1
|
Aonuma W, Kawamoto H, Kazama Y, Ishii K, Abe T, Kawano S. Male/Female Trade-Off in Hermaphroditic Y-Chromosome Deletion Mutants of the Dioecious Plant Silene latifolia. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wataru Aonuma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Hiroki Kawamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | | | | | | | | |
Collapse
|
2
|
Beaudry FE, Rifkin JL, Barrett SC, Wright SI. Evolutionary Genomics of Plant Gametophytic Selection. PLANT COMMUNICATIONS 2020; 1:100115. [PMID: 33367268 PMCID: PMC7748008 DOI: 10.1016/j.xplc.2020.100115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
It has long been recognized that natural selection during the haploid gametophytic phase of the plant life cycle may have widespread importance for rates of evolution and the maintenance of genetic variation. Recent theoretical advances have further highlighted the significance of gametophytic selection for diverse evolutionary processes. Genomic approaches offer exciting opportunities to address key questions about the extent and effects of gametophytic selection on plant evolution and adaptation. Here, we review the progress and prospects for integrating functional and evolutionary genomics to test theoretical predictions, and to examine the importance of gametophytic selection on genetic diversity and rates of evolution. There is growing evidence that selection during the gametophyte phase of the plant life cycle has important effects on both gene and genome evolution and is likely to have important pleiotropic effects on the sporophyte. We discuss the opportunities to integrate comparative population genomics, genome-wide association studies, and experimental approaches to further distinguish how differential selection in the two phases of the plant life cycle contributes to genetic diversity and adaptive evolution.
Collapse
Affiliation(s)
- Felix E.G. Beaudry
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Joanna L. Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
3
|
Madjidian JA, Smith HG, Andersson S, Lankinen Å. Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol 2020; 33:1452-1467. [PMID: 33463845 PMCID: PMC7589368 DOI: 10.1111/jeb.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.
Collapse
Affiliation(s)
- Josefin A. Madjidian
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | - Henrik G. Smith
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | | | - Åsa Lankinen
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
4
|
Christopher DA, Mitchell RJ, Karron JD. Pollination intensity and paternity in flowering plants. ANNALS OF BOTANY 2020; 125:1-9. [PMID: 31586397 PMCID: PMC6948204 DOI: 10.1093/aob/mcz159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. SCOPE In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. CONCLUSIONS The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.
Collapse
Affiliation(s)
- Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Bozchaloyi SE, Sheidai M, Keshavarzi M, Noormohammadi Z. Genetic and morphological diversity in Geranium dissectum (Sec. Dissecta, Geraniaceae) populations. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Karimullina E, Antonova EV, Pozolotina VN. Genetic variation in natural Melandrium album populations exposed to chronic ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21565-21576. [PMID: 27515527 DOI: 10.1007/s11356-016-7355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The effect of radiation pollution on genetic variation in natural populations of Melandrium album was investigated at the head part of the East-Ural Radioactive Trace (EURT) and background areas. The highest genetic differentiation estimated using F ST was revealed between compared pairs of the background and impact samples in populations of M. album. The highest rate of polymorphism was observed at the closest to nuclear accident, Impact-1 site. The unique alleles (Mdh-3104, Pgi-2106, Lap 105, Mdh-296, and Dia 94) were discovered at the EURT. Individuals from chronically low-level irradiated sites were genetically closer than to plants from background sites using Nadhdh locus. The increase of the frequency of unique homozygous and heterozygous genotypes was identified in populations of M. album growing under chronic radiation exposure conditions. The largest contribution to the group of unique heterozygous genotypes at the EURT was made by three loci - Lap, Pgi-2, and Nadhdh; the main role in interpopulation differentiation of samples was made by the alleles Sod-2115, Skdh 100, and Nadhdh 100. Our results provide evidence for the correlation between the increase of genetic variation other than the «genetic erosion» and chronic radiation exposure factor in natural plant populations.
Collapse
Affiliation(s)
- Elina Karimullina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144.
| | - Elena V Antonova
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| | - Vera N Pozolotina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| |
Collapse
|
7
|
Lankinen Å, Strandh M. Differential selection on pollen and pistil traits in relation to pollen competition in the context of a sexual conflict over timing of stigma receptivity. AOB PLANTS 2016; 8:plw061. [PMID: 27562796 PMCID: PMC5063087 DOI: 10.1093/aobpla/plw061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Sexual conflict and its evolutionary consequences are understudied in plants, but the theory of sexual conflict may help explain how selection generates and maintains variability. Here, we investigated selection on pollen and pistil traits when pollen arrives sequentially to partially receptive pistils in relation to pollen competition and a sexual conflict over timing of stigma receptivity in the mixed-mating annual Collinsia heterophylla (Plantaginaceae). In this species the conflict is generated by early fertilizing pollen that reduces seed production, which is counteracted by delaying receptivity in the recipient. We performed sequential two-donor pollinations at early floral developmental stages involving two pollen deposition schedules (with or without a time lag of 1 day), using only outcross or self and outcross pollen. We investigated pollen and pistil traits in relation to siring success (male fitness) and seed production (female fitness). In contrast to previous findings in receptive pistils in C. heterophylla and in other species, last arriving pollen donors showed highest siring success in partially receptive pistils. The last male advantage was weaker when self pollen was the first arriving donor. Two measures of germination rate (early and late) and pollen tube growth rate of first arriving donors were important for siring success in crosses with a time lag, while only late germination rate had an effect in contemporary crosses. Curiously, late stigma receptivity was negatively related to seed production in our contemporary crosses, which was opposite to expectation. Our results in combination with previous studies suggest that pollen and pistil traits in C. heterophylla are differentially advantageous depending on stage of floral development and varying pollen deposition schedules. Variation in success of these traits over floral development time may result from sexually antagonistic selection.
Collapse
Affiliation(s)
- Åsa Lankinen
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| | - Maria Strandh
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| |
Collapse
|
8
|
Swanson RJ, Hammond AT, Carlson AL, Gong H, Donovan TK. Pollen performance traits reveal prezygotic nonrandom mating and interference competition in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2016; 103:498-513. [PMID: 26928008 DOI: 10.3732/ajb.1500172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
PREMISE The lack of ability to measure pollen performance traits in mixed pollinations has been a major hurdle in understanding the mechanisms of differential success of compatible pollen donors. In previous work, we demonstrated that nonrandom mating between two accessions of Arabidopsis thaliana, Columbia (Col) and Landsberg (Ler), is mediated by the male genotype. Despite these genetic insights, it was unclear at what stage of reproduction these genes were acting. Here, we used an experimental strategy that allowed us to differentiate different pollen populations in mixed pollinations to ask: (1) What pollen performance traits differed between Col and Ler accessions that direct nonrandom mating? (2) Is there evidence of interference competition? METHODS We used genetically marked pollen that can be visualized colorimetrically to quantify pollen performance of single populations of pollen in mixed pollinations. We used this and other assays to measure pollen viability, germination, tube growth, patterns of fertilization, and seed abortion. Finally, we assessed interference competition. RESULTS In mixed pollinations on Col pistils, Col pollen sired significantly more seeds than Ler pollen. Col pollen displayed higher pollen viability, faster and greater pollen germination, and faster pollen tube growth. We saw no evidence of nonrandom seed abortion. Finally, we found interference competition occurs in mixed pollinations. CONCLUSION The lack of differences in postzygotic processes coupled with direct observation of pollen performance traits indicates that nonrandom mating in Arabidopsis thaliana is prezygotic, due mostly to differential pollen germination and pollen tube growth rates. Finally, this study unambiguously demonstrates the existence of interference competition.
Collapse
Affiliation(s)
- Robert J Swanson
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Adam T Hammond
- Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637 USA
| | - Ann L Carlson
- Department of Biology, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Hui Gong
- Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, Indiana 46383 USA
| | - Thad K Donovan
- Smith Donovan Marketing & Communications, Chesterton, Indiana 46304 USA
| |
Collapse
|
9
|
Lankinen Å, Smith HG, Andersson S, Madjidian JA. Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. AMERICAN JOURNAL OF BOTANY 2016; 103:541-552. [PMID: 26542842 DOI: 10.3732/ajb.1500148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. METHODS We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross vs. self). KEY RESULTS Late-fertilizing pollen rather than rapidly growing pollen tubes was most successful in terms of siring success, especially in competition with self-pollen after pollination at early floral stages. Late stigma receptivity increased seed set after early-stage pollinations, in agreement with selection against antagonistic pollen. CONCLUSIONS Selection on pollen and pistil traits in C. heterophylla is affected by both sexual conflict and mixed mating, suggesting the importance of jointly considering these factors in plant evolution.
Collapse
Affiliation(s)
- Åsa Lankinen
- Swedish University of Agricultural Sciences, Plant Protection Biology, P.O. Box 102, S-230 53 Alnarp, Sweden Biodiversity, Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Henrik G Smith
- Biodiversity, Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden Center for Environmental and Climate Research, Lund University, S-223 62 Lund, Sweden
| | - Stefan Andersson
- Biodiversity, Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| | - Josefin A Madjidian
- Biodiversity, Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden
| |
Collapse
|
10
|
Hersh E, Madjidian JA, Andersson S, Strandh M, Armbruster WS, Lankinen Å. Sexual antagonism in the pistil varies among populations of a hermaphroditic mixed-mating plant. J Evol Biol 2015; 28:1321-34. [DOI: 10.1111/jeb.12656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/13/2015] [Accepted: 05/15/2015] [Indexed: 12/01/2022]
Affiliation(s)
- E. Hersh
- Biodiversity; Department of Biology; Lund University; Lund Sweden
| | - J. A. Madjidian
- Biodiversity; Department of Biology; Lund University; Lund Sweden
| | - S. Andersson
- Biodiversity; Department of Biology; Lund University; Lund Sweden
| | - M. Strandh
- Swedish University of Agricultural Sciences; Plant Protection Biology; Alnarp Sweden
| | - W. S. Armbruster
- School of Biological Science; University of Portsmouth; Portsmouth UK
- Institute of Arctic Biology; University of Alaska; Fairbanks AK USA
- Department of Biology; Norwegian University of Science and Technology; Trondheim Norway
| | - Å. Lankinen
- Swedish University of Agricultural Sciences; Plant Protection Biology; Alnarp Sweden
| |
Collapse
|
11
|
Lankinen Å, Karlsson Green K. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AOB PLANTS 2015; 7:plv008. [PMID: 25613227 PMCID: PMC4344479 DOI: 10.1093/aobpla/plv008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today it is accepted that the theories of sexual selection and sexual conflict are general and can be applied to both animals and plants. However, potentially due to a controversial history, plant studies investigating sexual selection and sexual conflict are relatively rare. Moreover, these theories and concepts are seldom implemented in research fields investigating related aspects of plant ecology and evolution. Even though these theories are complex, and can be difficult to study, we suggest that several fields in plant biology would benefit from incorporating and testing the impact of selection pressures generated by sexual selection and sexual conflict. Here we give examples of three fields where we believe such incorporation would be particularly fruitful, including (i) mechanisms of pollen-pistil interactions, (ii) mating-system evolution in hermaphrodites and (iii) plant immune responses to pests and pathogens.
Collapse
Affiliation(s)
- Åsa Lankinen
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| | - Kristina Karlsson Green
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| |
Collapse
|
12
|
Carlson AL, Gong H, Toomajian C, Swanson RJ. Parental genetic distance and patterns in nonrandom mating and seed yield in predominately selfing Arabidopsis thaliana. PLANT REPRODUCTION 2013; 26:317-28. [PMID: 23843176 PMCID: PMC3825607 DOI: 10.1007/s00497-013-0228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/03/2013] [Indexed: 05/09/2023]
Abstract
In this study, we ask two questions: (1) Is reproductive success independent of parental genetic distance in predominately selfing plants? (2) In the absence of early inbreeding depression, is there substantial maternal and/or paternal variation in reproductive success in natural populations? Seed yield in single pollinations and proportion of seeds sired in mixed pollinations were studied in genetically defined accessions of the predominately selfing plant Arabidopsis thaliana by conducting two diallel crosses. The first diallel was a standard, single pollination design that we used to examine variance in seed yield. The second diallel was a mixed pollination design that utilized a standard pollen competitor to examine variance in proportion of seeds sired. We found no correlation between reproductive success and parental genetic distance, and self-pollen does not systematically differ in reproductive success compared to outcross pollen, suggesting that Arabidopsis populations do not experience embryo lethality due to early-acting inbreeding or outbreeding depression. We used these data to partition the contributions to total phenotypic variation from six sources, including maternal contributions, paternal contributions and parental interactions. For seed yield in single pollinations, maternal effects accounted for the most significant source of variance (16.6 %). For proportion of seeds sired in mixed pollinations, the most significant source of variance was paternal effects (17.9 %). Thus, we show that population-level genetic similarities, including selfing, do not correlate with reproductive success, yet there is still significant paternal variance under competition. This suggests two things. First, since these differences are unlikely due to early-acting inbreeding depression or differential pollen viability, this implicates natural variation in pollen germination and tube growth dynamics. Second, this strongly supports a model of fixation of pollen performance genes in populations, offering a focus for future genetic studies in differential reproductive success.
Collapse
Affiliation(s)
- Ann L. Carlson
- Department of Biology, Valparaiso University, Valparaiso, IN 46383 USA
| | - Hui Gong
- Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, IN 46383 USA
| | | | - Robert J. Swanson
- Department of Biology, Valparaiso University, Valparaiso, IN 46383 USA
| |
Collapse
|
13
|
Hove AA, Mazer SJ. Pollen Performance in Clarkia Taxa with Contrasting Mating Systems: Implications for Male Gametophytic Evolution in Selfers and Outcrossers. PLANTS (BASEL, SWITZERLAND) 2013; 2:248-78. [PMID: 27137375 PMCID: PMC4844357 DOI: 10.3390/plants2020248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/03/2022]
Abstract
We tested three predictions regarding the joint evolution of pollen performance and mating system. First, due to the potential for intense intrasexual competition in outcrossing populations, we predicted that outcrossers would produce faster-growing pollen than their selfing relatives. Second, if elevated competition promotes stronger selection on traits that improve pollen performance, then, among-plant variation in pollen performance would be lower in outcrossers than in selfers. Third, given successive generations of adaptation to the same maternal genotype in selfers, we predicted that, in selfing populations (but not in outcrossing ones), pollen would perform better following self- than cross-pollinations. We tested these predictions in field populations of two pairs of Clarkia (Onagraceae) sister taxa. Consistent with our predictions, one outcrosser (C. unguiculata) exhibited faster pollen germination and less variation in pollen tube growth rate (PTGR) among pollen donors than its selfing sister species, C. exilis. Contrary to our predictions, the selfing C. xantiana ssp. parviflora exhibited faster PTGR than the outcrossing ssp. xantiana, and these taxa showed similar levels of variation in this trait. Pollen performance following self- vs. cross-pollinations did not differ within either selfing or outcrossing taxa. While these findings suggest that mating system and pollen performance may jointly evolve in Clarkia, other factors clearly contribute to pollen performance in natural populations.
Collapse
Affiliation(s)
- Alisa A Hove
- Biology Department, Warren Wilson College, P.O. Box 9000, Asheville, NC 28815, USA.
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
Labouche A, Bernasconi G. Cost limitation through constrained oviposition site in a plant‐pollinator/seed predator mutualism. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne‐Marie Labouche
- Institute of Biology, Evolutionary Botany University of Neuchâtel Emile Argand 11 Neuchâtel CH‐2000 Switzerland
- Department of Ecology and Evolution University of Lausanne Quartier Sorge Lausanne CH‐1015 Switzerland
| | - Giorgina Bernasconi
- Institute of Biology, Evolutionary Botany University of Neuchâtel Emile Argand 11 Neuchâtel CH‐2000 Switzerland
| |
Collapse
|
15
|
Antonova EV, Karimullina EM, Pozolotina VN. Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural radioactive trace. RUSS J ECOL+ 2013. [DOI: 10.1134/s1067413613010025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Aonuma W, Shimizu Y, Ishii K, Fujita N, Kawano S. Maturation timing of stamens and pistils in the dioecious plant Silene latifolia. JOURNAL OF PLANT RESEARCH 2013; 126:105-112. [PMID: 22810354 DOI: 10.1007/s10265-012-0510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
The dioecious plant Silene latifolia depends on nocturnal insects for pollination. To increase the chance of cross-pollination, pollen grains seem to be released and stigmas seem to be receptive simultaneously at night. We divided the floral development of S. latifolia into 1-20 stages, and determined the timetables of male and female function. The corolla of both male and female flowers opens at sunset (1900 hours) and closes at sunrise (0900 hours). To investigate the period of the reproductive phase of male and female function, we measured the germination rate on a pollen medium and the pollen germination rate on stigma during the period when stamens and stigmas were viable in the timetable. Male flowers had early- and late-maturing stamens that had the highest pollen viability, germination rate and pollen tube growth at midnight (0000 hours) at 1 day after flowering (DAF) and 0000 hours at 2 DAF. In contrast, female flowers maintained a germination rate of nearly 100 % from 1800 hours at 1 DAF to 1200 hours at 3 DAF. These results suggested that S. latifolia transferred the matured pollen grains from male flowers to female flowers only at night.
Collapse
Affiliation(s)
- Wataru Aonuma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
17
|
MADJIDIAN JA, HYDBOM S, LANKINEN Å. Influence of number of pollinations and pollen load size on maternal fitness costs in Collinsia heterophylla: implications for existence of a sexual conflict over timing of stigma receptivity. J Evol Biol 2012; 25:1623-35. [DOI: 10.1111/j.1420-9101.2012.02545.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Madjidian JA, Andersson S, Lankinen A. Estimation of heritability, evolvability and genetic correlations of two pollen and pistil traits involved in a sexual conflict over timing of stigma receptivity in Collinsia heterophylla (Plantaginaceae). ANNALS OF BOTANY 2012; 110:91-9. [PMID: 22645118 PMCID: PMC3380587 DOI: 10.1093/aob/mcs084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition. METHODS Parent-offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict. KEY RESULTS SOME heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male's ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait. CONCLUSIONS To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.
Collapse
|
19
|
MAGALHAES ISABELS, GLEISER GABRIELA, LABOUCHE ANNEMARIE, BERNASCONI GIORGINA. Comparative population genetic structure in a plant-pollinator/seed predator system. Mol Ecol 2011; 20:4618-30. [DOI: 10.1111/j.1365-294x.2011.05296.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Austerlitz F, Gleiser G, Teixeira S, Bernasconi G. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc Biol Sci 2011; 279:91-100. [PMID: 21561968 DOI: 10.1098/rspb.2011.0652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.
Collapse
Affiliation(s)
- Frédéric Austerlitz
- Laboratoire Ecologie, Systématique et Evolution, UMR CNRS 8079, Université, Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
21
|
Labouche AM, Bernasconi G. Male moths provide pollination benefits in theSilene latifolia-Hadena bicrurisnursery pollination system. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01658.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Burkhardt A, Internicola A, Bernasconi G. Effects of pollination timing on seed paternity and seed mass in Silene latifolia (Caryophyllaceae). ANNALS OF BOTANY 2009; 104:767-73. [PMID: 19567418 PMCID: PMC2729624 DOI: 10.1093/aob/mcp154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant's and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success. METHODS Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known. KEY RESULTS First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares. CONCLUSIONS In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.
Collapse
|
23
|
Burkhardt A, Delph LF, Bernasconi G. Benefits and costs to pollinating, seed-eating insects: the effect of flower size and fruit abortion on larval performance. Oecologia 2009; 161:87-98. [DOI: 10.1007/s00442-009-1359-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/15/2009] [Indexed: 11/24/2022]
|
24
|
Sexual conflict and sexually antagonistic coevolution in an annual plant. PLoS One 2009; 4:e5477. [PMID: 19421402 PMCID: PMC2674941 DOI: 10.1371/journal.pone.0005477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/07/2009] [Indexed: 11/19/2022] Open
Abstract
Background Sexual conflict theory predicts sexually antagonistic coevolution of reproductive traits driven by conflicting evolutionary interests of two reproducing individuals. Most studies of the evolutionary consequences of sexual conflicts have, however, to date collectively investigated only a few species. In this study we used the annual herb Collinsia heterophylla to experimentally test the existence and evolutionary consequences of a potential sexual conflict over onset of stigma receptivity. Methodology/Principal Findings We conducted crosses within and between four greenhouse-grown populations originating from two regions. Our experimental setup allowed us to investigate male-female interactions at three levels of geographic distances between interacting individuals. Both recipient and pollen donor identity affected onset of stigma receptivity within populations, confirming previous results that some pollen donors can induce stigma receptivity. We also found that donors were generally better at inducing stigma receptivity following pollen deposition on stigmas of recipients from another population than their own, especially within a region. On the other hand, we found that donors did worse at inducing stigma receptivity in crosses between regions. Interestingly, recipient costs in terms of lowered seed number after early fertilisation followed the same pattern: the cost was apparent only if the pollen donor belonged to the same region as the recipient. Conclusion/Significance Our results indicate that recipients are released from the cost of interacting with local pollen donors when crossed with donors from a more distant location, a pattern consistent with a history of sexually antagonistic coevolution within populations. Accordingly, sexual conflicts may have important evolutionary consequences also in plants.
Collapse
|
25
|
Lankinen A, Maad J, Armbruster WS. Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness. ANNALS OF BOTANY 2009; 103:941-50. [PMID: 19202136 PMCID: PMC2707896 DOI: 10.1093/aob/mcp014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Evolutionary change in response to natural selection will occur only if a trait confers a selective advantage and there is heritable variation. Positive connections between pollen traits and fitness have been found, but few studies of heritability have been conducted, and they have yielded conflicting results. To understand better the evolutionary significance of pollen competition and its potential role in sexual selection, the heritability of pollen tube-growth rate and the relationship between this trait and sporophytic offspring fitness were investigated in Collinsia heterophylla. METHODS Because the question being asked was if female function benefited from obtaining genetically superior fathers by enhancing pollen competition, one-donor (per flower) crosses were used in order to exclude confounding effects of post-fertilization competition/allocation caused by multiple paternity. Each recipient plant was crossed with an average of five pollen donors. Pollen-tube growth rate and sporophytic traits were measured in both generations. KEY RESULTS Pollen-tube growth rate in vitro differed among donors, and the differences were correlated with in vivo growth rate averaged over two to four maternal plants. Pollen-tube growth rate showed significant narrow-sense heritability and evolvability in a father-offspring regression. However, this pollen trait did not correlate significantly with sporophytic-offspring fitness. CONCLUSIONS These results suggest that pollen-tube growth rate can respond to selection via male function. The data presented here do not provide any support for the hypothesis that intense pollen competition enhances maternal plant fitness through increased paternity by higher-quality sporophytic fathers, although this advantage cannot be ruled out. These data are, however, consistent with the hypothesis that pollen competition is itself selectively advantageous, through both male and female function, by reducing the genetic load among successful gametophytic fathers (pollen), and reducing inbreeding depression associated with self-pollination in plants with mix-mating systems.
Collapse
Affiliation(s)
- Asa Lankinen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | |
Collapse
|
26
|
Mating system and the hybridization between self-compatible Phlox cuspidata and self-incompatible Phlox drummondii. Evol Ecol 2008. [DOI: 10.1007/s10682-008-9277-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Teixeira S, Burkhardt A, Bernasconi G. Genetic variation among females affects paternity in a dioecious plant. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Teixeira S, Bernasconi G. Effects of inbred/outbred crosses on progeny sex ratio in Silene latifolia (Caryophyllaceae). THE NEW PHYTOLOGIST 2008; 178:448-456. [PMID: 18248584 DOI: 10.1111/j.1469-8137.2007.02366.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sex ratio polymorphism has been extensively studied in Silene latifolia, but it is neither known whether inbreeding (which is likely to occur under field conditions) affects it, nor which of the proposed mechanisms (Y degeneration, X-linked drive) is more important. Both mechanisms predict reduced pollen performance. In this study, females were crossed with pollen from related and unrelated males in single-donor and two-donor crosses, and the sex ratio of offspring (n = 866, 60 crosses), sons'in vitro pollen germination and sex ratios in parental families were scored. Flowers receiving only unrelated pollen produced a significant excess of sons. Sex ratios were not significantly correlated between generations. Sons'in vitro pollen germination was significantly negatively correlated with the 'sex-ratio phenotype' of maternal grandfathers, but not of fathers. This generation leap may be consistent with X-linked determinants because Y-linked determinants alone cannot explain it (grandfathers, fathers and sons share the same Y chromosome). Further work is required, but inbreeding and limited dispersal may lead to local accumulation of biasing factors, a process potentially countered by conditional shifts to produce more sons in pure outbred crosses.
Collapse
Affiliation(s)
- Sara Teixeira
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Institute of Environmental Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Giorgina Bernasconi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Teixeira S, Bernasconi G. High prevalence of multiple paternity within fruits in natural populations ofSilene latifolia, as revealed by microsatellite DNA analysis. Mol Ecol 2007; 16:4370-9. [PMID: 17784922 DOI: 10.1111/j.1365-294x.2007.03493.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Data on multiple paternity within broods has been gathered in several animal species, and comparable data in plants would be of great importance to understand the evolution of reproductive traits in a common framework. In this study, we first isolated and characterized six microsatellite loci from the dioecious plant Silene latifolia (Caryophyllaceae). The polymorphism of the loci was assessed in 60 individual females from four different populations. Two of the investigated loci showed a pattern of inheritance consistent with X-linkage. These microsatellite loci were highly polymorphic and therefore useful tools for parentage analysis. We then used four of the markers to determine paternity within naturally pollinated fruits in four European populations. This study revealed widespread multiple paternity in all populations investigated. The minimum number of fathers per fruit varied from one to nine, with population means ranging from 3.4 to 4.9. The number of fathers per fruit was not significantly correlated with offspring sex ratios. High prevalence of multiple paternity within fruits strongly suggest that pollen competition is likely to occur in this species. This may substantially impact male reproductive success and possibly contribute to increase female and offspring fitness, either through postpollination selection or increased genetic diversity. Wide variation in outcrossing rates may be an overlooked aspect of plant mating systems.
Collapse
Affiliation(s)
- Sara Teixeira
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|