1
|
Schuler P, Rehmann O, Vitali V, Saurer M, Oettli M, Cernusak LA, Gessler A, Buchmann N, Lehmann MM. Hydrogen isotope fractionation in plants with C 3, C 4, and CAM CO 2 fixation. THE NEW PHYTOLOGIST 2024; 244:477-495. [PMID: 39169823 DOI: 10.1111/nph.20057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δ2H) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for 2H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO2 fixation pathways (C3, C4, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic 2H fractionation (εA) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong 2H depleting εA in C3 plants is likely driven by the photosynthetic H+ production within the thylakoids, a reaction that is spatially separated in C4 and strongly reduced in CAM plants, leading to the absence of 2H depletion in the latter two types. By contrast, we found that the heterotrophic 2H-fractionation (εH) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of 2H fractionation in plant carbohydrates.
Collapse
Affiliation(s)
- Philipp Schuler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Oliver Rehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Valentina Vitali
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Manuela Oettli
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Smithield, New South Wales, 4878, Australia
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
2
|
Nakajima Munekage Y. Light harvesting and chloroplast electron transport in NADP-malic enzyme type C4 plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:9-15. [PMID: 26999307 DOI: 10.1016/j.pbi.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
The structure of thylakoids in chloroplasts and the organization of the electron transport chain changed dynamically during the evolution of C4 photosynthesis, especially in the nicotinamide adenine dinucleotide phosphate (NADP)-malic enzyme type C4 species. Stacked grana membranes are strongly reduced in the bundle sheath chloroplasts of these plants, where photosystem II activity is diminished and cyclic electron transport around photosystem I mainly occurs. This change optimizes the ATP/NADPH production ratio in bundle sheath chloroplasts to drive the metabolic cycle of C4 photosynthesis. This review summarizes the current model of light harvesting and electron transport in the NADP-malic enzyme type C4 plants and discusses how it changed during the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Yuri Nakajima Munekage
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
3
|
Munekage YN, Taniguchi YY. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis. PLANT & CELL PHYSIOLOGY 2016; 57:897-903. [PMID: 26893472 DOI: 10.1093/pcp/pcw012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species.
Collapse
Affiliation(s)
- Yuri Nakajima Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
| |
Collapse
|
4
|
Döring F, Streubel M, Bräutigam A, Gowik U. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3053-64. [PMID: 26976818 PMCID: PMC4867894 DOI: 10.1093/jxb/erw041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath.
Collapse
Affiliation(s)
- Florian Döring
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Monika Streubel
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS) 'From Complex Traits towards Synthetic Modules', D-40225 Düsseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Peterson RB, Oja V, Eichelmann H, Bichele I, Dall'Osto L, Laisk A. Fluorescence F 0 of photosystems II and I in developing C3 and C 4 leaves, and implications on regulation of excitation balance. PHOTOSYNTHESIS RESEARCH 2014; 122:41-56. [PMID: 24817180 DOI: 10.1007/s11120-014-0009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/24/2014] [Indexed: 05/12/2023]
Abstract
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.
Collapse
Affiliation(s)
- Richard B Peterson
- Department of Biochemistry and Genetics, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA,
| | | | | | | | | | | |
Collapse
|
6
|
Sharpe RM, Offermann S. One decade after the discovery of single-cell C4 species in terrestrial plants: what did we learn about the minimal requirements of C4 photosynthesis? PHOTOSYNTHESIS RESEARCH 2014; 119:169-80. [PMID: 23494362 DOI: 10.1007/s11120-013-9810-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/04/2013] [Indexed: 05/17/2023]
Abstract
Until about 10 years ago the general accepted textbook knowledge was that terrestrial C4 photosynthesis requires separation of photosynthetic functions into two specialized cell types, the mesophyll and bundle sheath cells forming the distinctive Kranz anatomy typical for C4 plants. This paradigm has been broken with the discovery of Suaeda aralocaspica, a chenopod from central Asia, performing C4 photosynthesis within individual chlorenchyma cells. Since then, three more single-cell C4 (SCC4) species have been discovered in the genus Bienertia. They are interesting not only because of their unusual mode of photosynthesis but also present a puzzle for cell biologists. In these species, two morphological and biochemical specialized types of chloroplasts develop within individual chlorenchyma cells, a situation that has never been observed in plants before. Here we review recent literature concerning the biochemistry, physiology, and molecular biology of SCC4 photosynthesis. Particularly, we focus on what has been learned in relation to the following questions: How does the specialized morphology required for the operation of SCC4 develop and is there a C3 intermediate type of photosynthesis during development? What is the degree of specialization between the two chloroplast types and how does this compare to the chloroplasts of Kranz C4 species? How do nucleus-encoded proteins that are targeted to chloroplasts accumulate differentially in the two chloroplast types and how efficient is the CO2 concentrating mechanism in SCC4 species compared to the Kranz C4 forms?
Collapse
Affiliation(s)
- Richard M Sharpe
- School of Biological Science, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
7
|
Nakamura N, Iwano M, Havaux M, Yokota A, Munekage YN. Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria. THE NEW PHYTOLOGIST 2013; 199:832-42. [PMID: 23627567 DOI: 10.1111/nph.12296] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/20/2013] [Indexed: 05/09/2023]
Abstract
C4 plants display higher cyclic electron transport activity than C3 plants. This activity is suggested to be important for the production of ATPs required for C4 metabolism. To understand the process by which photosystem I (PSI) cyclic electron transport was promoted during C4 evolution, we conducted comparative analyses of the functionality of PSI cyclic electron transport among members of the genus Flaveria, which contains several C3, C3-C4 intermediate, C4-like and C4 species. The abundance of NDH-H, a subunit of NADH dehydrogenase-like complex, increased markedly in bundle sheath cells with the activity of the C4 cycle. By contrast, PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE1 increased in both mesophyll and bundle sheath cells in C4-like Flaveria palmeri and C4 species. Grana stacks were drastically reduced in bundle sheath chloroplasts of C4-like F. palmeri and C4 species; these species showed a marked increase in PSI cyclic electron transport activity. These results suggest that both the expression of proteins involved in PSI cyclic electron transport and changes in thylakoid structure contribute to the high activity of cyclic electron flow in NADP-malic enzyme-type C4 photosynthesis. We propose that these changes were important for the establishment of C4 photosynthesis from C3-C4 intermediate photosynthesis in Flaveria.
Collapse
Affiliation(s)
- Naoya Nakamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | |
Collapse
|
8
|
Wanous MK, Goicoechea PG, Gustafson JP. RFLP maps of rye chromosomes 6R and 7R including terminal C-bands. Genome 2012; 38:999-1004. [PMID: 18470222 DOI: 10.1139/g95-131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A F2 mapping population was created from a cross between 'UC-90' and E-line ryes (Secale cereale L.), two lines that showed polymorphism for eight C-band loci. Clones from rye, as well as other grasses, were used as probes. RFLP maps of rye chromosomes 6R and 7R were generated that include the 6RS and 6RL terminal C-bands and the 7RS terminal C-band. The 6R map spans 230 cM and includes 9 loci. The 7R map covers 225 cM and includes 21 loci. Segregation distortion was detected for several chromosomal regions. Heterochromatic C-bands did not appear to be responsible for the distortion.
Collapse
|
9
|
Offermann S, Okita TW, Edwards GE. How do single cell C4 species form dimorphic chloroplasts? PLANT SIGNALING & BEHAVIOR 2011; 6:762-5. [PMID: 21502818 PMCID: PMC3172859 DOI: 10.4161/psb.6.5.15426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 05/08/2023]
Abstract
Bienertia sinuspersici is one of only three higher land plant species known to perform C 4 photosynthesis without Kranz anatomy through partitioning of photosynthetic functions between dimorphic chloroplasts in a single photosynthetic cell. We recently reported the successful separation of the two chloroplast types, and biochemical and functional analyses revealed differences in protein composition and specialization of photosynthetic functions. In Kranz type C 4 species, spatial (or cell-specific) control of transcription of nuclear genes contributes to development of dimorphic chloroplasts, but obviously this cannot be involved in formation of dimorphic chloroplasts within individual photosynthetic cells. Therefore, we address here the question of how nuclear encoded proteins could be selectively targeted to plastids within a cell to form two types of chloroplasts. We discuss current knowledge of chloroplast differentiation in single cell C 4 species and present three hypothetical mechanisms for how this could occur.
Collapse
Affiliation(s)
- Sascha Offermann
- School of Biological Sciences, Washington State University, Pullman, Washington, USA.
| | | | | |
Collapse
|
10
|
Abstract
C4 photosynthesis is an adaptation that evolved to alleviate the detrimental effects of photorespiration as a result of the gradual decline in atmospheric carbon dioxide levels. In most C4 plants, two cell types, bundle sheath and mesophyll, cooperate in carbon fixation, and, in so doing, are able to alleviate photorespiratory losses. Although much of the biochemistry is well characterized, little is known about the genetic mechanisms underlying the cell-type specificity driving C4 . However, several studies have shown that regulation acts at multiple levels, including transcriptional, post-transcriptional, post-translational and epigenetic. One example of such a regulatory mechanism is the cell-specific accumulation of major photorespiratory transcripts/proteins in bundle sheath cells, where ribulose-1,5-bisphosphate carboxylase/oxygenase is localized. Although many of the genes are expressed in the bundle sheath, some are expressed in both cell types, implicating post-transcriptional control mechanisms. Recently, ultra-high-throughput sequencing techniques and sophisticated mass spectrometry instrumentation have provided new opportunities to further our understanding of C4 regulation. Computational pipelines are being developed to accommodate the mass of data associated with these techniques. Finally, we discuss a readily transformable C4 grass--Setaria viridis--that has great potential to serve as a model for the genetic dissection of C4 photosynthesis in the grasses.
Collapse
Affiliation(s)
- Lin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| | - Richard B Peterson
- Department of Biochemistry & Genetics, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Thomas P Brutnell
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Niewiadomska E, Bilger W, Gruca M, Mulisch M, Miszalski Z, Krupinska K. CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. PLANTA 2011; 233:275-85. [PMID: 21046147 PMCID: PMC3026932 DOI: 10.1007/s00425-010-1302-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 05/18/2023]
Abstract
Crassulacean acid metabolism (CAM) is an intriguing metabolic strategy to maintain photosynthesis under conditions of closed stomata. A shift from C(3) photosynthesis to CAM in Mesembryanthemum crystallinum plants was induced by high salinity (0.4 M NaCl). In CAM-performing plants, the quantum efficiencies of photosystem II and I were observed to undergo distinct diurnal fluctuations that were characterized by a strong decline at the onset of the day, midday recovery, and an evening drop. The temporal recovery of both photosystems' efficiency at midday was associated with a more rapid induction of the electron transport rate at PSII. This recovery of the photosynthetic apparatus at midday was observed to be accompanied by extreme swelling of thylakoids. Despite these fluctuations, a persistent effect of CAM was the acceptor side limitation of PSI during the day, which was accompanied by a strongly decreased level of Rubisco protein. Diurnal changes in the efficiency of photosystems were parallel to corresponding changes in the levels of mRNAs for proteins of PSII and PSI reaction centers and for rbcL, reaching a maximum in CAM plants at midday. This might reflect a high demand for new protein synthesis at this time of the day. Hybridization of run-on transcripts with specific probes for plastid genes of M. crystallinum revealed that the changes in plastidic mRNA levels were regulated at the level of transcription.
Collapse
Affiliation(s)
- Ewa Niewiadomska
- Institute of Biology, The Jan Kochanowski University of Humanities and Science, Świętokrzyska 15, 25-406 Kielce, Poland.
| | | | | | | | | | | |
Collapse
|
12
|
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. THE PLANT CELL 2010; 22:3509-42. [PMID: 21081695 PMCID: PMC3015116 DOI: 10.1105/tpc.110.079764] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Brian Connolly
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mingshu Huang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Edwin Reidel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Cankui Zhang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Nazmul H. Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
|
14
|
Hibberd JM, Covshoff S. The regulation of gene expression required for C4 photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:181-207. [PMID: 20192753 DOI: 10.1146/annurev-arplant-042809-112238] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C(4) photosynthesis is normally associated with the compartmentation of photosynthesis between mesophyll (M) and bundle sheath (BS) cells. The mechanisms regulating the differential accumulation of photosynthesis proteins in these specialized cells are fundamental to our understanding of how C(4) photosynthesis operates. Cell-specific accumulation of proteins in M or BS can be mediated by posttranscriptional processes and translational efficiency as well as by differences in transcription. Individual genes are likely regulated at multiple levels. Although cis-elements have been associated with cell-specific expression in C(4) leaves, there has been little progress in identifying trans-factors. When C(4) photosynthesis genes from C(4) species are placed in closely related C(3) species, they are often expressed in a manner faithful to the C(4) cycle. Next-generation sequencing and comprehensive analysis of the extent to which genes from C(4) species are expressed in M or BS cells of C(3) plants should provide insight into how the C(4) pathway is regulated and evolved.
Collapse
Affiliation(s)
- Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
15
|
Romanowska E, Kargul J, Powikrowska M, Finazzi G, Nield J, Drozak A, Pokorska B. Structural organization of photosynthetic apparatus in agranal chloroplasts of maize. J Biol Chem 2008; 283:26037-46. [PMID: 18632664 PMCID: PMC3258860 DOI: 10.1074/jbc.m803711200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/14/2008] [Indexed: 11/06/2022] Open
Abstract
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.
Collapse
Affiliation(s)
- Elzbieta Romanowska
- Department of Plant Physiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
17
|
Romanowska E, Drozak A, Pokorska B, Shiell BJ, Michalski WP. Organization and activity of photosystems in the mesophyll and bundle sheath chloroplasts of maize. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:607-18. [PMID: 16545994 DOI: 10.1016/j.jplph.2005.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 06/08/2005] [Indexed: 05/05/2023]
Abstract
Photosystem I and Photosystem II activities, as well as polypeptide content of chlorophyll (Chl)-protein complexes were analyzed in mesophyll (M) and bundle sheath (BS) chloroplasts of maize (Zea mays L.) growing under moderate and very low irradiance. This paper discusses the application of two techniques: mechanical and enzymatic, for separation of M and BS chloroplasts. The enzymatic isolation method resulted in depletion of polypeptides of oxygen evolving complex (OEC) and alphaCF1 subunit of coupling factor; D1 and D2 polypeptides of PSII were reduced by 50%, whereas light harvesting complex of photosystem II (LHCII) proteins were still detectable. Loss of PSII polypeptides correlated with the decreasing of Chl fluorescence measured at room temperature. Using mechanical isolation of chloroplasts from BS cells, all tested polypeptides could be detected. We found a total lack of O2 evolution in BS chloroplasts, but dichlorophenolindophenol (DCPIP) was photoreduced. PSI activity of chloroplasts isolated from 14- and 28-day-old plants was similar in BS chloroplasts in moderate light (ML), but in low light (LL) it was reduced by about 20%. PSI and PSII activities in M chloroplasts of plants growing in ML decreased with aging of plants. In older LL-grown plants, activities of both photosystems were higher than those observed in chloroplasts from ML-grown plants. We suggest that in BS chloroplasts of maize, PSII complex is assembled typically for the agranal membranes (containing mainly stroma thylakoids) and is able to perform very limited electron transport activity. This in turn suggests the role of PSII for poising the redox state of PSI.
Collapse
Affiliation(s)
- Elzbieta Romanowska
- Department of Plant Physiology, Warsaw University, Miecznikowa 1, 02-096 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
18
|
Takabayashi A, Kishine M, Asada K, Endo T, Sato F. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci U S A 2005; 102:16898-903. [PMID: 16272223 PMCID: PMC1283823 DOI: 10.1073/pnas.0507095102] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Whereas linear electron flow (LEF) in photosynthesis produces both ATP and NADPH, the cyclic electron flow (CEF) around photosystem I has been shown to produce only ATP. Two alternative routes have been shown for CEF; NAD(P)H dehydrogenase (NDH)- and ferredoxin:plastoquinone oxidoreductase (FQR)-dependent flows, but their physiological relevance has not been elucidated in detail. Meanwhile, because C(4) photosynthesis requires more ATP than does C(3) photosynthesis to concentrate CO(2), it has not been clear how the extra ATP is produced. In this study, to elucidate whether CEF contributes to the additional ATP needed in C(4) photosynthesis, we estimated the amounts of PGR5, which participates in FQR-dependent flow, and NDH-H, a subunit of NDH, in four C(4) species. Although the expression profiles of PGR5 did not correlate well with the additional ATP requirement, NDH was greatly expressed in mesophyll cells in the NAD-malic enzyme (ME) species, and in bundle-sheath cells in NADP-ME species, where there is a strong need for ATP in the respective cells. Our results indicate that CEF via NDH plays a central role in driving the CO(2)-concentrating mechanism in C(4) photosynthesis.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama City 729-0292, Japan
| | - Masahiro Kishine
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama City 729-0292, Japan
| | - Kozi Asada
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama City 729-0292, Japan
| | - Tsuyoshi Endo
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama City 729-0292, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama City 729-0292, Japan
| |
Collapse
|
19
|
Gaur T, Tyagi AK. Analysis of Arabidopsis PsbQA gene expression in transgenic tobacco reveals differential role of its promoter and transcribed region in organ-specific and light-mediated regulation. Transgenic Res 2004; 13:97-108. [PMID: 15198198 DOI: 10.1023/b:trag.0000026050.23122.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arabidopsis PsbQ, encoding a 16 kDa protein of the oxygen-evolving complex, is regulated by light and is expressed preferentially in leaf tissues. To analyze the components required for light-regulated and organ-specific expression of PsbQA, several promoter constructs were generated and expressed in tobacco. The 2.2 kb promoter could confer organ-specific expression of the reporter gene, whereas regulatory elements for light-dependent induction could not be located within this promoter and the transcribed region extending up to a second exon, represented by a genomic fragment encompassing the gene. The genomic fragment representing the transcribed region, however, could confer light regulation even on a constitutive promoter, as observed by steady-state mRNA analysis in T0 and T1 tobacco plants. The results obtained have led to the conclusion that regulatory elements for organ-specificity mainly reside in the promoter region whereas the transcribed region of the gene has an important role in light regulation.
Collapse
Affiliation(s)
- Tripti Gaur
- Centre for Plant Molecular Biology, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi-110021, India
| | | |
Collapse
|
20
|
Preiss S, Schrader S, Johanningmeier U. Rapid, ATP-dependent degradation of a truncated D1 protein in the chloroplast. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4562-9. [PMID: 11502218 DOI: 10.1046/j.1432-1327.2001.02383.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The D1 protein constitutes one of the reaction center subunits of photosystem II and turns over rapidly due to photooxidative damage. Here, we studied the degradation of a truncated D1 protein. A plasmid with a precise deletion in the reading frame of the psbA gene encoding D1 was introduced into the chloroplast of Chlamydomonas reinhardtii. A homoplasmic mutant containing the desired gene was able to synthesize the truncated form of the polypeptide, but could not accumulate significant levels of it. As a consequence, other central photosystem II subunits did not assemble within the thylakoid membrane. In vivo pulse-chase experiments showed that the abnormal D1 protein is rapidly degraded in the light. Degradation was delayed in the light in the presence of an uncoupler, or when cells were incubated in the dark. Pulse-chase experiments performed in vitro indicate that an ATP and metal-dependent protease is responsible for the breakdown process. The paper describes the first in vivo and in vitro functional test for ATP-dependent degradation of a defect polypeptide in chloroplasts. The possible involvement of proteases similar to those removing abnormal proteins in prokaryotic organisms is discussed on the basis of proteases recently identified in chloroplasts.
Collapse
Affiliation(s)
- S Preiss
- Martin-Luther-Universität Halle-Wittenberg, Institut für Pflanzenphysiologie, Halle-Saale, Germany
| | | | | |
Collapse
|
21
|
Furumoto T, Hata S, Izui K. Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. PLANT & CELL PHYSIOLOGY 2000; 41:1200-1209. [PMID: 11092904 DOI: 10.1093/pcp/pcd047] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To characterize novel genes functioning specifically in mesophyll cells (MCs) or bundle sheath cells (BSCs) of C4 plants, differential screening of a maize cDNA library was conducted using 32P-labeled single-strand cDNAs prepared from MCs and bundle sheath strands (BSS) as probes. Ten genes encoding thylakoid membrane proteins in chloroplasts were identified as MC-abundant genes. These included genes for chlorophyll a/b binding proteins, plastocyanin, PsaD, PsbT, PsbR, PsbO, PsaK, PsaG, PsaN and ferredoxin. Seven genes identified as BSS-abundant genes encoded PEP carboxykinase, salt-inducible SalT homolog, heavy metal-inducible metallothionein-like protein, ABA- and drought-inducible glycine-rich protein, and three proteins of unknown function (one of which was named Bss1). In situ hybridization analyses for several selected genes revealed that mRNAs for the metallothionein-like protein and Bss1 were accumulated specifically in BSCs, and that mRNA for the SalT homolog was accumulated in vascular cells around phloem cells. Results suggest that the functional differentiation of MC chloroplasts accompany preferential expression of these small proteins in photosystem complexes and that BSCs are the major site of stress responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- In Situ Hybridization
- Molecular Sequence Data
- Plant Leaves/cytology
- Plant Leaves/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Zea mays/genetics
Collapse
Affiliation(s)
- T Furumoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | |
Collapse
|
22
|
|
23
|
Meurer J, Plücken H, Kowallik KV, Westhoff P. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 1998; 17:5286-97. [PMID: 9736608 PMCID: PMC1170856 DOI: 10.1093/emboj/17.18.5286] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand the regulatory mechanisms underlying the biogenesis of photosystem II (PSII) we have characterized the nuclear mutant hcf136 of Arabidopsis thaliana and isolated the affected gene. The mutant is devoid of any photosystem II activity, and none of the nuclear- and plastome-encoded subunits of this photosystem accumulate to significant levels. Protein labelling studies in the presence of cycloheximide showed that the plastome-encoded PSII subunits are synthesized but are not stable. The HCF136 gene was isolated by virtue of its T-DNA tag, and its identity was confirmed by complementation of homozygous hcf136 seedlings. Immunoblot analysis of fractionated chloroplasts showed that the HCF136 protein is a lumenal protein, found only in stromal thylakoid lamellae. The HCF136 protein is produced already in dark-grown seedlings and its levels do not increase dramatically during light-induced greening. This accumulation profile confirms the mutational data by showing that the HCF136 protein must be present when PSII complexes are made. HCF136 homologues are found in the cyanobacterium Synechocystis species PCC6803 (slr2034) and the cyanelle genome of Cyanophora paradoxa (ORF333), but are lacking in the plastomes of chlorophytes and metaphytes as well as from those of rhodo- and chromophytes. We conclude that HCF136 encodes a stability and/or assembly factor of PSII which dates back to the cyanobacterial-like endosymbiont that led to the plastids of the present photosynthetic eukaryotes.
Collapse
Affiliation(s)
- J Meurer
- Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
24
|
The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:47-58. [PMID: 9526041 DOI: 10.1016/s0005-2728(97)00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of the photosynthetic apparatus of intermittent light grown pea plants under continuous illumination has been investigated. We determined the formation of antenna proteins and the synthesis of pigments at different stages of greening and compared the data with the changes in the xanthophyll cycle reactions. The limited convertibility of violaxanthin in the de-epoxidation reactions of the cycle was found to be closely related to the presence of antenna proteins and could be attributed to direct (pigment binding) and indirect (grana formation) functions of antenna proteins. The reduced epoxidation rate in intermittent light plants was found to be accelerated with increasing amounts of antenna proteins. However, the changes in the epoxidation rates were not consistent with the assignment of the epoxidase activity to LHC II, the major light harvesting complex protein of photosystem II. This interpretation was further supported by an unchanged epoxidase activity in - also LHC II depleted - bundle sheath cells of the C4 plant Sorghum bicolor and stroma fractions of isolated spinach thylakoids. We assume that the basic function of antenna proteins in the xanthophyll cycle of higher plants is mainly related to the binding of the substrate and/or to interactions with the de-epoxidase/epoxidase. By that antenna proteins seem to be responsible for the limited violaxanthin convertibility as well as they are required for highest epoxidation rates. Copyright 1998 Elsevier Science B.V.
Collapse
|
25
|
Meurer J, Meierhoff K, Westhoff P. Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and northern hybridisation. PLANTA 1996; 198:385-96. [PMID: 8717135 DOI: 10.1007/bf00620055] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Thirty-four recessive photosynthetic mutants of the high-chlorophyll-fluorescence (hcf) phenotype have been isolated by screening 7700 M2 progenies of ethyl methane sulfonate-treated seeds of Arabidopsis thaliana. Most of the mutants isolated were found to be seedling-lethal, but could be grown on sucrose-supplemented media. Chlorophyll (Chl) fluorescence induction, absorption changes in the reaction-centre chlorophyll of PS I (P700) at 830 nm and Chl a/Chl b ratios were recorded in order to probe the photosynthetic functions and to define the mutational lesion. These studies were complemented by immunoblot and Northern analyses which finally led to the classification of the mutants into six different groups. Four classes of mutants were affected in PS I, PS II (two different classes) or the intersystem electron-transport chain, respectively. A fifth mutant class was of pleiotropic nature and the sixth class comprised a Chl b-deficient mutant. Several of the mutants showed severe deficiencies in the levels of subunits of PS I, PS II or the cytochrome b6/f complex. Thus the mutational lesions could be located precisely. Only one mutant was defective in the transcript patterns of some plastid-encoded photosynthesis genes. Hence most of the mutants isolated appear to be affected in translational and post-translational regulatory processes of thylakoid membrane biogenesis or in structural genes encoding constituent subunits of the thylakoid protein complexes.
Collapse
Affiliation(s)
- J Meurer
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
26
|
Schüssler P, Gohr LG, Sommer G, Kunz W, Grevelding CG. Combined isolation of nucleic acids and protein from small amounts of tissue. Trends Genet 1995; 11:378-9. [PMID: 7482759 DOI: 10.1016/s0168-9525(00)89114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P Schüssler
- Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Rosche E, Westhoff P. Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia (Asteraceae). PLANT MOLECULAR BIOLOGY 1995; 29:663-78. [PMID: 8541493 DOI: 10.1007/bf00041157] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pyruvate orthophosphate dikinase (PPDK) is a key enzyme of C4 photosynthesis providing the acceptor molecule for the primary CO2 fixation in the mesophyll cells. Here we present the isolation and characterisation of the corresponding gene (termed pdk) from the C4 plant Flaveria trinervia (Asteraceae). Southern analysis indicates that in contrast to maize pdk sequences in F. trinervia are present as single copy. Sequence analysis of the entire gene reveals that its coding sequence is identical to the previous isolated PPDK-cDNA from this species. The gene spans about 13 kb and consists of 21 exons, it thus contains two additional exons compared to the maize gene. As in maize, a long intervening sequence of 6.1 kb is positioned at the boundary of the transit peptide segment and the mature protein region. Pdk transcripts accumulate abundantly in leaves, but are also detectable in stems and roots. While the leaf and stem transcripts are 3.4 kb in size and encode the chloroplastic PPDK isoform, a 3.0 kb transcript lacking the region encoding the plastidic transit peptide accumulates in roots. Thus two different transcripts can be produced from a single pdk gene most likely by use of alternative promoters and not by alternative splicing. The accumulation of the 3.4 kb transcript is under light control. Darkening leads to a drastic depletion of this transcript in both leaves and stems. Instead, the 3.0 kb transit peptide-lacking pdk transcript accumulates, but only in stems and roots, not in leaves.
Collapse
Affiliation(s)
- E Rosche
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
28
|
Rosche E, Streubel M, Westhoff P. Primary structure of the photosynthetic pyruvate orthophosphate dikinase of the C3 plant Flaveria pringlei and expression analysis of pyruvate orthophosphate dikinase sequences in C3, C3-C4 and C4 Flaveria species. PLANT MOLECULAR BIOLOGY 1994; 26:763-769. [PMID: 7948930 DOI: 10.1007/bf00013761] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have isolated full-size cDNA sequences encoding the photosynthetic isoform of pyruvate orthophosphate dikinase (PPDK) of the C3 plant Flaveria pringlei. The encoded protein shares 96% identical amino acid residues with the C4 isoform of PPDK in the C4 species F. trinervia. The differing amino acid residues are evenly distributed along the polypeptide chain. Genomic Southern analysis of photosynthetic PPDK sequences in F. pringlei (C3), F. chloraefolia (C3-C4), F. linearis (C3-C4), F. floridana (C3-C4), F. brownii (C4-like) and F. trinervia (C4) reveals a simple hybridization pattern which is suggestive of a single gene. Northern hybridization experiments show that the abundance of PPDK transcripts in leaves correlates with the degree of C4 characteristics expressed in the various photosynthetic types analysed. This finding demonstrates that the increase in expression levels must have played a crucial role in evolving the C4-PPDK gene in the genus Flaveria.
Collapse
Affiliation(s)
- E Rosche
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
29
|
Kubicki A, Steinmüller K, Westhoff P. Differential transcription of plastome-encoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 plants maize and Sorghum. PLANT MOLECULAR BIOLOGY 1994; 25:669-79. [PMID: 8061319 DOI: 10.1007/bf00029605] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The transcription of plastome-encoded genes in mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 species Zea mays L. (maize) and Sorghum bicolor (L.) Moench. was investigated. RNA accumulation and transcription were assayed starting from isolated mesophyll and bundle-sheath chloroplasts and using quantitative northern and run-on transcription analysis. Determination of the mesophyll to bundle-sheath ratios of transcript abundance in maize and Sorghum chloroplasts showed that the mRNAs of the plastome-encoded photosystem II genes analysed (psbA, psbB, psbD, psbH and psbE/F) varied from 2.5- to 4.0-fold (maize) and 3.1- to 5.2-fold (Sorghum), respectively. The rbcL transcript, in contrast, was more abundant in bundle-sheath chloroplasts of both species, about 3-fold in maize and more than 10-fold in Sorghum. On the other hand, transcripts of genes encoding the 16S ribosomal RNA (r16) and subunits of photosystem I (psaA) and the cytochrome b/f complex (petB, petA) accumulated to similar levels in both types of chloroplasts. Determination of absolute transcript levels for rbcL and psbA in chloroplasts from maize and Sorghum demonstrated that for both genes, the mesophyll to bundle-sheath differences in transcript abundance were more pronounced in Sorghum. Measurements of the transcriptional activities of rbcL and psbA showed that the transcription rate of rbcL is higher in bundle-sheath chloroplasts while psbA is more actively transcribed in mesophyll chloroplasts. The differences in the transcription rates between the two chloroplast types were again more pronounced in Sorghum, thus reflecting the differences between maize and Sorghum in the relative levels of the rbcL and psbA transcripts. However, although transcription rate and mRNA abundance are correlated, they did not exactly match one another. This indicates additional regulation of transcript abundance at the level of RNA stability.
Collapse
Affiliation(s)
- A Kubicki
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Tae GS, Cramer WA. Truncation of the COOH-terminal domain of the psbE gene product in Synechocystis sp. PCC 6803: requirements for photosystem II assembly and function. Biochemistry 1992; 31:4066-74. [PMID: 1567853 DOI: 10.1021/bi00131a024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The COOH-terminal domain of the 80-residue cytochrome b559 alpha-subunit (psbE gene product) in Synechocystis sp. PCC 6803 was sequentially truncated in order to determine the minimum polypeptide length needed for function and assembly. A stop codon was introduced into the Arg-50, Arg-59, or Tyr-69 codons of the psbE gene, generating mutants truncated by 31, 22, and 12 residues, respectively. Removal of 12 residues caused a decrease of 20% in PSII function. Truncation of 22 or 31 residues caused a large decrease (60-85%) in the photoautotrophic growth rate, the rate of O2 evolution, and the amplitude of the 77 K 696-nm fluorescence, and a concomitant increase in the constant yield fraction (F0/Fmax) of the chlorophyll fluorescence. The level of residual activity in the Arg50-stop mutant was 10-20% of the wild type, which was reflected in a similar low level of immunochemically detected D2 polypeptide. Quantitation of the PSII reaction center stoichiometry of the Arg50-stop mutant by analysis of [14C]DCMU binding also showed a 5-fold decrease (1:910 Chl in wild type and 1:5480 Chl in R50) in the PSII reaction center concentration. However, the KD value for DCMU in the residual 15% of the complexes to which it bound was approximately equal to that (25 nM) of the wild type. Northern blot analysis showed no decrease in the b559 psbE mRNA level. Chemical difference spectral analysis of heme content indicated that the level of native cytochrome b559 heme in the Arg50-stop mutant (1:640 Chl) was 80% that of wild type (1:510 Chl).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G S Tae
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
31
|
|
32
|
Hermans J, Westhoff P. Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Flaveria trinervia (C4) and F. pringlei (C3). MOLECULAR & GENERAL GENETICS : MGG 1990; 224:459-68. [PMID: 2266948 DOI: 10.1007/bf00262441] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPCase) was shown to be encoded by a multigene family in various Flaveria species analysed. Several clones were isolated from genomic libraries of F. pringlei (C3 species) and F. trinervia (C4 species) and classified into four distinct groups according to their hybridization behaviour to a full-length cDNA clone encoding the PEPCase C4 isozyme of F. trinervia. A detailed cross-hybridization analysis demonstrated that the closest relative of most of the PEPCase genes isolated from F. trinervia and F. pringlei was not found in the same but in the other species. Northern analysis, using stringent conditions, allowed discrimination of class-specific PEPCase transcripts and revealed characteristic organ-specific expression patterns.
Collapse
Affiliation(s)
- J Hermans
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
33
|
Rosche E, Westhoff P. Primary structure of pyruvate, orthophosphate dikinase in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett 1990; 273:116-21. [PMID: 2172023 DOI: 10.1016/0014-5793(90)81064-u] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have isolated and characterized cDNA clones encoding the entire precursor for the leafspecific isoform of pyruvate, orthophosphate dikinase (PPDK) from the dicotyledonous C4 plant Flaveria trinervia. The deduced amino acid sequence reveals a high degree of similarity to the corresponding maize protein indicating a common evolutionary basis. However, no significant similarities are apparent upon comparison of the putative transit peptides. The implications of this divergence are discussed with respect to the evolution of PPDK genes.
Collapse
Affiliation(s)
- E Rosche
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, FRG
| | | |
Collapse
|