is associated with reduced volume in brain regions relevant for executive and cognitive functions and emotion regulation in a large sample of patients representing the broad heterogeneity of MDD disease course. These findings were only partly influenced by other clinical characteristics (e.g., remission status, psychopharmacological treatment).
Collapse
Affiliation(s)
- Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lina Romankiewicz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Förster
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stella M Fingas
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Department of Psychology, University of Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | | | | | - Walter Heindel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadic
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Real-time facial emotion recognition deficits across the psychosis spectrum: A B-SNIP Study. Schizophr Res 2022; 243:489-499. [PMID: 34887147 PMCID: PMC9236198 DOI: 10.1016/j.schres.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
Affective and non-affective psychotic disorders are associated with variable levels of impairment in affective processing, but this domain typically has been examined via presentation of static facial images. We compared performance on a dynamic facial expression identification task across six emotions (sad, fear, surprise, disgust, anger, happy) in individuals with psychotic disorders (bipolar with psychotic features [PBD] = 113, schizoaffective [SAD] = 163, schizophrenia [SZ] = 181) and healthy controls (HC; n = 236) derived from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). These same individuals with psychotic disorders were also grouped by B-SNIP-derived Biotype (Biotype 1 [B1] = 115, Biotype 2 [B2] = 132, Biotype 3 [B3] = 158), derived from a cluster analysis applied to a large biomarker panel that did not include the current data. Irrespective of the depicted emotion, groups differed in accuracy of emotion identification (P < 0.0001). The SZ group demonstrated lower accuracy versus HC and PBD groups; the SAD group was less accurate than the HC group (Ps < 0.02). Similar overall group differences were evident in speed of identifying emotional expressions. Controlling for general cognitive ability did not eliminate most group differences on accuracy but eliminated almost all group differences on reaction time for emotion identification. Results from the Biotype groups indicated that B1 and B2 had more severe deficits in emotion recognition than HC and B3, meanwhile B3 did not show significant deficits. In sum, this characterization of facial emotion recognition deficits adds to our emerging understanding of social/emotional deficits across the psychosis spectrum.
Collapse
|
34
|
Bi B, Che D, Bai Y. Neural network of bipolar disorder: Toward integration of neuroimaging and neurocircuit-based treatment strategies. Transl Psychiatry 2022; 12:143. [PMID: 35383150 PMCID: PMC8983759 DOI: 10.1038/s41398-022-01917-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dysfunctions in three domains including emotional processing, cognitive processing, and psychomotor dimensions. However, the neural underpinnings underlying these clinical profiles are not well understood. Based on the reported data, we hypothesized that (i) the core neuropathology in BD is damage in fronto-limbic network, which is associated with emotional dysfunction; (ii) changes in intrinsic brain network, such as sensorimotor network, salience network, default-mode network, central executive network are associated with impaired cognition function; and (iii) beyond the dopaminergic-driven basal ganglia-thalamo-cortical motor circuit modulated by other neurotransmitter systems, such as serotonin (subcortical-cortical modulation), the sensorimotor network and related motor function modulated by other non-motor networks such as the default-mode network are involved in psychomotor function. In this review, we propose a neurocircuit-based clinical characteristics and taxonomy to guide the treatment of BD. We draw on findings from neuropsychological and neuroimaging studies in BD and link variations in these clinical profiles to underlying neurocircuit dysfunctions. We consider pharmacological, psychotherapy, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions in BD. Finally, it is suggested that the methods of testing the neurocircuit-based taxonomy and important limitations to this approach should be considered in future.
Collapse
Affiliation(s)
- Bo Bi
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Dongfang Che
- grid.452787.b0000 0004 1806 5224Neurosurgery department, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuyin Bai
- grid.12981.330000 0001 2360 039XDepartment of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
35
|
Soler J, Casellas‐Pujol E, Fernández‐Felipe I, Martín‐Blanco A, Almenta D, Pascual JC. "Skills for pills": The dialectical-behavioural therapy skills training reduces polypharmacy in borderline personality disorder. Acta Psychiatr Scand 2022; 145:332-342. [PMID: 35088405 PMCID: PMC9305183 DOI: 10.1111/acps.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Polypharmacy and overprescription of off-label medications are common in patients with borderline personality disorder (BPD). The aim of the present naturalistic study was to explore whether the skills training module of dialectical-behavioural therapy (DBT) can reduce polypharmacy in these patients in routine clinical practice. METHODS Retrospective, observational study of 377 patients with a primary diagnosis of BPD consecutively admitted to the BPD outpatient unit from 2010 through 2020. All patients were invited to participate in the DBT skills training module (DBT-ST). DBT-ST participants (n = 182) were compared with a control group who did not participate in DBT-ST (n = 195). Pre-post intervention changes in medication load and use of antidepressants, benzodiazepines, mood stabilizers, and antipsychotics were evaluated. RESULTS At baseline, most patients (84.4%) were taking at least one medication and 46.9% were on polypharmacy. Compared to controls, patients in the DBT-ST group presented a significant reduction in the number of medications (2.67-1.95 vs. 2.16-2.19; p < 0.001), medication load (4.25-3.05 vs. 3.45-3.48; p < 0.001), use of benzodiazepines (54.4%-27.5% vs. 40%-40.5%; p < 0.001), mood stabilizers (43.4%-33% vs. 36.4%-39.5%; p < 0.001), and antipsychotics (36.3%-29.1% vs. 34.4%-36.9%; p < 0.001). CONCLUSIONS These findings suggest that patients with BPD can benefit from the DBT-ST module, which may reduce the medication load, particularly of sedatives. The results suggest that DBT-ST may be useful to treat overmedication in patients with BPD and could help to promote "deprescription" in clinical practice.
Collapse
Affiliation(s)
- Joaquim Soler
- Department of PsychiatryHospital de la Santa Creu i Sant PauBarcelonaSpain,Universitat Autònoma de Barcelona (UAB)BarcelonaSpain,Institut d’Investigació Biomèdica‐ Sant Pau (IIB‐SANT PAU)Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAMBarcelonaSpain
| | - Elisabet Casellas‐Pujol
- Department of PsychiatryHospital de la Santa Creu i Sant PauBarcelonaSpain,Universitat Autònoma de Barcelona (UAB)BarcelonaSpain,Institut d’Investigació Biomèdica‐ Sant Pau (IIB‐SANT PAU)Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAMBarcelonaSpain
| | - Isabel Fernández‐Felipe
- LabpsitecLaboratorio de Psicología y Tecnología. Dpto. Psicología BásicaClínica y PsicobiologíaUniversitat Jaume ICastellóSpain
| | - Ana Martín‐Blanco
- Department of PsychiatryHospital de la Santa Creu i Sant PauBarcelonaSpain,Universitat Autònoma de Barcelona (UAB)BarcelonaSpain,Institut d’Investigació Biomèdica‐ Sant Pau (IIB‐SANT PAU)Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAMBarcelonaSpain
| | - David Almenta
- Department of PsychiatryHospital de la Santa Creu i Sant PauBarcelonaSpain,Universitat Autònoma de Barcelona (UAB)BarcelonaSpain,Institut d’Investigació Biomèdica‐ Sant Pau (IIB‐SANT PAU)Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAMBarcelonaSpain
| | - Juan C. Pascual
- Department of PsychiatryHospital de la Santa Creu i Sant PauBarcelonaSpain,Universitat Autònoma de Barcelona (UAB)BarcelonaSpain,Institut d’Investigació Biomèdica‐ Sant Pau (IIB‐SANT PAU)Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAMBarcelonaSpain
| |
Collapse
|
36
|
Satz S, Halchenko YO, Ragozzino R, Lucero MM, Phillips ML, Swartz HA, Manelis A. The Relationship Between Default Mode and Dorsal Attention Networks Is Associated With Depressive Disorder Diagnosis and the Strength of Memory Representations Acquired Prior to the Resting State Scan. Front Hum Neurosci 2022; 16:749767. [PMID: 35264938 PMCID: PMC8898930 DOI: 10.3389/fnhum.2022.749767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Previous research indicates that individuals with depressive disorders (DD) have aberrant resting state functional connectivity and may experience memory dysfunction. While resting state functional connectivity may be affected by experiences preceding the resting state scan, little is known about this relationship in individuals with DD. Our study examined this question in the context of object memory. 52 individuals with DD and 45 healthy controls (HC) completed clinical interviews, and a memory encoding task followed by a forced-choice recognition test. A 5-min resting state fMRI scan was administered immediately after the forced-choice task. Resting state networks were identified using group Independent Component Analysis across all participants. A network modeling analysis conducted on 22 networks using FSLNets examined the interaction effect of diagnostic status and memory accuracy on the between-network connectivity. We found that this interaction significantly affected the relationship between the network comprised of the medial prefrontal cortex, posterior cingulate cortex, and hippocampal formation and the network comprised of the inferior temporal, parietal, and prefrontal cortices. A stronger positive correlation between these two networks was observed in individuals with DD who showed higher memory accuracy, while a stronger negative correlation (i.e., anticorrelation) was observed in individuals with DD who showed lower memory accuracy prior to resting state. No such effect was observed for HC. The former network cross-correlated with the default mode network (DMN), and the latter cross-correlated with the dorsal attention network (DAN). Considering that the DMN and DAN typically anticorrelate, we hypothesize that our findings indicate aberrant reactivation and consolidation processes that occur after the task is completed. Such aberrant processes may lead to continuous "replay" of previously learned, but currently irrelevant, information and underlie rumination in depression.
Collapse
Affiliation(s)
- Skye Satz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yaroslav O. Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Rachel Ragozzino
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mora M. Lucero
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Holly A. Swartz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Shared and distinct changes in local dynamic functional connectivity patterns in major depressive and bipolar depressive disorders. J Affect Disord 2022; 298:43-50. [PMID: 34715198 DOI: 10.1016/j.jad.2021.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Distinguishing bipolar depressive disorder (BDD) from major depressive disorder (MDD) solely relying on clinical clues is a challenge. Evidence in neuroimaging have revealed potential neurological markers for the differential diagnosis. METHODS We aimed to characterize common and specific alterations in the dynamic local functional connectivity pattern in BDD and MDD by using the dynamic regional phase synchrony (DRePS), a newly developed method for assessing intrinsic dynamic local functional connectivity. A total of 98 patients with MDD and 56 patients with BDD patients, and 97 age-, gender-, and education-matched healthy controls (HC) were included and underwent the resting-state functional magnetic resonance imaging. RESULTS Compared with HC, patients with two disorders shared decreased DRePS value in the bilateral orbitofrontal cortex (OFC) extends to insula, the right insula extends to hippocampus, the left hippocampus, the right inferior frontal gyrus (IFG), the left thalamus extends to caudate, the right caudate, the bilateral superior frontal gyrus (SFG), and the right medial frontal gyrus (MFG). Furthermore, patients with MDD exhibited specific decreased DRePS value in the left caudate. Moreover, voxel signals in these regions during the support vector machine analysis contributed to the classification of the two diagnoses. CONCLUSIONS Our findings provided new insight into the neural mechanism of patients with MDD and BDD and could potentially inform the diagnosis and the treatment of this disease.
Collapse
|
38
|
Seitz KI, Ehler N, Schmitz M, Schmitz SE, Dziobek I, Herpertz SC, Bertsch K. Affective and cognitive theory of mind in posttraumatic stress, major depressive, and somatic symptom disorders: Association with childhood trauma. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2022; 61:680-700. [PMID: 35102575 DOI: 10.1111/bjc.12357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Childhood trauma constitutes a major risk factor for adult psychopathology, including posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and somatic symptom disorder (SSD). One potential mechanism linking childhood trauma to adult psychopathology may be alterations in theory of mind (ToM). Given the lack of transdiagnostic studies on the association between childhood trauma and ToM, further research is needed to elucidate whether and how childhood trauma relates to ToM impairments across and within diagnostic boundaries. DESIGN A cross-sectional study design was applied. METHODS A total of 137 individuals with varying levels of childhood trauma took part in this study, encompassing individuals with PTSD (n = 33), MDD (n = 33), SSD (n = 36), and healthy volunteers (HVs; n = 35). To assess ToM performance and childhood trauma, the Movie for the Assessment of Social Cognition was administered along with the Childhood Trauma Questionnaire. RESULTS Only individuals with PTSD, but not individuals with MDD or SSD, showed a worse ToM performance compared to HVs. In the whole sample, childhood trauma correlated negatively with ToM performance. Exploratory group-specific analyses revealed higher levels of childhood trauma to be associated with more excessive ToM errors in individuals with SSD, and notably with an enhanced ToM performance in individuals with MDD. CONCLUSIONS Our results indicate associations between childhood trauma and ToM impairments in a large, transdiagnostic sample. Provided replication in future studies, our findings suggest ToM capacities as a promising treatment target for individuals exposed to severe childhood trauma, at least or particularly with a diagnosis of PTSD. PRACTITIONER POINTS Our results suggest that individuals with a history of severe childhood trauma, at least or particularly with a clinical diagnosis of posttraumatic stress disorder, may benefit from therapeutic approaches targeting theory of mind capacities. Our findings indicate that higher levels of childhood trauma may be linked to a specific 'hypermentalizing' bias in somatic symptom disorder. Our findings further point towards an association between higher levels of childhood trauma and a heightened - rather than a diminished - sensitivity towards interpersonal cues in major depressive disorder. Provided further confirmatory evidence, our findings may support diagnosis-specific approaches in ameliorating theory of mind abilities in individuals with different mental disorders and a history of severe childhood trauma.
Collapse
Affiliation(s)
- Katja I Seitz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Germany
| | - Nicola Ehler
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Germany.,Department of Psychology, Ludwig-Maximilians-University Munich, Germany
| | - Sara E Schmitz
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany.,Department of Psychology, Humboldt Universität zu Berlin, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Germany.,Department of Psychology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
39
|
Grigorian A, Kennedy KG, Luciw NJ, MacIntosh BJ, Goldstein BI. Obesity and Cerebral Blood Flow in the Reward Circuitry of Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2022; 25:448-456. [PMID: 35092432 PMCID: PMC9211014 DOI: 10.1093/ijnp/pyac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is associated with elevated body mass index (BMI) and increased rates of obesity. Obesity among individuals with BD is associated with more severe course of illness. Motivated by previous research on BD and BMI in youth as well as brain findings in the reward circuit, the current study investigates differences in cerebral blood flow (CBF) in youth BD with and without comorbid overweight/obesity (OW/OB). METHODS Participants consisted of youth, ages 13-20 years, including BD with OW/OB (BDOW/OB; n = 25), BD with normal weight (BDNW; n = 55), and normal-weight healthy controls (HC; n = 61). High-resolution T1-weighted and pseudo-continuous arterial spin labeling images were acquired using 3 Tesla magnetic resonance imaging. CBF differences were assessed using both region of interest and whole-brain voxel-wise approaches. RESULTS Voxel-wise analysis revealed significantly higher CBF in reward-associated regions in the BDNW group relative to the HC and BDOW/OB groups. CBF did not differ between the HC and BDOW/OB groups. There were no significant region of interest findings. CONCLUSIONS The current study identified distinct CBF levels relating to BMI in BD in the reward circuit, which may relate to underlying differences in cerebral metabolism, compensatory effects, and/or BD severity. Future neuroimaging studies are warranted to examine for changes in the CBF-OW/OB link over time and in relation to treatment.
Collapse
Affiliation(s)
- Anahit Grigorian
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada,Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Correspondence: Benjamin I. Goldstein, MD, PhD, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, Canada, M6J 1H4 ()
| |
Collapse
|
40
|
Ventral Striatal-Hippocampus Coupling During Reward Processing as a Stratification Biomarker for Psychotic Disorders. Biol Psychiatry 2022; 91:216-225. [PMID: 34607654 DOI: 10.1016/j.biopsych.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered ventral striatal (vST) activation to reward expectancy is a well-established intermediate phenotype for psychiatric disorders, specifically schizophrenia (SZ). Preclinical research suggests that striatal alterations are related to a reduced inhibition by the hippocampal formation, but its role in human transdiagnostic reward-network dysfunctions is not well understood. METHODS We performed functional magnetic resonance imaging during reward processing in 728 individuals including healthy control subjects (n = 396), patients (SZ: n = 46; bipolar disorder: n = 45; major depressive disorder: n = 60), and unaffected first-degree relatives (SZ: n = 46; bipolar disorder: n = 50; major depressive disorder: n = 85). We assessed disorder-specific differences in functional vST-hippocampus coupling and transdiagnostic associations with dimensional measures of positive, negative, and cognitive symptoms. We also probed the genetic underpinning using polygenic risk scores for SZ in a subset of healthy participants (n = 295). RESULTS Functional vST-hippocampus coupling was 1) reduced in patients with SZ and bipolar disorder (pFWE < .05, small-volume corrected [SVC]); 2) associated transdiagnostically to dimensional measures of positive (pFWE = .01, SVC) and cognitive (pFWE = .02, SVC), but not negative, (pFWE > .05, SVC) symptoms; and 3) reduced in first-degree relatives of patients with SZ (pFWE = .017, SVC) and linked to the genetic risk for SZ in healthy participants (p = .035). CONCLUSIONS We provide evidence that reduced vST-hippocampus coupling during reward processing is an endophenotype for SZ linked to positive and cognitive symptoms, supporting current preclinical models of the emergence of psychosis. Moreover, our data indicate that vST-hippocampus coupling is familial and linked to polygenic scores for SZ, supporting the use of this measure as an intermediate phenotype for psychotic disorders.
Collapse
|
41
|
Okanda Nyatega C, Qiang L, Jajere Adamu M, Bello Kawuwa H. Altered striatal functional connectivity and structural dysconnectivity in individuals with bipolar disorder: A resting state magnetic resonance imaging study. Front Psychiatry 2022; 13:1054380. [PMID: 36440395 PMCID: PMC9682136 DOI: 10.3389/fpsyt.2022.1054380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a mood swing illness characterized by episodes ranging from depressive lows to manic highs. Although the specific origin of BD is unknown, genetics, environment, and changes in brain structure and chemistry may all have a role. Through magnetic resonance imaging (MRI) evaluations, this study looked into functional abnormalities involving the striatum between BD group and healthy controls (HC), compared the whole-brain gray matter (GM) morphological patterns between the groups and see whether functional connectivity has its underlying structural basis. MATERIALS AND METHODS We applied sliding windows to functional magnetic resonance imaging (fMRI) data from 49 BD patients and 44 HCs to generate temporal correlations maps to determine strength and variability of the striatum-to-whole-brain-network functional connectivity (FC) in each window whilst also employing voxel-based morphometry (VBM) to high-resolution structural MRI data to uncover structural differences between the groups. RESULTS Our analyses revealed increased striatal connectivity in three consecutive windows 69, 70, and 71 (180, 182, and 184 s) in individuals with BD (p < 0.05; Bonferroni corrected) in fMRI images. Moreover, the VBM findings of structural images showed gray matter (GM) deficits in the left precentral gyrus and middle frontal gyrus of the BD patients (p = 0.001, uncorrected) when compared to HCs. Variability of striatal connectivity did not reveal significant differences between the groups. CONCLUSION These findings revealed that BD was associated with a weakening of the precentral gyrus and middle frontal gyrus, also implying that bipolar illness may be linked to striatal functional brain alterations.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
42
|
Chen Y, Cui Q, Sheng W, Tang Q, Lu F, Pang Y, Nan X, He Z, Li D, Lei T, Chen H. Anomalous neurovascular coupling in patients with generalized anxiety disorder evaluated by combining cerebral blood flow and functional connectivity strength. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110379. [PMID: 34111495 DOI: 10.1016/j.pnpbp.2021.110379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
Coupling between neuronal activity and blood perfusion is termed neurovascular coupling, and it provides a new mechanistic perspective into understanding numerous brain diseases. Although abnormal brain activity and blood supply have been separately reported in generalized anxiety disorder (GAD), whether anomalous neurovascular coupling would still be presented in such disease is hitherto unknown. In this study, the neuronal activity and blood supply were measured using the functional connectivity strength (FCS) and cerebral blood flow (CBF). The voxel-wise CBF-FCS correlations and CBF/FCS ratio were separately used to assess global and local neurovascular coupling in participants. Patients with GAD showed decreased voxel-wise CBF-FCS correlation, implicating global neurovascular decoupling. They also exhibited increased CBF/FCS ratio in the right superior parietal gyrus (SPG), and the enhanced CBF/FCS ratio in this region was negatively correlated with the self-esteem scores of GAD. The abnormal neurovascular coupling of GAD may indicate the disrupted balance between the intrinsic functional organization of the brain and corresponding blood perfusion of patients, and the abnormally increased local neurovascular coupling of the right SPG may be correlated with the abnormal self in GAD. These findings provide new information in understanding the brain dysfunction and abnormal cognition of GAD from the perspective of neurovascular coupling.
Collapse
Affiliation(s)
- Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Nan
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Lei
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing, China.
| |
Collapse
|
43
|
Steele JS, Bertocci M, Eckstrand K, Chase HW, Stiffler R, Aslam H, Lockovich J, Bebko G, Phillips ML. A specific neural substrate predicting current and future impulsivity in young adults. Mol Psychiatry 2021; 26:4919-4930. [PMID: 33495543 PMCID: PMC8589683 DOI: 10.1038/s41380-021-01017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Impulsivity (rash action with deleterious outcomes) is common to many psychiatric disorders. While some studies indicate altered amygdala and prefrontal cortical (PFC) activity associated with impulsivity, it remains unclear whether these patterns of neural activity are specific to impulsivity or common to a range of affective and anxiety symptoms. To elucidate neural markers specific to impulsivity, we aimed to differentiate patterns of amygdala-PFC activity and functional connectivity associated with impulsivity from those associated with affective and anxiety symptoms, and identify measures of this circuitry predicting future worsening of impulsivity. Using a face emotion processing task that reliably activates amygdala-PFC circuitry, neural activity and connectivity were assessed in a transdiagnostically-recruited sample of young adults, including healthy (N = 47) and treatment-seeking individuals (N = 67). Relationships were examined between neural measures and impulsivity, anhedonia, and affective and anxiety symptoms at baseline (N = 114), and at 6 months post scan (N = 30). Impulsivity, particularly negative urgency and lack of perseverance, was related to greater amygdala activity (beta = 0.82, p = 0.003; beta = 0.68, p = 0.004; respectively) and lower amygdala-medial PFC functional connectivity (voxels = 60, tpeak = 4.45, pFWE = 0.017; voxels = 335, tpeak = 5.26, pFWE = 0.001; respectively) to facial fear. Left vlPFC, but not amygdala, activity to facial anger was inversely associated with mania/hypomania (beta = -2.08, p = 0.018). Impulsivity 6 months later was predicted by amygdala activity to facial sadness (beta = 0.50, p = 0.017). There were no other significant relationships between neural activity and 6-month anhedonia, affective, and anxiety symptoms. Our findings are the first to associate amygdala-PFC activity and functional connectivity with impulsivity in a large, transdiagnostic sample, providing neural targets for future interventions to reduce predisposition to impulsivity and related future mental health problems in young adults.
Collapse
Affiliation(s)
- J Scott Steele
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristen Eckstrand
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Li R, Yang J, Li L, Shen F, Zou T, Wang H, Wang X, Li J, Deng C, Huang X, Wang C, He Z, Lu F, Zeng L, Chen H. Integrating Multilevel Functional Characteristics Reveals Aberrant Neural Patterns during Audiovisual Emotional Processing in Depression. Cereb Cortex 2021; 32:1-14. [PMID: 34642754 DOI: 10.1093/cercor/bhab185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/14/2022] Open
Abstract
Emotion dysregulation is one of the core features of major depressive disorder (MDD). However, most studies in depression have focused on unimodal emotion processing, whereas emotional perception in daily life is highly dependent on multimodal sensory inputs. Here, we proposed a novel multilevel discriminative framework to identify the altered neural patterns in processing audiovisual emotion in MDD. Seventy-four participants underwent an audiovisual emotional task functional magnetic resonance imaging scanning. Three levels of whole-brain functional features were extracted for each subject, including the task-evoked activation, task-modulated connectivity, combined activation and connectivity. Support vector machine classification and prediction models were built to identify MDD from controls and evaluate clinical relevance. We revealed that complex neural networks including the emotion regulation network (prefrontal areas and limbic-subcortical regions) and the multisensory integration network (lateral temporal cortex and motor areas) had the discriminative power. Moreover, by integrating comprehensive information of local and interactive processes, multilevel models could lead to a substantial increase in classification accuracy and depression severity prediction. Together, we highlight the high representational capacity of machine learning algorithms to characterize the complex network abnormalities associated with emotional regulation and multisensory integration in MDD. These findings provide novel evidence for the neural mechanisms underlying multimodal emotion dysregulation of depression.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jiale Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.,School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jiyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Zeng
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.,Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of china, Chengdu 611731, PR China
| |
Collapse
|
45
|
Lu F, Cui Q, He Z, Tang Q, Chen Y, Sheng W, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Hu S, Chen H. Superficial white-matter functional networks changes in bipolar disorder patients during depressive episodes. J Affect Disord 2021; 289:151-159. [PMID: 33984685 DOI: 10.1016/j.jad.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder is a common psychiatric disorder characterized by insufficient or ineffective connections associated with white-matter (WM) abnormalities. Previous studies have detected the structural attributes of WM using magnetic resonance imaging (MRI) or diffusion tensor imaging, however, they failed to disentangle the dysfunctional organization within the WM. METHODS This study aimed to uncover the WM functional connectivity (FC) in 45 bipolar disorder patients during depressive episodes (BDD) and 45 healthy controls based on resting-state functional MRI. Eight WM functional networks were identified by using a clustering analysis of voxel-based correlation profiles, which were further classified into superficial, middle and deep layers of networks. RESULTS Group comparisons on the FCs among 8 WM networks showed that the superficial tempofrontal network (TFN) in BDD patients had increased FC with the superficial cerebellar network (CN) and with the superficial pre/post-central network (PCN). Further, support vector regression prediction analysis results revealed that the increased FCs of CN-TFN and PCN-TFN could be served as features to predict the numbers of depressive episode in BDD patients. CONCLUSIONS The current study extended our knowledge about the impaired WM functional connections associated with emotional and sensory-motor perception processing in BDD, which may facilitate the interpretation of the pathophysiology mechanisms underlying BDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Hu
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P R China.
| |
Collapse
|
46
|
Lemke H, Probst S, Warneke A, Waltemate L, Winter A, Thiel K, Meinert S, Enneking V, Breuer F, Klug M, Goltermann J, Hülsmann C, Grotegerd D, Redlich R, Dohm K, Leehr EJ, Repple J, Opel N, Brosch K, Meller T, Pfarr JK, Ringwald K, Schmitt S, Stein F, Krug A, Jansen A, Nenadic I, Kircher T, Hahn T, Dannlowski U. The Course of Disease in Major Depressive Disorder Is Associated With Altered Activity of the Limbic System During Negative Emotion Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:323-332. [PMID: 34102346 DOI: 10.1016/j.bpsc.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain functional alterations during emotion processing in patients with major depressive disorder (MDD) compared with healthy control subjects (HCs) are frequently reported. However, evidence for functional correlates of emotion processing with regard to MDD trajectories is scarce. This study investigates the role of lifetime disease course for limbic brain activation during negative emotional face processing in patients with MDD. METHODS In a large sample of patients with MDD (n = 333; 58.55% female) and HCs (n = 333; 60.06% female), brain activation was investigated during a negative emotional face-processing task within a cross-sectional design. Differences between HC and MDD groups were analyzed. Previous disease course, characterized by 2 components, namely hospitalization and duration of illness, was regressed on brain activation of the amygdala, (para-)hippocampus, and insula in patients with MDD. RESULTS Patients with MDD showed increased activation in the amygdala, insula, and hippocampus compared with HCs (all p values corrected for familywise error [pFWE] < .045). The hospitalization component showed negative associations with brain activation in the bilateral insula (right: pFWE = .026, left: pFWE = .019) and (para-)hippocampus (right: pFWE = .038, left: pFWE = .031). No significant association was found for the duration of illness component (all pFWE > .057). CONCLUSIONS This study investigated negative emotion processing in a large sample of patients with MDD and HCs. Our results confirm limbic hyperactivation in patients with MDD during negative emotion processing; however, this hyperactivation may resolve with a more severe lifetime disease course in the insula and (para-)hippocampus-brain regions involved in emotion processing and regulation. These findings need further replication in longitudinal studies.
Collapse
Affiliation(s)
- Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Probst
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Antonia Warneke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychology, University of Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
47
|
Manelis A, Soehner A, Halchenko YO, Satz S, Ragozzino R, Lucero M, Swartz HA, Phillips ML, Versace A. White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Sci Rep 2021; 11:7541. [PMID: 33824408 PMCID: PMC8024340 DOI: 10.1038/s41598-021-87069-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type-II (BD-II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD-II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) across BD-II, UD, and HC groups in the white matter tracts identified by the XTRACT tool in FSL. Individuals with BD-II (n = 18), UD (n = 23), and HC (n = 24) underwent Diffusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD-II and UD vs. HC across multiple tracts. While BD-II had significantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had significantly lower FA and higher RD values than BD-II in the area of intersections between the right arcuate, inferior fronto-occipital and uncinate fasciculi and forceps minor. The dimensional approach revealed the depression-by-spectrum mania interaction effect on the FA, RD, and AD values in the area of intersection between the right posterior arcuate and middle longitudinal fasciculi. We propose that the white matter microstructure in these tracts reflects a unique pathophysiologic signature and compensatory mechanisms distinguishing BD-II from UD.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA.
| | - Adriane Soehner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Skye Satz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Rachel Ragozzino
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Mora Lucero
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Holly A Swartz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, 230 McKee Place, Room 226, Pittsburgh, PA, 15213, USA
| |
Collapse
|
48
|
fNIRS study of prefrontal activation during emotion recognition-A Potential endophenotype for bipolar I disorder? J Affect Disord 2021; 282:869-875. [PMID: 33601730 DOI: 10.1016/j.jad.2020.12.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Facial emotion recognition (FER) deficit is documented in many psychiatric disorders, including bipolar disorder (BD). However, its role as a risk-marker in BD is not well researched. In the present study, we investigated the role of FER and the corresponding prefrontal neurohemodynamic changes (PNHC) with functional near infra-red spectroscopy (fNIRS) in patients with BD and subjects at high risk for BD compared to healthy subject. METHODS Using a cross-sectional case-control design we compared 14 patients with first episode mania (FEM) in remission (BD group), 14 healthy siblings of BD patients (HR group), and 13 matched healthy subjects (HC group). FER was assessed using a computer-based task called Tool for Recognition of Emotions in Neuropsychiatric Disorders (TRENDS). Simultaneously, the corresponding PNHC was recorded with fNIRS. Kruskal Wallis H test was used to analyze between-group differences and Spearman's rho for correlation analysis. RESULTS The three groups were comparable on socio-demographics (all p>0.09) except education (p = 0.03). HR group had the most hyper-activation in the bilateral DLPFC during the TRENDS task (all p<0.05). There was no significant between-group differences in the FER performance and no significant correlation between the FER performance and the PNHC in the HR and BD groups (all p>0.35). LIMITATIONS The potential confounding effect of medications in the BD group. CONCLUSIONS The hyper-activation of the DLPCF in HR group during FER could indicate an increased risk for BD. However, the lack of similar findings in the BD group might reflect a possible normalizing effect of medications. It is equally likely that differences in the PNHC are detectable earlier than the differences in FER task performance during the course of the illness. This requires further exploration.
Collapse
|
49
|
Lee E, Ramsey M, Malhotra A, Ancoli-Israel S, Kaufmann CN, Soontornniyomkij B, Graham SA, Depp C, Eyler LT. Links between objective sleep and sleep variability measures and inflammatory markers in adults with bipolar disorder. J Psychiatr Res 2021; 134:8-14. [PMID: 33360441 PMCID: PMC7899704 DOI: 10.1016/j.jpsychires.2020.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023]
Abstract
Premature mortality and increased physical comorbidity associated with bipolar disorder (BD) may be related to accelerated biological aging. Sleep disturbances and inflammation may be key mechanisms underlying accelerated aging in adults with BD. To our knowledge, these relationships have not been examined rigorously. This cross-sectional study included 50 adults with BD and 73 age- and sex-comparable non-psychiatric comparison (NC) subjects, age 26-65 years. Participants were assessed with wrist-worn actigraphy for total sleep time (TST), percent sleep (PS), and bed/wake times for 7 consecutive nights as well as completing scales for subjective sleep quality. Within-individual variability in sleep measures included intra-individual standard deviation (iSD) and atypicality of one evening's sleep. Blood-based inflammatory biomarkers included interleukin (IL)-6, C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). Linear regression analyses tested relationships of mean and iSD sleep variables with inflammatory marker levels; time-lagged analyses tested the influence of the previous evening's sleep on inflammation. BD participants had worse subjective sleep quality, as well as greater TST iSD and wake time iSD compared to the NC group. In all participants, higher TST iSD and lower mean PS were associated with higher IL-6 levels (p = 0.04, ηp2 = 0.042; p = 0.05, ηp2 = 0.039, respectively). Lower mean PS was associated with higher CRP levels (p = 0.05, ηp2 = 0.039). Atypicality of the previous night's TST predicted next day IL-6 levels (p = 0.05, ηp2 = 0.04). All of these relationships were present in both BD and NC groups and remained significant even after controlling for sleep medications. Overall, sleep measures and their variability may influence inflammatory markers in all adults. Thus, sleep may be linked to the inflammatory processes believed to underlie accelerated aging in BD.
Collapse
Affiliation(s)
- Ellen Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Sam and Rose Stein Institute for Research on Aging, University California San Diego, La Jolla, CA,Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Marina Ramsey
- Sam and Rose Stein Institute for Research on Aging, University California San Diego, La Jolla, CA
| | - Atul Malhotra
- Department of Medicine, University of California San Diego
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego
| | - Christopher N. Kaufmann
- Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego,Department of Family Medicine and Public Health, University of California San Diego
| | | | - Sarah A. Graham
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Sam and Rose Stein Institute for Research on Aging, University California San Diego, La Jolla, CA
| | - Colin Depp
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Sam and Rose Stein Institute for Research on Aging, University California San Diego, La Jolla, CA,Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Sam and Rose Stein Institute for Research on Aging, University California San Diego, La Jolla, CA,Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA
| |
Collapse
|
50
|
Furlong LS, Rossell SL, Caruana GF, Cropley VL, Hughes M, Van Rheenen TE. The activity and connectivity of the facial emotion processing neural circuitry in bipolar disorder: a systematic review. J Affect Disord 2021; 279:518-548. [PMID: 33142156 DOI: 10.1016/j.jad.2020.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Facial emotion processing abnormalities may be a trait feature of bipolar disorder (BD). These social cognitive impairments may be due to alterations in the neural processing of facial affective information in visual ("core"), and limbic and prefrontal ("extended") networks, however, the precise neurobiological mechanism(s) underlying these symptoms are unclear. METHODS We conducted a systematic review to appraise the literature on the activity and connectivity of the facial emotion processing neural circuitry in BD. Two reviewers undertook a search of the electronic databases PubMed, Scopus and PsycINFO, to identify relevant literature published since inception up until September 2019. Study eligibility criteria included; BD participants, neuroimaging, and facial emotion processing tasks. RESULTS Out of an initial yield of 6121 articles, 66 were eligible for inclusion in this review. We identified differences in neural activity and connectivity within and between occipitotemporal, limbic, and prefrontal regions, in response to facial affective stimuli, in BD compared to healthy controls. LIMITATIONS The methodologies used across studies varied considerably. CONCLUSIONS The findings from this review suggest abnormalities in both the activity and connectivity of facial emotion processing neural circuitry in BD. It is recommended that future research aims to further define the connectivity and spatiotemporal course of neural events within and between occipitotemporal, limbic, and prefrontal regions.
Collapse
Affiliation(s)
- Lisa S Furlong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia; St Vincent's Mental Health, St Vincent's Hospital, VIC, Australia
| | - Georgia F Caruana
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Matthew Hughes
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|