1
|
Munyayi TA, Mulder DW, Conradie EH, Johannes Smit F, Vorster BC. Quantitative Galactose Colorimetric Competitive Assay Based on Galactose Dehydrogenase and Plasmonic Gold Nanostars. BIOSENSORS 2023; 13:965. [PMID: 37998140 PMCID: PMC10669336 DOI: 10.3390/bios13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of H2O2, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.
Collapse
Affiliation(s)
| | - Danielle Wingrove Mulder
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Engela Helena Conradie
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Frans Johannes Smit
- Research Focus Area for Chemical Resource Beneficiation, North-West University, Potchefstroom 2520, South Africa;
| | - Barend Christiaan Vorster
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| |
Collapse
|
2
|
Munyayi TA, Mulder DW, Conradie EH, Vorster BC. Feasibility of NAD(P)/NAD(P)H as redox agents in enzymatic plasmonic gold nanostar assays for galactose quantification. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230825. [PMID: 37830025 PMCID: PMC10565372 DOI: 10.1098/rsos.230825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Plasmonic colorimetric sensors have emerged as powerful analytical tools in biochemistry due to their localized surface plasmon resonance extinction in the visible range. Here, we describe the feasibility of NAD(P)/NAD(P)H as redox agents in enzymatic plasmonic gold nanostar (AuNS) assays for galactose quantification using three model enzymes, GalDH, AR and GalOx, immobilized separately on polyvinylpyrrolidone-capped AuNS scaffolds. These highly specific, sensitive and selective bioassays induce the transformation of AuNS into quasi-spherical nanoparticles during the biorecognition of galactose in water and synthetic blood matrices. As a result, using our inexpensive and simple AuNS plasmon bioassays, the presence of galactose may be detected spectrophotometrically and by the naked eye.
Collapse
Affiliation(s)
- Tozivepi Aaron Munyayi
- Centre For Human Metabolomics, Department of Biochemistry, North West University Potchefstroom, 11 Hoffman Street, Potchefstroom 2531, South Africa
| | - Danielle Wingrove Mulder
- Centre For Human Metabolomics, Department of Biochemistry, North West University Potchefstroom, 11 Hoffman Street, Potchefstroom 2531, South Africa
| | - Engela Helena Conradie
- Centre For Human Metabolomics, Department of Biochemistry, North West University Potchefstroom, 11 Hoffman Street, Potchefstroom 2531, South Africa
| | - Barend Christiaan Vorster
- Centre For Human Metabolomics, Department of Biochemistry, North West University Potchefstroom, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Liu P, Xie J, Tan H, Zhou F, Zou L, Ouyang J. Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach. Microb Cell Fact 2020; 19:104. [PMID: 32410635 PMCID: PMC7227364 DOI: 10.1186/s12934-020-01357-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Marine macroalgae Gelidium amansii is a promising feedstock for production of sustainable biochemicals to replace petroleum and edible biomass. Different from terrestrial lignocellulosic biomass, G. amansii is comprised of high carbohydrate content and has no lignin. In previous studies, G. amansii biomass has been exploited to obtain fermentable sugars along with suppressing 5-hydroxymethylfurfural (HMF) formation for bioethanol production. In this study, a different strategy was addressed and verified for dual production of D-galactose and HMF, which were subsequently oxidized to D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) respectively via Pseudomonas putida. RESULTS G. amansii biomass was hydrolyzed by dilute acid to form D-galactose and HMF. The best result was attained after pretreatment with 2% (w/w) HCl at 120 °C for 40 min. Five different Pseudomonas sp. strains including P. putida ATCC 47054, P. fragi ATCC 4973, P. stutzeri CICC 10402, P. rhodesiae CICC 21960, and P. aeruginosa CGMCC 1.10712, were screened for highly selective oxidation of D-galactose and HMF. Among them, P. putida ATCC 47054 was the outstanding suitable biocatalyst converting D-galactose and HMF to the corresponding acids without reduced or over-oxidized products. It was plausible that the pyrroloquinoline quinone-dependent glucose dehydrogenase and undiscovered molybdate-dependent enzyme(s) in P. putida ATCC 47054 individually played pivotal role for D-galactose and HMF oxidation. Taking advantage of its excellent efficiency and high selectivity, a maximum of 55.30 g/L D-galactonic acid and 11.09 g/L HMFCA were obtained with yields of 91.1% and 98.7% using G. amansii hydrolysates as substrate. CONCLUSIONS Valorization of G. amansii biomass for dual production of D-galactonic acid and HMFCA can enrich the product varieties and improve the economic benefits. This study also demonstrates the perspective of making full use of marine feedstocks to produce other value-added products.
Collapse
Affiliation(s)
- Peng Liu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jiaxiao Xie
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huanghong Tan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Feng Zhou
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lihua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
4
|
Peabody GL, Elmore JR, Martinez-Baird J, Guss AM. Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:295. [PMID: 31890023 PMCID: PMC6927180 DOI: 10.1186/s13068-019-1627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.
Collapse
Affiliation(s)
- George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua R. Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | | | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
5
|
Seelert H, Krause F. Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis 2008; 29:2617-36. [PMID: 18494038 DOI: 10.1002/elps.200800061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to its unmatched resolution, gel electrophoresis is an indispensable tool for the analysis of diverse biomolecules. By adaptation of the electrophoretic conditions, even fragile protein complexes as parts of intracellular networks migrate through the gel matrix under sustainment of their integrity. If the thickness of such native gels is significantly increased compared to the analytical version, also high sample loads can be processed. However, the cage-like network obstructs an in-depth analysis for deciphering structure and function of protein complexes and other species. Consequently, the biomolecules have to be removed from the gel matrix into solution. Several approaches summarized in this review tackle this problem. While passive elution relies on diffusion processes, electroelution employs an electric field to force biomolecules out of the gel. An alternative procedure requires a special electrophoresis setup, the continuous elution device. In this apparatus, molecules migrate in the electric field until they leave the gel and were collected in a buffer stream. Successful isolation of diverse protein complexes like photosystems, ATP-dependent enzymes or active respiratory supercomplexes and some other bioparticles demonstrates the versatility of preparative electrophoresis. After liberating particles out of the gel cage, numerous applications are feasible. They include elucidation of the individual components up to high resolution structures of protein complexes. Therefore, preparative electrophoresis can complement standard purification methods and is in some cases superior to them.
Collapse
Affiliation(s)
- Holger Seelert
- Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
6
|
Nihira T, Nakajima M, Inoue K, Nishimoto M, Kitaoka M. Colorimetric quantification of alpha-D-galactose 1-phosphate. Anal Biochem 2007; 371:259-61. [PMID: 17709092 DOI: 10.1016/j.ab.2007.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/09/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Affiliation(s)
- Takanori Nihira
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
7
|
Prachayasittikul V, Ljung S, Isarankura-Na-Ayudhya C, Bülow L. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase. Int J Biol Sci 2006; 2:10-6. [PMID: 16585948 PMCID: PMC1415851 DOI: 10.7150/ijbs.2.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/20/2006] [Indexed: 01/17/2023] Open
Abstract
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.
Collapse
Affiliation(s)
- Virapong Prachayasittikul
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sarah Ljung
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | - Leif Bülow
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Watanabe S, Kodaki T, Kodak T, Makino K. Cloning, Expression, and Characterization of Bacterial l-Arabinose 1-Dehydrogenase Involved in an Alternative Pathway of l-Arabinose Metabolism. J Biol Chem 2006; 281:2612-23. [PMID: 16326697 DOI: 10.1074/jbc.m506477200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto 615-8530
| | | | | | | |
Collapse
|
9
|
Mazitsos CF, Rigden DJ, Clonis YD. Designed chimaeric galactosyl–mimodye ligands for the purification of Pseudomonas fluorescens β-galactose dehydrogenase. J Chromatogr A 2004; 1029:103-12. [PMID: 15032355 DOI: 10.1016/j.chroma.2003.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two chimaeric galactosyl-mimodye ligands were designed and applied to the purification of Pseudomonas fluorescens galactose dehydrogenase (GaDH). The chimaeric affinity ligands comprised a triazine ring on which were anchored: (i) an anthraquinone moiety that pseudomimics the adenine part of NAD+, (ii) a galactosyl-mimetic moiety (D-galactosamine for ligand BM1 or shikimate for ligand BM2), bearing an aliphatic 'linker', that mimics the natural substrate galactose, and (iii) a long hydrophilic 'spacer'. The mimodye-ligands were immobilised to 1,1-carbonyldiimidazole-activated agarose chromatography support, via the spacer's terminal amino-group, to produce the respective mimodye adsorbents. Both immobilized mimodyes successfully bound P. fluorescens GaDH but failed to bind the enzyme from rabbit muscle. Adsorbent BM1 bound GaDH from green peas and Baker's yeast, but adsorbent BM2 failed to do so. The mimodye-ligand comprising D(+)-galactosamine (BM1), compared to BM2, exhibited higher purifying ability and enzyme recovery for P. fluorescens GaDH. The dissociation constants (KD) of BM1 and BM2 for P. fluorescens GaDH were determined by analytical affinity chromatography to be 5.9 microM and 15.4 microM, respectively. The binding capacities of adsorbents BM1 and BM2 were 18 U/mg adsorbent and 6 U/mg adsorbent, respectively. Adsorbents BM1 and BM2 were integrated in two different protocols for the purification P. fluorescens GaDH. Both protocols comprised as a common first step DEAE anion-exchange chromatography, with a second step of affinity chromatography on BM1 or BM2, respectively. The purified GaDH obtained from the protocols using BM1 and BM2 showed specific activities equal to 1077 and 854 U/mg, respectively. The former is the highest reported so far and the enzyme appeared as a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis.
Collapse
Affiliation(s)
- C F Mazitsos
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | | | | |
Collapse
|
10
|
Mazitsos CF, Rigden DJ, Tsoungas PG, Clonis YD. Galactosyl-mimodye ligands for Pseudomonas fluorescens beta-galactose dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5391-405. [PMID: 12423337 DOI: 10.1046/j.1432-1033.2002.03211.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein molecular modelling and ligand docking were employed for the design of anthraquinone galactosyl-biomimetic dye ligands (galactosyl-mimodyes) for the target enzyme galactose dehydrogenase (GaDH). Using appropriate modelling methodology, a GaDH model was build based on a glucose-fructose oxidoreductase (GFO) protein template. Subsequent computational analysis predicted chimaeric mimodye-ligands comprising a NAD-pseudomimetic moiety (anthraquinone diaminobenzosulfonic acid) and a galactosyl-mimetic moiety (2-amino-2-deoxygalactose or shikimic acid) bearing an aliphatic 'linker' molecule. In addition, the designed mimodye ligands had an appropriate in length and chemical nature 'spacer' molecule via which they can be attached onto a chromatographic support without steric clashes upon interaction with GaDH. Following their synthesis, purification and analysis, the ligands were immobilized to agarose. The respective affinity adsorbents, compared to other conventional adsorbents, were shown to be superior affinity chromatography materials for the target enzyme, Pseudomonas fluorescensbeta-galactose dehydrogenase. In addition, these mimodye affinity adsorbents displayed good selectivity, binding low amounts of enzymes other than GaDH. Further immobilized dye-ligands, comprising different linker and/or spacer molecules, or not having a biomimetic moiety, had inferior chromatographic behavior. Therefore, these new mimodyes suggested by computational analysis, are candidates for application in affinity labeling and structural studies as well as for purification of galactose dehydrogenase.
Collapse
Affiliation(s)
- C F Mazitsos
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece
| | | | | | | |
Collapse
|
11
|
Leung DK, Yang Z, Breslow R. Selective disruption of protein aggregation by cyclodextrin dimers. Proc Natl Acad Sci U S A 2000; 97:5050-3. [PMID: 10805768 PMCID: PMC25779 DOI: 10.1073/pnas.97.10.5050] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2000] [Indexed: 11/18/2022] Open
Abstract
Beta-cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only L-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two beta-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of L-lactate dehydrogenase and citrate synthase at least in part by disruption of protein-protein aggregation.
Collapse
Affiliation(s)
- D K Leung
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
12
|
Rubio MA, Espinosa JC, Tercero JA, Jiménez A. The Pur10 protein encoded in the gene cluster for puromycin biosynthesis of Streptomyces alboniger is an NAD-dependent ATP dehydrogenase. FEBS Lett 1998; 437:197-200. [PMID: 9824289 DOI: 10.1016/s0014-5793(98)01228-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pur10 gene of the puromycin (pur) cluster of Streptomyces alboniger is essential for the biosynthesis of this antibiotic. Highly purified Pur10 protein, obtained in Escherichia coli as a recombinant protein fused to a histidine tail, had an NAD-dependent ATP dehydrogenase activity. The Km and Vmax values for ATP were 0.49 mM and 14.5 nmol/min and for NAD 0.53 mM and 15.2 nmol/min, respectively. The ATP-derived product of the reaction apparently decomposed producing a triphosphorylated compound plus an adenine derivative. These and previous results suggested that Pur10 carries out the first step of the puromycin biosynthetic pathway, namely, conversion of ATP into 3'-keto-3'-deoxyATP.
Collapse
Affiliation(s)
- M A Rubio
- Centro de Biologia Molecular Severo Ochoa (CSIC/UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Olin M, Carlsson J, Bülow L. Quantitation of Transition Metals Using Genetically Engineered Enzymes Carrying Polyhistidine Tails. ANAL LETT 1995. [DOI: 10.1080/00032719508000335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Wong TY, Yao XT. The DeLey-Doudoroff Pathway of Galactose Metabolism in
Azotobacter vinelandii. Appl Environ Microbiol 1994; 60:2065-8. [PMID: 16349292 PMCID: PMC201602 DOI: 10.1128/aem.60.6.2065-2068.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azotobacter vinelandii
cell extracts reduced NAD
+
and oxidized
d
-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO
2
at the first carbon position of the
d
-galactose molecule. This suggested that
Azotobacter vinelandii
metabolizes
d
-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway,
d
-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent
K
m
s for NAD
+
and
d
-galactose were 0.125 and 0.56 mM, respectively. Besides
d
-galactose, the active fraction of this galactose dehydrogenase also oxidized
l
-arabinose effectively. The electron acceptor for
d
-galactose or
l
-arabinose oxidation, NAD
+
, could not be replaced by NADP
+
. These substrate specificities were different from those reported in
Pseudomonas saccharophila, Pseudomonas fluorescens,
and
Rhizobium meliloti.
Collapse
Affiliation(s)
- T Y Wong
- Division of Molecular Sciences and Microbiology, University of Memphis, Memphis, Tennessee 38152
| | | |
Collapse
|
15
|
Ljungcrantz P, Carlsson H, Månsson MO, Buckel P, Mosbach K, Bülow L. Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling. Biochemistry 1989; 28:8786-92. [PMID: 2513881 DOI: 10.1021/bi00448a016] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The in-frame fusion between two oligomeric enzymes, beta-galactosidase and galactose dehydrogenase, is described. The lacZ gene was fused to the 3' end of the galdh gene with a linker encoding only three amino acids. The purified artificial bifunctional enzyme displayed the enzymic activity of both gene products. The hybrid protein was found in two major forms, consisting of four and six subunits, but other forms could also be identified. The molecular weight of each subunit was determined to be 145,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bifunctional enzyme shows kinetic advantages over the identical native system in conversion of lactose to galactonolactone. A higher steady-state rate and a reduction of the transient time are observed. This phenomenon is especially pronounced at low initial substrate concentrations and when the pH is adjusted to a level at which the galactose dehydrogenase activity is much higher than that of the beta-galactosidase.
Collapse
Affiliation(s)
- P Ljungcrantz
- Pure and Applied Biochemistry, Chemical Center, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Sperka S, Zehelein E, Fiedler S, Fischer S, Sommer R, Buckel P. Complete nucleotide sequence of Pseudomonas fluorescens D-galactose dehydrogenase gene. Nucleic Acids Res 1989; 17:5402. [PMID: 2503815 PMCID: PMC318141 DOI: 10.1093/nar/17.13.5402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- S Sperka
- Boehringer Mannheim GmbH, Penzberg, FRG
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
By drop dialysis with membrane filters of 25 or 50 nm average pore size, salt concentrations are reduced to 15% within 25 min. During this time only 10% of ribonuclease with a Mr 13,500 will diffuse in and through the membrane. However, in the presence of 1 M NaCl about 25% of the enzyme is lost. The difference in the rate of salt removal and enzyme loss is caused by the difference in diffusion constants. Therefore with enzymes of higher molecular weights, less protein will be lost, as is shown with beta-galactose dehydrogenase. This enzyme with Mr 64,000 is lost at a lower rate than ribonuclease. The net charge of a protein apparently does not influence the rate with which it diffuses through the membrane. The time course of salt and protein exchange was studied to provide data for estimating the optimal conditions for the required reduction in salt concentration. To prepare small protein samples for electrophoresis or other analytical methods, which require low salt concentrations or a buffer change, drop dialysis is a fast and effective method with tolerable loss of protein.
Collapse
Affiliation(s)
- H Görisch
- Institut für Mikrobiologie, Universität Hohenheim, Federal Republic of Germany
| |
Collapse
|
18
|
Tanaka K, Ishikawa E. A Highly Sensitive Bioluminescent Assay of β-D-Galactosidase fromEscherichia coliUsing 2-Nitrophenyl-β-D-galactopyranoside as a Substrate. ANAL LETT 1986. [DOI: 10.1080/00032718608064508] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
|
20
|
Melrose J, Sturgeon RJ. An enzymic assay of l-arabinose, using β-d-galactose dehydrogenase: Its application in the assay of α-l-arabinofuranosidase. Carbohydr Res 1983. [DOI: 10.1016/0008-6215(83)88052-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Stournaras C, Maurer P, Kurz G. 6-phospho-D-gluconate dehydrogenase from Pseudomonas fluorescens. Properties and subunit structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 130:391-6. [PMID: 6402366 DOI: 10.1111/j.1432-1033.1983.tb07165.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. The 6-phospho-D-gluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) from Pseudomonas fluorescens, a B-side stereospecific enzyme, is active with both NAD+ and NADP+, having a specific activity of the homogeneous enzyme of 121 mumols NADH and 23 mumols NADPH, respectively, formed min-1 mg protein-1. The pI of the native enzyme is 4.62, the pH optimum is about 8.2. 2. The molecular weight of the native enzyme has been determined to be 126000 by sedimentation equilibrium studies. The molecular weight of the polypeptide chains composing the enzyme has been found to be 32000 by dodecylsulfate/polyacrylamide gel electrophoresis and 31000 by sedimentation equilibrium studies in presence of 6 M guanidine hydrochloride. The native enzyme is composed of four polypeptide chains. 3. Reacting enzyme centrifugation studies gave at pH 8.2 a sedimentation coefficient s20, w of 8.04 S and a diffusion coefficient D20, w of 6.56 F, resulting in a molecular weight of 115000 for the catalytically active form. Thus, the enzyme is active as the tetramer. So far the enzyme from P. fluorescens is the sole 6-phospho-D-gluconate dehydrogenase (decarboxylating) composed of four polypeptide chains.
Collapse
|
22
|
|
23
|
Abstract
To investigate the heterologous expression of Pseudomonas genes in Escherichia coli we have cloned P. fluorescens DNA in an E. coli [cosmid] system. A colony bank representing the whole P. fluorescens chromosome was screened immunologically using a modification of the method described by Broome and Gilbert (1978). Radioactive labelling of the antibodies was replaced by conjugation with horseradish peroxidase. Among 523 E. coli colonies one was D-galactose dehydrogenase-positive. The expression of this enzyme in primary clones was lower than in the uninduced Pseudomonas. Subcloning of the D-galactose dehydrogenase gene, in vitro mutagenesis of the DNA, and coupling to a strong E. coli promoter yielded an E. coli strain that produces 90 times more of the enzyme than the induced P. fluorescens.
Collapse
|
24
|
Kobayashi Y, Horikoshi K. Purification and properties of NAD+-dependent maltose dehydrogenase produced by alkalophilic Corynebacterium sp. No. 93-1. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 614:256-65. [PMID: 7407192 DOI: 10.1016/0005-2744(80)90215-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NAD+-dependent maltose dehydrogenase was purified about 250-fold from the cell free extract of an alkalophilic Corynebacterium sp. No. 93-1. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and ultracentrifugation. The molecular weight of the enzyme was determined to be 40 000 +/- 2000 by gel filtration and SDS-polyacrylamide gel electrophoresis. The enzyme appeared to be a single peptide chain. The isoelectric point was pH 4.50. The optimal pH was 10.2. The enzyme was stable over the range of pH 6 to 10. NAD+-dependent maltose dehydrogenase showed very wide substrate specificity on monosaccharides, disaccharides and trisaccharides. Among these substrates, maltose was the most reactive. Also, the enzyme showed oxidative activity on maltotetraose and maltopentaose. The Km values at pH 10 were 2.1 mM for maltose and 0.15 mM for NAD+. It was conjectured that the primary product of this reaction was maltono-delta-lactone and its was hydrolyzed non-enzymatically to maltobionic acid. p-Chloromercuribenzoic acid, Hg2+ and Ag2+ completely inhibited the activity, and HADH also showed competitive inhibition on the activity.
Collapse
|
25
|
|
26
|
Kirschenbaum DM. Molar absorptivity and A1% 1 cm values for proteins at selected wavelengths of the ultraviolet and visible regions. XIV. Anal Biochem 1977; 82:83-100. [PMID: 333983 DOI: 10.1016/0003-2697(77)90137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Edwards RG, Thomas P, Westwood JH. The interaction of deoxyfluoro substrate-analogues with D-galactose dehydrogenase from Pseudomonas fluorescens. Carbohydr Res 1977; 57:323-5. [PMID: 409498 DOI: 10.1016/s0008-6215(00)81941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Lessmann D, Schimz KL, Kurz G. D-glucose-6-phosphate dehydrogenase (Entner-Doudoroff enzyme) from Pseudomonas fluorescens. Purification, properties and regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 59:545-59. [PMID: 1257 DOI: 10.1111/j.1432-1033.1975.tb02481.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The existence of two different D-glucose-6-phosphate dehydrogenases in Pseudomonas fluorescens has been demonstrated. Based on their different specificity and their different metabolic regulation one enzyme is appointed to the Entner-Doudoroff pathway and the other to the hexose monophosphate pathway. 2. A procedure is described for the isolation of that D-glucose-6-phosphate dehydrogenase which forms part of the Entner-Doudoroff pathway (Entner-Doudoroff enzyme). A 950-fold purification was achieved with an overall yield of 44%. The final preparation, having a specific activity of about 300 mumol NADH formed per min per mg protein, was shown to be homogeneous. 3. The molecular weight of the Entner-Doudoroff enzyme has been determined to be 220000 by gel permeation chromatography, and that of the other enzyme (Zwischenferment) has been shown to be 265000. 4. The pI of the Entner-Doudoroff enzyme has been shown to be 5.24 and that of the Zwischenferment 4.27. The Entner-Doudoroff enzyme is stable in the range of pH 6 to 10.5 and shows its maximal activity at pH 8.9. 5. The Entner-Doudoroff enzyme showed specificity for NAD+ as well as for NADP+ and exhibited homotropic effects for D-glucose 6-phosphate. It is inhibited by ATP which acts as a negative allosteric effector. Other nucleoside triphosphates as well as ADP are also inhibitory. 6. The enzyme catalyzes the transfer of the axial hydrogen at carbon-1 of beta-D-glucopyranose 6-phosphate to the si face of carbon-4 of the nicotinamide ring and must be classified as B-side stereospecific dehydrogenase.
Collapse
|
29
|
Alizade MA, Bressler R, Brendel K. Stereochemistry of the hydrogen transfer to NADP catalyzed by D-galactose dehydrogenase from Pseudomonas fluorescens. Life Sci 1975; 17:787-91. [PMID: 1616 DOI: 10.1016/0024-3205(75)90536-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Brendel K, Bressler R, Alizade MA. Stereochemistry of the hydrogen transfer to NAD catalyzed by D-galactose dehydrogenase from Pseudomonas fluorescens. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 397:1-4. [PMID: 167851 DOI: 10.1016/0005-2744(75)90172-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stereochemistry of the hydrogen transfer to NAD catalyzed by D-galactose dehydrogenase (E.C. 1.1.1.48) from P. fluorescens was investigated. The label at C-1 of D-[1--3H] galactose was enzymatically transferred to NAD and the resulting [4--3H]NADH was isolated and its stereochemistry at C-4 investigated. It was found that the label was exclusively located at the 4(S) position in NADH which calls for classification as a B-enzyme. This result was confirmed by an alternate approach in which [4--3H]NAD was reduced by D-galactose as catalyzed by D-galactose dehydrogenase. The sterochemistry at C-4 of the nicotinamide ring would then have to opposite to that in the first experiment. As expected, the label was now exclusively located in the 4(R) position, again confirming the B-calssification of the enzyme.
Collapse
|
31
|
Ueberschär KH, Blachnitzky EO, Lehmann J, Kurz G. Stereospecificity of hydrogen transfer catalyzed by D-galactose dehydrogenase from Pseudomonas saccharophila and Pseudomonas fluorescens. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 391:15-8. [PMID: 237553 DOI: 10.1016/0005-2744(75)90147-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Wengenmayer F, Kurz G. Subunit structure of D-galactose dehydrogenase from Pseudomonas saccharophila. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 386:590-602. [PMID: 1138886 DOI: 10.1016/0005-2795(75)90302-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. D-Galactose dehydrogenase from Pseudomonas saccharophila (molecular weight 102 000) dissociates in 8 M urea into its subunits (molecular weight 25 000) which migrate in polyacrylamide gels, containing 8 M urea, as a single band. 2. The N-terminal residue determination by the dansyl method revealed only serine. 3. The C-terminal group determination with carboxypeptidase A and B indicated the sequence -Tyr-His-Leu. Leucine as the single C-terminal amino acid was confirmed by the tritiation method and by tritiation and subsequent degradation with carboxypeptidases. 4. The fragmentation of D-galactose dehydrogenase (24 mol methionine per mol enzyme) by CNBr resulted in six peptides, as detected in disc electrophoresis and substantiated by end group determination, indicating the identity of the subunits. 5. The treatment of D-galactose dehydrogenase (24 mol lysine and 52 mol arginine per mol enzyme) with trypsin and subsequent peptide mapping showed 21, perhaps 22 peptides, indicating a structure comprising four identical subunits.
Collapse
|
33
|
Wentworth DF, Wolfenden R. Slow binding of D-galactal, a "reversible" inhibitor of bacterial beta-galactosidase. Biochemistry 1974; 13:4715-20. [PMID: 4609464 DOI: 10.1021/bi00720a006] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Ueberschär KH, Blachnitzky EO, Kurz G. Reaction mechanism of D-galactose dehydrogenases from Pseudomonas saccharophila and Pseudomonas fluorescens. Formation and rearrangemnt of aldono-1,5-lactones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1974; 48:389-405. [PMID: 4217278 DOI: 10.1111/j.1432-1033.1974.tb03780.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|