1
|
Castillo P, Cutiño-Avila BV, González-Bacerio J, Chávez Planes MDLÁ, Díaz Brito J, Guisán Seijas JM, Del Monte-Martínez A. Rational design of biocatalysts based on covalent immobilization of acylase enzymes. Enzyme Microb Technol 2023; 171:110323. [PMID: 37703637 DOI: 10.1016/j.enzmictec.2023.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Acylases catalyze the hydrolysis of amide bonds. Penicillin G acylase (PGA) is used for the semi-synthesis of penicillins and cephalosporins. Although protein immobilization increases enzyme stability, the design of immobilized systems is difficult and usually it is empirically performed. We describe a novel application of our strategy for the Rational Design of Immobilized Derivatives (RDID) to produce optimized acylase-based immobilized biocatalysts for enzymatic bioconversion. We studied the covalent immobilization of the porcine kidney aminoacylase-1 onto aldehyde-based supports. Predictions of the RDID1.0 software and the experimental results led to the selection of glyoxyl-Sepharose CL 4B support and pH 10.0. One of the predicted clusters of reactive amino groups generates an enzyme-support configuration with highly accessible active sites, contributing with 82% of the biocatalyst's total activity. For Escherichia coli PGA, the predictions and experimental results show similar maximal amounts of immobilized protein and activity at pH 8.0 and 10.0 on glyoxyl-Sepharose CL 10B. However, thermal stability of the immobilized derivative is higher at pH 10.0 due to an elevated probability of multipoint covalent attachment. In this case, two clusters of amino groups are predicted to be relevant for PGA immobilization in catalytically competent configurations at pH 10.0, showing accessible active sites and contributing with 36% and 44% of the total activity, respectively. Our results support the usefulness of the RDID strategy to model different protein engineering approaches (site-directed mutagenesis or obtainment of fusion proteins) and select the most promising ones, saving time and laboratory work, since the in silico-designed modified proteins could have higher probabilities of success on bioconversion processes.
Collapse
Affiliation(s)
- Patricio Castillo
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Bessy V Cutiño-Avila
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba.
| | - María de Los Ángeles Chávez Planes
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Joaquín Díaz Brito
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | | | - Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba.
| |
Collapse
|
2
|
Marešová H, Palyzová A, Plačková M, Grulich M, Rajasekar VW, Štěpánek V, Kyslíková E, Kyslík P. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol (Praha) 2017; 62:417-424. [PMID: 28281229 DOI: 10.1007/s12223-017-0512-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 02/07/2023]
Abstract
This study deals with the potential of Pichia pastoris X-33 for the production of penicillin G acylase (PGAA) from Achromobacter sp. CCM 4824. Synthetic gene matching the codon usage of P. pastoris was designed for intracellular and secretion-based production strategies and cloned into vectors pPICZ and pPICZα under the control of AOX1 promoter. The simple method was developed to screen Pichia transformants with the intracellularly produced enzyme. The positive correlation between acylase production and pga gene dosage for both expression systems was demonstrated in small scale experiments. In fed-batch bioreactor cultures of X-33/PENS2, an extracellular expression system, total PGAA expressed from five copies reached 14,880 U/L of an active enzyme after 142 h; however, 60% of this amount retained in the cytosol. The maximum PGAA production of 31,000 U/L was achieved intracellularly from nine integrated gene copies of X-33/PINS2 after 90 h under methanol induction. The results indicate that in both expression systems the production level of PGAA is similar but there is a limitation in secretion efficiency.
Collapse
Affiliation(s)
- Helena Marešová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Martina Plačková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague 2, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | | | - Václav Štěpánek
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Eva Kyslíková
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Pavel Kyslík
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
3
|
An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-013-0607-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR. Appl Microbiol Biotechnol 2014; 98:4467-77. [DOI: 10.1007/s00253-013-5476-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/27/2022]
|
5
|
Torres LL, Ferreras ER, Cantero A, Hidalgo A, Berenguer J. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Microb Cell Fact 2012; 11:105. [PMID: 22876915 PMCID: PMC3461476 DOI: 10.1186/1475-2859-11-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/03/2012] [Indexed: 12/23/2022] Open
Abstract
Background Penicillin acylases (PACs) are enzymes of industrial relevance in the manufacture of β-lactam antibiotics. Development of a PAC with a longer half-life under the reaction conditions used is essential for the improvement of the operational stability of the process. A gene encoding a homologue to Escherichia coli PAC was found in the genome of the thermophilic bacterium Thermus thermophilus (Tth) HB27. Because of the nature of this PAC and its complex maturation that is crucial to reach its functional heterodimeric final conformation, the overexpression of this enzyme in a heterologous mesophilic host was a challenge. Here we describe the purification and characterization of the PAC protein from Tth HB27 overexpressed in Escherichia coli. Results Fusions to a superfolder green fluorescent protein and differential membrane solubilization assays indicated that the native enzyme remains attached through its amino-terminal end to the outer side of the cytoplasmic membrane of Tth cells. In order to overexpress this PAC in E. coli cells, a variant of the protein devoid of its membrane anchoring segment was constructed. The effect of the co-expression of chaperones and calcium supplementation of the culture medium was investigated. The total production of PAC was enhanced by the presence of DnaK/J and GrpE and even more by trigger factor and GroEL/ES. In addition, 10 mM calcium markedly improved both PAC specific and volumetric activities. Recombinant PAC was affinity-purified and proper maturation of the protein was confirmed by SDS-PAGE and MALDI-TOF analysis of the subunits. The recombinant protein was tested for activity towards several penicillins, cephalosporins and homoserine lactones. Hydrophobic acyl-chain penicillins were preferred over the rest of the substrates. Penicillin K (octanoyl penicillin) was the best substrate, with the highest specificity constant value (16.12 mM-1.seg-1). The optimum pH was aprox. 4 and the optimum temperature was 75 °C. The half-life of the enzyme at this temperature was 9.2 h. Conclusions This is the first report concerning the heterologous expression of a pac gene from a thermophilic microorganism in the mesophilic host E. coli. The recombinant protein was identified as a penicillin K-deacylating thermozyme.
Collapse
Affiliation(s)
- Leticia L Torres
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Varshney NK, Suresh Kumar R, Ignatova Z, Prabhune A, Pundle A, Dodson E, Suresh CG. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:273-7. [PMID: 22442220 PMCID: PMC3310528 DOI: 10.1107/s1744309111053930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022]
Abstract
The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222(1), with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 , and P4(1)2(1)2, with unit-cell parameters a = b = 85.6, c = 298.8 . Data were collected at 293 and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G cylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme.
Collapse
Affiliation(s)
| | - R. Suresh Kumar
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Zoya Ignatova
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Asmita Prabhune
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Archana Pundle
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | - Eleanor Dodson
- York Structural Biology Laboratory, University of York, York YO10 5DD, England
| | - C. G. Suresh
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
7
|
Bernardino SM, Fernandes P, Fonseca LP. Improved specific productivity in cephalexin synthesis by immobilized PGA in silica magnetic micro-particles. Biotechnol Bioeng 2010; 107:753-62. [DOI: 10.1002/bit.22867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Bolivar JM, Rocha-Martin J, Godoy C, Rodrigues RC, Guisan JM. Complete reactivation of immobilized derivatives of a trimeric glutamate dehydrogenase from Thermus thermophillus. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Lo HF, Chou WM, Chen PJ, Lin LL. Influence of signal-peptide truncations on the functional expression of Escherichia coli gamma -glutamyltranspeptidase. J Basic Microbiol 2008; 48:260-8. [PMID: 18720502 DOI: 10.1002/jobm.200700325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The full-length Escherichia coli gamma -glutamyltranspeptidase (EcGGT) gene and five truncations lacking 33, 51, 54, 60, and 78 bp respectively at the 5' end were prepared by polymerase chain reaction and cloned into the expression vector pQE-30. Isopropyl-beta -D-thiogalactopyranoside induction of E. coli M15 cells bearing the recombinant plasmids resulted in the intracellular production of the expressed proteins, EcGGT, EcGGT/DeltaN11, EcGGT/DeltaN17, EcGGT/DeltaN18, EcGGT/DeltaN20, and EcGGT/DeltaN26. The overexpressed enzymes were purified to near homogeneity by Ni(2+)-NTA resin. The specific activity for EcGGT, EcGGT/DeltaN11 and EcGGT/DeltaN17 was 5.3, 4.9, and 4.8 U/mg protein respectively, whereas the rest three enzymes had shown no GGT activity under the enzyme assay conditions. More than 94% of the activity was found in the cytoplasmic fraction of E. coli M15 cells harboring pQE-EcGGT, pQE-EcGGT/DeltaN11 or pQE-EcGGT/DeltaN17. Western blot analysis confirmed that the majority of N-terminally truncated enzymes were present in the cytoplasm.
Collapse
Affiliation(s)
- Huei-Fen Lo
- Department of Food and Nutrition, Hungkuang University, Shalu, Taichung, Taiwan
| | | | | | | |
Collapse
|
10
|
Narayanan N, Follonier S, Chou CP. In vivo monitoring and alleviation of extracytoplasmic stress to recombinant protein overproduction in the periplasm of Escherichia coli. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Goddard AD, Moir JWB, Richardson DJ, Ferguson SJ. Interdependence of two NarK domains in a fused nitrate/nitrite transporter. Mol Microbiol 2008; 70:667-81. [PMID: 18823285 DOI: 10.1111/j.1365-2958.2008.06436.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed.
Collapse
Affiliation(s)
- Alan D Goddard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | |
Collapse
|
12
|
Development and application of a novel signal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four tat pathway signal peptides from Bacillus subtilis were monitored. Mol Biotechnol 2008; 39:225-30. [PMID: 18253868 DOI: 10.1007/s12033-008-9030-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
In this study, we have developed a novel, versatile signal peptide probe vector driven by promoter P43 in Bacillus subtilis WB700, using Penicillin G Acylase (PGA) as reporter. Twenty-four signal peptides considered belonging to twin-arginine translocation (Tat) pathway were cloned into the probe vector to direct the secretion expression of PGA, respectively. Through 6-nitro-3-phenylacetamidobenzoic acid (NIPAB) filter paper assay, four signal peptides (AmyX, AlbB, LipA, and YmzC) were chosen for further investigation. The extracellular production of PGA demonstrated that these recombinants mediated efficient secretion expression in B. subtilis WB700, in which the maximum activity reached 0.11, 0.21, 0.08, and 0.26 U/mL, respectively. Thus, we provided an efficient tool for easy detection of the signal peptides in B. subtilis, and demonstrated the efficiency of Tat pathway signal peptides via PGA secretion in B. subtilis WB700.
Collapse
|
13
|
Cecchini DA, Serra I, Ubiali D, Terreni M, Albertini AM. New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase. BMC Biotechnol 2007; 7:54. [PMID: 17845725 PMCID: PMC2045090 DOI: 10.1186/1472-6750-7-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background Immobilized Penicillin G Acylase (PGA) derivatives are biocatalysts that are industrially used for the hydrolysis of Penicillin G by fermentation and for the kinetically controlled synthesis of semi-synthetic β-lactam antibiotics. One of the most used supports for immobilization is glyoxyl-activated agarose, which binds the protein by reacting through its superficial Lys residues. Since in E. coli PGA Lys are also present near the active site, an immobilization that occurs through these residues may negatively affect the performance of the biocatalyst due to the difficult diffusion of the substrate into the active site. A preferential orientation of the enzyme with the active site far from the support surface would be desirable to avoid this problem. Results Here we report how it is possible to induce a preferential orientation of the protein during the binding process on aldehyde activated supports. A superficial region of PGA, which is located on the opposite side of the active site, is enriched in its Lys content. The binding of the enzyme onto the support is consequently forced through the Lys rich region, thus leaving the active site fully accessible to the substrate. Different mutants with an increasing number of Lys have been designed and, when active, immobilized onto glyoxyl agarose. The synthetic performances of these new catalysts were compared with those of the immobilized wild-type (wt) PGA. Our results show that, while the synthetic performance of the wt PGA sensitively decreases after immobilization, the Lys enriched mutants have similar performances to the free enzyme even after immobilization. We also report the observations made with other mutants which were unable to undergo a successful maturation process for the production of active enzymes or which resulted toxic for the host cell. Conclusion The desired orientation of immobilized PGA with the active site freely accessible can be obtained by increasing the density of Lys residues on a predetermined region of the enzyme. The newly designed biocatalysts display improved synthetic performances and are able to maintain a similar activity to the free enzymes. Finally, we found that the activity of the immobilized enzyme proportionally improves with the number of introduced Lys.
Collapse
Affiliation(s)
- Davide A Cecchini
- Dipartimento di Genetica e Microbiologia, via Ferrata 1, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Immacolata Serra
- Dipartimento di Chimica Farmaceutica, Pharmaceutical Biocatalysis Laboratories, via Taramelli 12, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Daniela Ubiali
- Dipartimento di Chimica Farmaceutica, Pharmaceutical Biocatalysis Laboratories, via Taramelli 12, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Marco Terreni
- Dipartimento di Chimica Farmaceutica, Pharmaceutical Biocatalysis Laboratories, via Taramelli 12, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Alessandra M Albertini
- Dipartimento di Genetica e Microbiologia, via Ferrata 1, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
14
|
Kim CK, Lee SY, Kwon OJ, Lee SM, Nah SY, Jeong SM. Secretory expression of active clostripain in Escherichia coli. J Biotechnol 2007; 131:346-52. [PMID: 17767971 DOI: 10.1016/j.jbiotec.2007.07.936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 11/20/2022]
Abstract
In this study, the clostripain gene was modified and its signal sequence was replaced with that of penicillin G acylase (PGA). The core clostripain protein fused to the PGA signal peptide was also prepared. With regard to the expression of the clostripain precursors, the majority of clostripain activity was observed in the culture media, thereby indicating that both the clostripain signal peptide and the PGA signal peptide were recognized in the E. coli secretion pathway, and the precursors successfully matured into the active form. Otherwise, the activity was rather low when the core protein was expressed, which indicates that the clostripain pro-peptide is important in the formation of the active enzyme in E. coli. Enzyme activity reached a value of 3200U/L in CGY media for high expression. The recombinant clostripain and porcine carboxypeptidase B were used in the conversion of a proinsulin fusion protein into insulin. The leader peptide (LP) and the proinsulin C-peptide appeared to have been removed simultaneously, and the final cleavage product evidenced an HPLC retention time identical to that of the insulin standard, thereby implying that the clostripain specifically cleaved the arginine residues in the LP and in the C-peptide. We have also demonstrated the possibility that the recombinant clostripain might prove useful in the production of insulin from the proinsulin fusion protein.
Collapse
Affiliation(s)
- Chang-Kyu Kim
- College of Animal Bioscience & Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Jager SA, Jekel PA, Janssen DB. Hybrid penicillin acylases with improved properties for synthesis of β-lactam antibiotics. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wu MS, Pan KL, Chou CP. Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase inEscherichia coli. Biotechnol Bioeng 2007; 96:956-66. [PMID: 16977620 DOI: 10.1002/bit.21161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-level expression of recombinant penicillin acylase (PAC) using the strong trc promoter system in Escherichia coli is frequently limited by the processing and folding of PAC precursors (proPAC) in the periplasm, resulting in physiological stress and inclusion body formation in this compartment. Periplasmic heat-shock proteins with protease or chaperone activity potentially offer a promise for overcoming this technical hurdle. In this study, the effect of the two genes encoding periplasmic heat-shock proteins, that is degP and fkpA, on pac overexpression was investigated and manipulation of the two genes to enhance the production of recombinant PAC was demonstrated. Both DeltadegP and DeltafkpA mutants showed defective culture performance primarily due to growth arrest. However, pac expression level was not seriously affected by the mutations, indicating that the two proteins were not directly involved in the pathway for periplasmic processing of proPAC. The growth defect caused by the two mutations (i.e., DeltadegP and DeltafkpA) was complemented by either one of the wild-type proteins, implying that the function of the two proteins could partially overlap in cells overexpressing pac. The possible role that the two heat-shock proteins played for suppression of physiological stress caused by pac overexpression is discussed.
Collapse
Affiliation(s)
- Ming-Shen Wu
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | | |
Collapse
|
17
|
Zhang D, Koreishi M, Imanaka H, Imamura K, Nakanishi K. Cloning and characterization of penicillin V acylase from Streptomyces mobaraensis. J Biotechnol 2007; 128:788-800. [PMID: 17289203 DOI: 10.1016/j.jbiotec.2006.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/14/2006] [Accepted: 12/22/2006] [Indexed: 11/24/2022]
Abstract
We report on the molecular cloning and characterization of penicillin V acylase (PVA) from an actinomycete, Streptomyces mobaraensis (Sm-PVA), which was originally isolated as an acylase that efficiently hydrolyzes the amide bond of various N-fatty-acyl-l-amino acids and N-fatty-acyl-peptides as well as capsaicin (8-methyl-N-vanillyl-6-nonenamide). In addition, the purified Sm-PVA hydrolyzed penicillin V with the highest activity (k(cat)) among the PVAs so far reported, penicillin G, and 2-nitro-5-phenoxyacetamide benzoic acid. The BLAST search revealed that the Sm-PVA precursor is composed of a polypeptide that is characteristic of enzymes belonging to the beta-lactam acylase family with four distinct segments; a signal sequence (43 amino acids), an alpha subunit (173 amino acids), a linker peptide (28 amino acids), and a beta subunit (570 amino acids). The mature, active Sm-PVA is a heterodimeric protein with alpha and beta subunits, in contrast to PVAs isolated from Bacillus sphaericus and B. subtilis, which have a homotetrameric structure. The amino acid sequence of Sm-PVA showed identities to PVA from S. lavendulae, N-acylhomoserine lactone-degrading acylase from Streptomyces sp., cyclic lipopeptide acylase from Streptomyces sp., and aculeacin A acylase from Actinoplanes utahensis with 68, 67, 67, and 41% identities, respectively.
Collapse
Affiliation(s)
- Demin Zhang
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, 3-1-1, Tsushima-Naka, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
18
|
Xu Y, Rosenkranz S, Weng CL, Scharer JM, Moo-Young M, Chou CP. Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:529-36. [PMID: 16411086 DOI: 10.1007/s00253-005-0293-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/04/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-beta-D-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Yali Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 Canada
| | | | | | | | | | | |
Collapse
|
19
|
Senerovic L, Stankovic N, Spizzo P, Basso A, Gardossi L, Vasiljevic B, Ljubijankic G, Tisminetzky S, Degrassi G. High-level production and covalent immobilization ofProvidencia rettgeri penicillin G acylase (PAC) from recombinantPichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng 2006; 93:344-54. [PMID: 16259000 DOI: 10.1002/bit.20728] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A complete, integrated process for the production of an innovative formulation of penicillin G acylase from Providencia rettgeri(rPAC(P.rett))of industrial applicability is reported. In order to improve the yield of rPAC, the clone LN5.5, carrying four copies of pac gene integrated into the genome of Pichia pastoris, was constructed. The proteinase activity of the recombinant strain was reduced by knockout of the PEP4 gene encoding for proteinase A, resulting in an increased rPAC(P.rett) activity of approximately 40% (3.8 U/mL vs. 2.7 U/mL produced by LN5.5 in flask). A high cell density fermentation process was established with a 5-day methanol induction phase and a final PAC activity of up to 27 U/mL. A single step rPAC(P.rett) purification was also developed with an enzyme activity yield of approximately 95%. The novel features of the rPAC(P.rett) expressed in P.pastoris were fully exploited and emphasized through the covalent immobilization of rPAC(P.rett). The enzyme was immobilized on a series of structurally correlated methacrylic polymers, specifically designed and produced for optimizing rPAC(P.rett) performances in both hydrolytic and synthetic processes. Polymers presenting aminic functionalities were the most efficient, leading to formulations with higher activity and stability (half time stability >3 years and specific activity ranging from 237 to 477 U/g (dry) based on benzylpenicillin hydrolysis). The efficiency of the immobilized rPAC(P.rett) was finally evaluated by studying the kinetically controlled synthesis of beta-lactam antibiotics (cephalexin) and estimating the synthesis/hydrolysis ratio (S/H), which is a crucial parameter for the feasibility of the process.
Collapse
Affiliation(s)
- Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Narayanan N, Xu Y, Chou CP. High-Level Gene Expression for Recombinant Penicillin Acylase Production Using thearaBPromoter System inEscherichia coli. Biotechnol Prog 2006. [DOI: 10.1002/bp060135u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Xu Y, Weng CL, Narayanan N, Hsieh MY, Anderson WA, Scharer JM, Moo-Young M, Chou CP. Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli. Appl Environ Microbiol 2005; 71:6247-53. [PMID: 16204545 PMCID: PMC1265976 DOI: 10.1128/aem.71.10.6247-6253.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the leaderless pac gene (LL pac), which lacks the coding region for the signal peptide of penicillin acylase (PAC), in Escherichia coli was conducted. It was demonstrated that the PAC precursor, proPAC, can be produced and even processed to form mature PAC in the cytoplasm, indicating that the posttranslational processing steps for PAC maturation can occur in both the periplasm and the cytoplasm of E. coli. The outcome of proPAC folding and PAC maturation could be affected by several factors, such as inducer type, proPAC formation rate, and chaperone availability. Misfolding of proPAC in the cytoplasm could be partially resolved through the coexpression of cytoplasmic chaperones, such as trigger factor, GroEL/ES, or DnaK/J-GrpE. The three chaperones tested showed different extents of the effect on proPAC solublization and PAC maturation, and trigger factor had the most prominent one. However, the chaperone-mediated solublization of proPAC did not guarantee its maturation, which is usually limited by the first autoproteolytic step. It was observed that arabinose could act as an effective inducer for the induction of LL pac expression regulated by the lac-derived promoter system of trc. In addition, PAC maturation could be highly facilitated by arabinose supplementation and coexpression of trigger factor, suggesting that the coordination of chaperone systems with proper culture conditions could dramatically impact recombinant protein production. This study suggests that folding/misfolding of proPAC could be a major step limiting the overproduction of PAC in E. coli and that the problem could be resolved through the search for appropriate chaperones for coexpression. It also demonstrates the analogy in the issues of proPAC misfolding as well as the expression bottleneck occurring in the cytoplasm (i.e., LL pac expression) and those occurring in the periplasm (i.e., wild-type pac expression).
Collapse
Affiliation(s)
- Yali Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chou CP, Kuo BY, Lin WJ. Optimization of the host/vector system and culture conditions for production of penicillin acylase in Escherichia coli. J Biosci Bioeng 2005; 88:160-7. [PMID: 16232591 DOI: 10.1016/s1389-1723(99)80195-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1999] [Accepted: 04/26/1999] [Indexed: 10/18/2022]
Abstract
Culture performance for the production of penicillin acylase (PAC) in a bioreactor was investigated using HB101 or ATCC11105 as the host and pCLL2902, pCLL3201 or pTrcKnPAC2902 as the expression plasmid. We observed that the production of PAC by HB101 harboring pCLL3201 was, similar to ATCC11105, induced by phenyl acetic acid (PAA) and catabolicaily repressed by glucose, whereas the production of PAC by HB101 harboring pCLL2902 did not require PAA for induction and was not repressed by glucose. PAC activity of HB101 harboring pCLL2902 was significantly higher than that of HB101 harboring pCLL3201. There was no significant effect of host or carbon source on the production of PAC using pCLL2902. The production of PAC by HB101 harboring pTrcKnPAC2902, in which the pac gene expression was controlled by the trc promoter system, was about the same as that by HB101 harboring pCLL2902, when the culture was appropriately induced with isopropyl beta-d-thiogalactopyranoside (IPTG). Therefore, the use of both pCLL2902 and pTrcKnPAC2902 could be expected to be feasible for industrial applications. However, optimization of IPTG induction for HB101 harboring pTrcKnPAC2902 might be required, since formation of inclusion bodies tends to limit the production of PAC in some cases.
Collapse
Affiliation(s)
- C P Chou
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
23
|
Ignatova Z, Wischnewski F, Notbohm H, Kasche V. Pro-sequence and Ca2+-binding: Implications for Folding and Maturation of Ntn-hydrolase Penicillin Amidase from E.coli. J Mol Biol 2005; 348:999-1014. [PMID: 15843029 DOI: 10.1016/j.jmb.2005.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 11/26/2022]
Abstract
Penicillin amidase (PA) is a bacterial periplasmic enzyme synthesized as a pre-pro-PA precursor. The pre-sequence mediates membrane translocation. The intramolecular pro-sequence is expressed along with the A and B chains but is rapidly removed in an autocatalytic manner. In extensive studies we show here that the pro-peptide is required for the correct folding of PA. Pro-PA and PA unfold via a biphasic transition that is more pronounced in the case of PA. According to size-exclusion chromatography and limited proteolysis experiments, the inflection observed in the equilibrium unfolding curves corresponds to an intermediate in which the N-terminal domain (A-chain) still possesses native-like topology, whereas the B-chain is unfolded to a large extent. In a series of in vitro experiments with a slow processing mutant pro-PA, we show that the pro-sequence in cis functions as a folding catalyst and accelerates the folding rate by seven orders of magnitude. In the absence of the pro-domain the PA refolds to a stable inactive molten globule intermediate that has native-like secondary but little tertiary structure. The pro-sequence of the homologous Alcaligenes faecalis PA can facilitate the folding of the hydrolase domain of Escherichia coli PA when added in trans (as a separate polypeptide chain). The isolated pro-sequence has a random structure in solution. However, difference circular dichroism spectra of native PA and native PA with pro-peptide added in trans suggest that the pro-sequence adopts an alpha-helical conformation in the context of the mature PA molecule. Furthermore, our results establish that Ca2+, found in the crystal structure, is not directly involved in the folding process. The cation shifts the equilibrium towards the native state and facilitates the autocatalytic processing of the pro-peptide.
Collapse
Affiliation(s)
- Zoya Ignatova
- Institute of Biotechnology II, Technical University Hamburg-Harburg, Denickestr. 15, 21073 Hamburg, Germany.
| | | | | | | |
Collapse
|
24
|
Cai G, Zhu S, Yang S, Zhao G, Jiang W. Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: probing the molecular basis for its high thermostability. Appl Environ Microbiol 2004; 70:2764-70. [PMID: 15128530 PMCID: PMC404452 DOI: 10.1128/aem.70.5.2764-2770.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a novel penicillin G acylase (PGA), designated pgaW, was cloned from Achromobacter xylosoxidans and overexpressed in Escherichia coli. The pgaW gene contains an open reading frame of 2586 nucleotides. The deduced protein sequence encoded by pgaW has about 50% amino acid identity to several well-characterized PGAs, including those of Providencia rettgeri, Kluyvera cryocrescens, and Escherichia coli. Biochemical studies showed that the optimal temperature for this novel PGA (PGA650) activity is greater than 60 degrees C and its half-life of inactivation at 55 degrees C is four times longer than that of another previously reported thermostable PGA from Alcaligenes faecalis (R. M. D. Verhaert, A. M. Riemens, J. V. R. Laan, J. V. Duin, and W. J. Quax, Appl. Environ. Microbiol. 63:3412-3418, 1997). To our knowledge, this is the most thermostable PGA ever characterized. To explore the molecular basis of the higher thermostability of PGA650, homology structural modeling and amino acid composition analyses were performed. The results suggested that the increased number of buried ion pair networks, lower N and Q contents, excessive arginine residues, and remarkably high content of proline residues in the structure of PGA650 could contribute to its high thermostability. The unique characteristic of higher thermostability of this novel PGA provides some advantages for its potential application in industry.
Collapse
Affiliation(s)
- Gang Cai
- Laboratory of Molecular Microbiology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Nagao K, Yamashita M, Ueda M. Production of autoproteolytically subunit-assembled 7-?-(4-carboxybutanamido)cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 using a chitin-binding domain. Appl Microbiol Biotechnol 2004; 65:407-13. [PMID: 15221226 DOI: 10.1007/s00253-004-1632-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 02/21/2004] [Accepted: 04/04/2004] [Indexed: 11/26/2022]
Abstract
7-Beta-(4-Carboxybutanamido)cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 is known as a proteolytically processed bacterial enzyme. GL-7ACA acylase from Pseudomonas sp. C427 (C427) consists of alpha- and beta-subunits that are processed from a precursor peptide by removing the spacer peptide. A chitin-binding domain (CBD) of chitinase A1 derived from Bacillus circulans was genetically fused into four different positions of the C427-encoding gene. In the four enzymes thereby produced, Nalpha427, SP427, Calpha427, and Cbeta427, it was fused, respectively, to the N-terminal region of the alpha-subunit; the C-terminal region of the alpha-subunit; the three-amino-acid upper region of the C-terminal of the alpha-subunit; and to the C-terminal region of the beta-subunit. All of the fusion enzymes, expressed in Eschericha coli, were successfully processed into active forms and had GL-7ACA acylase activity. The affinity-binding activity to crystalline chitin was affected by the fusing position of CBD. Nalpha427, Calpha427, and Cbeta427 remained fused to the CBD after their processing steps and could bind to chitin, but in the case of SP427 the fused CBD was cleaved away during the processing steps and binding activity was no longer observed. These results indicate that CBD is functional in such autoproteolytically subunit-assembled acylases.
Collapse
Affiliation(s)
- Koji Nagao
- Fermentation Development Laboratories, Fujisawa Pharmaceutical Co. Ltd, 156, Nakagawara, Shinkawa-cho, 452-0915, Nishikasugai-gun, Aichi, Japan.
| | | | | |
Collapse
|
26
|
Rajendhran J, Gunasekaran P. Recent biotechnological interventions for developing improved penicillin G acylases. J Biosci Bioeng 2004; 97:1-13. [PMID: 16233581 DOI: 10.1016/s1389-1723(04)70157-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Penicillin G acylase (PAC; EC 3.5.1.11) is the key enzyme used in the industrial production of beta-lactam antibiotics. This enzyme hydrolyzes the side chain of penicillin G and related beta-lactam antibiotics releasing 6-amino penicillanic acid (6-APA), which is the building block in the manufacture of semisynthetic penicillins. PAC from Escherichia coli strain ATCC 11105, Bacillus megaterium strain ATCC 14945 and mutants of these two strains is currently used in industry. Genes encoding for PAC from various bacterial sources have been cloned and overexpressed with significant improvements in transcription, translation and post-translational processing. Recent developments in enzyme engineering have shown that PAC can be modified to gain conformational stability and desired functionality. This review provides an overview of recent advances in the production, stabilization and application of PAC, highlighting the recent biotechnological approaches for the improved catalysis of PAC.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Microbial Technology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | |
Collapse
|
27
|
De León A, Garcı́a B, Barba de la Rosa A, Villaseñor F, Estrada A, López-Revilla R. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents. Process Biochem 2003. [DOI: 10.1016/s0032-9592(03)00079-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Pan KL, Hsiao HC, Weng CL, Wu MS, Chou CP. Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli. J Bacteriol 2003; 185:3020-30. [PMID: 12730160 PMCID: PMC154077 DOI: 10.1128/jb.185.10.3020-3030.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancement of the production of soluble recombinant penicillin acylase in Escherichia coli via coexpression of a periplasmic protease/chaperone, DegP, was demonstrated. Coexpression of DegP resulted in a shift of in vivo penicillin acylase (PAC) synthesis flux from the nonproductive pathway to the productive one when pac was overexpressed. The number of inclusion bodies, which consist primarily of protein aggregates of PAC precursors in the periplasm, was highly reduced, and the specific PAC activity was highly increased. DegP was a heat shock protein induced in response to pac overexpression, suggesting that the protein could possibly suppress the physiological toxicity caused by pac overexpression. Coexpression of DegP(S210A), a DegP mutant without protease activity but retaining chaperone activity, could not suppress the physiological toxicity, suggesting that DegP protease activity was primarily responsible for the suppression, possibly by degradation of abnormal proteins when pac was overexpressed. However, a shortage of periplasmic protease activity was not the only reason for the deterioration in culture performance upon pac overexpression because coexpression of a DegP-homologous periplasmic protease, DegQ or DegS, could not suppress the physiological toxicity. The chaperone activity of DegP is proposed to be another possible factor contributing to the suppression.
Collapse
Affiliation(s)
- Kao-Lu Pan
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan 407, Republic of China
| | | | | | | | | |
Collapse
|
29
|
Sio CF, Riemens AM, van der Laan JM, Verhaert RMD, Quax WJ. Directed evolution of a glutaryl acylase into an adipyl acylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4495-504. [PMID: 12230561 DOI: 10.1046/j.1432-1033.2002.03143.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, Groningen, the Netherlands; DSM-Gist, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Alkema WBL, Prins AK, de Vries E, Janssen DB. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli. Biochem J 2002; 365:303-9. [PMID: 12071857 PMCID: PMC1222674 DOI: 10.1042/bj20011468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, alphaArg145 and betaArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants alphaArg145-->Leu (alphaArg145Leu), alphaArg145Cys and alphaArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants betaArg263Leu, betaArg263Asn and betaArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that betaArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/K(m)) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the alphaArg145 mutants exhibited a 3-6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis-Menten complex accounts for the improved activity with beta-lactam substrates. Analysis of pH-activity profiles of wild-type enzyme and the betaArg263Lys mutant showed that betaArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which alphaArg145 is involved in binding of beta-lactam substrates and betaArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein.
Collapse
Affiliation(s)
- Wynand B L Alkema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Gümüşel F, Öztürk Sİ, Korkut NK, Gelegen Ç, Bermek E. Cloning and expression of the penicillin acylase gene (pac) from E. coli ATCC 11105. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00410-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Lin YH, Fang WL, Lin WJ, Huang SW, Chou C. Improving production of penicillin acylase in Escherichia coli via efficient DegP-mediated processing of precursors in periplasm. Process Biochem 2001. [DOI: 10.1016/s0032-9592(01)00173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Lin WJ, Huang SW, Chou CP. DegP-coexpression minimizes inclusion-body formation upon overproduction of recombinant penicillin acylase in Escherichia coli. Biotechnol Bioeng 2001; 73:484-92. [PMID: 11344453 DOI: 10.1002/bit.1083] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrated the enhancement of recombinant penicillin acylase (PAC) production in Escherichia coli by increasing the intracellular concentration of the periplasmic protease DegP. Using appropriate host/vector systems (e.g., HB101 harboring pTrcKnPAC2902 or MDDeltaP7 harboring pTrcKnPAC2902) in which the expression of the pac gene was regulated by the strong trc promoter, the overproduction of PAC was often limited by periplasmic processing and inclusion bodies composed of protein aggregates of PAC precursors were formed in the periplasm. The amount of these periplasmic inclusion bodies was significantly reduced and PAC activity was significantly increased upon coexpression of DegP. The specific PAC activity reached an extremely high level of 674 U/L/OD(600) for MDDeltaP7 harboring pTrcKnPAC2902 and pKS12 under optimum culture conditions. However, such improvement in the production of PAC was not observed for the expression systems (e.g., MDDeltaP7 harboring pCLL2902) in which the periplasmic processing was not the step limiting the production of PAC. The results suggest that DegP could in vivo assist the periplasmic processing though the enzyme is shown to be not absolutely required for the formation of active PAC in E. coli. In addition, the steps limiting the production of PAC are identified and the reasons for the formation of PAC inclusion bodies are discussed here.
Collapse
Affiliation(s)
- W J Lin
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
34
|
Chou CP, Lin W, Kuo B, Yu C. Genetic strategies to enhance penicillin acylase production in Escherichia coli. Enzyme Microb Technol 2000; 27:766-773. [PMID: 11118584 DOI: 10.1016/s0141-0229(00)00298-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We demonstrated the improvement of penicillin acylase (PAC) production by optimization of the host/vector system using genetic engineering strategies. Several expression plasmids with improved efficiency for the transcription of the pac gene and/or translation of the pac mRNA were constructed. Mutant strains, isolated by a novel screening method, were effective for use as the expression host to produce PAC. The feasibility of using the mutant strains harboring a selection of expression plasmids for the production of PAC was evaluated. The effect of the mutation(s) resulting in the improved PAC producing ability was characterized. While the production of PAC was significantly enhanced using the optimized host/vector system, the formation of PAC inclusion bodies was shown to be another step limiting the production of recombinant PAC.
Collapse
Affiliation(s)
- CP Chou
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | | | | |
Collapse
|
35
|
Lee H, Park OK, Kang HS. Identification of a new active site for autocatalytic processing of penicillin acylase precursor in Escherichia coli ATCC11105. Biochem Biophys Res Commun 2000; 272:199-204. [PMID: 10872827 DOI: 10.1006/bbrc.2000.2729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Penicillin acylase (PA) from Escherichia coli ATCC11105 is a periplasmic heterodimer consisting of a 24 kDa small subunit and a 65 kDa large subunit. It is synthesized as a single 96 kDa precursor and then matures to functional PA via a posttranslational processing pathway. The GST-PA fusion protein expression system was established for monitoring the precursor PA processing in vitro. The purified PA precursor was processed into mature PA the same way as in vivo, but pH dependently. From the primary sequence analysis, we identified a putative conserved lysine residue (K299) responsible for the pH dependent processing. The substitution of K299 residue by site-directed mutagenesis affected both the enzyme activity and the precursor PA processing in vivo. Furthermore, it was shown that the processing rates of wild-type and mutant precursor PAs depended on the pKa values of their side chain R group. These results demonstrated that the lysine residue (K299) was involved in the precursor processing of PA together with N-terminal serine residue (S290) of the large subunit.
Collapse
Affiliation(s)
- H Lee
- Department of Microbiology, College of Natural Sciences, Seoul National University, KwanakGu, Korea
| | | | | |
Collapse
|
36
|
The relative importance of intracellular proteolysis and transport on the yield of the periplasmic enzyme penicillin amidase in Escherichia coli*. Enzyme Microb Technol 2000; 26:165-170. [PMID: 10689073 DOI: 10.1016/s0141-0229(99)00130-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Intracellular proteolysis is an important mechanism for regulating the level of the periplasmic enzyme penicillin amidase in Escherichia coli. Evidence is presented that the active enzyme is localized in the periplasmic space and maturation of pro-enzyme occurs during transport through the cytoplasmic membrane or rapidly after its entrance in the periplasm. The rate constants of the transport through cytoplasmic membrane and of the intracellular proteolysis were estimated to be 0.01 h and 0.5 h, respectively. This indicates that more than 90% of the synthesized pre-pro-enzyme is lost by intracellular proteolysis occurring in the cytoplasm.
Collapse
|
37
|
Perry Chou C, Yu CC, Lin WJ, Kuo BY, Wang WC. Novel strategy for efficient screening and construction of host/vector systems to overproduce penicillin acylase inEscherichia coli. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19991020)65:2<219::aid-bit13>3.0.co;2-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kasche V, Lummer K, Nurk A, Piotraschke E, Rieks A, Stoeva S, Voelter W. Intramolecular autoproteolysis initiates the maturation of penicillin amidase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:76-86. [PMID: 10446361 DOI: 10.1016/s0167-4838(99)00155-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The penicillin amidase (PA) from Escherichia coli belongs to a group of proteolytically processed bacterial enzymes. The mechanism of the maturation of the single polypeptide proenzyme has been studied for the PA from E. coli using a slowly processing mutant proenzyme. The mutant proenzyme was constructed by replacing Thr with Gly in the Thr(263)-Ser(264) bond that must be hydrolysed in active PA. The mutant proenzyme was purified by biospecific affinity chromatography using an immobilized monoclonal antibody against PA. The maturation of the free and covalently immobilized purified proenzyme was studied in vitro. For the free proenzyme the same products with PA activity as observed in homogenates of wild-type PA-producing E. coli cells were found to be formed during this process. A kinetic analysis of the possible inter- and intramolecular processes involved in the maturation demonstrated that unambiguous evidence for the existence of intramolecular processes can only be obtained in systems where intermolecular processes are excluded. The Gly(263)-Ser(264) bond was found to be hydrolysed first in the free and immobilized mutant proenzyme, based on determinations of mass spectra, N-terminal sequences and active site concentrations. In the system with immobilized proenzyme intermolecular processes are excluded, demonstrating that this bond is hydrolysed by intramolecular autoproteolysis. Based on the known three-dimensional structure of the PA from E. coli the same maturation mechanism should apply for the wild-type proenzyme.
Collapse
Affiliation(s)
- V Kasche
- AB Biotechnologie II, TU-Hamburg-Harburg, Denickestrasse 15, D-21071, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:295-317. [PMID: 10410804 DOI: 10.1146/annurev.biophys.28.1.295] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteasomes are large multisubunit proteases that are found in the cytosol, both free and attached to the endoplasmic reticulum, and in the nucleus of eukaryotic cells. Their ubiquitous presence and high abundance in these compartments reflects their central role in cellular protein turnover. Proteasomes recognize, unfold, and digest protein substrates that have been marked for degradation by the attachment of a ubiquitin moiety. Individual subcomplexes of the complete 26S proteasome are involved in these different tasks: The ATP-dependent 19S caps are believed to unfold substrates and feed them to the actual protease, the 20S proteasome. This core particle appears to be more ancient than the ubiquitin system. Both prokaryotic and archaebacterial ancestors have been identified. Crystal structures are now available for the E. coli proteasome homologue and the T. acidophilum and S. cerevisiae 20S proteasomes. All three enzymes are cylindrical particles that have their active sites on the inner walls of a large central cavity. They share the fold and a novel catalytic mechanism with an N-terminal nucleophilic threonine, which places them in the family of Ntn (N terminal nucleophile) hydrolases. Evolution has added complexity to the comparatively simple prokaryotic prototype. This minimal proteasome is a homododecamer made from two hexameric rings stacked head to head. Its heptameric version is the catalytic core of archaebacterial proteasomes, where it is sandwiched between two inactive antichambers that are made up from a different subunit. In eukaryotes, both subunits have diverged into seven different subunits each, which are present in the particle in unique locations such that a complex dimer is formed that has six active sites with three major specificities that can be attributed to individual subunits. Genetic, biochemical, and high-resolution electron microscopy data, but no crystal structures, are available for the 19S caps. A first step toward a mechanistic understanding of proteasome activation and regulation has been made with the elucidation of the X-ray structure of the alternative, mammalian proteasome activator PA28.
Collapse
Affiliation(s)
- M Bochtler
- Max-Planck-Institut für Biochemie, Martinsried/Planegg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Li Y, Chen J, Jiang W, Mao X, Zhao G, Wang E. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:713-9. [PMID: 10411632 DOI: 10.1046/j.1432-1327.1999.00417.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C (CPC) and/or glutaryl 7-amino cephalosporanic acid (GL-7ACA) to produce 7-amino cephalosporanic acid (7-ACA). The acylase from Pseudomonas sp. 130 (CA-130) is highly active on GL-7ACA and glutaryl 7-aminodesacetoxycephalosporanic acid (GL-7ADCA), but much less active on CPC and penicillin G. The gene encoding the enzyme is expressed as a precursor polypeptide consisting of a signal peptide followed by alpha- and beta-subunits, which are separated by a spacer peptide. Removing the signal peptide has little effect on precursor processing or enzyme activity. Substitution of the first residue of the beta-subunit, Ser, results in a complete loss of enzyme activity, and substitution of the last residue of the spacer, Gly, leads to an inactive and unprocessed precursor. The precursor is supposed to be processed autocatalytically, probably intramolecularly. The two subunits of the acylase, which separately are inactive, can generate enzyme activity when coexpressed in Escherichia coli. Data on this and other related acylases indicate that the cephalosporin acylases may belong to a novel class of enzymes (N-terminal nucleophile hydrolases) described recently.
Collapse
Affiliation(s)
- Y Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, China
| | | | | | | | | | | |
Collapse
|
41
|
Chou CP, Yu CC, Tseng JH, Lin MI, Lin HK. Genetic manipulation to identify limiting steps and develop strategies for high-level expression of penicillin acylase inEscherichia coli. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990505)63:3<263::aid-bit2>3.0.co;2-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Chou CP, Tseng JH, Lin MI, Lin HK, Yu CC. Manipulation of carbon assimilation with respect to expression of the pac gene for improving production of penicillin acylase in Escherichia coli. J Biotechnol 1999; 69:27-38. [PMID: 10201113 DOI: 10.1016/s0168-1656(98)00202-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A strategy of genetically manipulating carbon assimilation with respect to expression of the pac gene was employed for overproduction of recombinant penicillin acylase (PAC). Two expression plasmids of pCLL2902 and pCLL3201, which contain the pac coding region but differ in the pac regulatory region, were constructed for the production experiments. Expression of the pac gene was subjected to phenyl acetic acid (PAA-) induction and glucose catabolite repression for pCLL3201, whereas it was subjected to neither of the two transcriptional regulations for pCLL2902. The specific PAC activity for strains harboring pCLL2902 was significantly higher than that for strains harboring pCLL3201 due to an improved transcription efficiency. In addition, no inclusion bodies were observed upon production of PAC using the current expression systems. The results suggest that using the native pac promoter instead of a strong promoter such as tac for regulation is a feasible approach for production of PAC. The impact of the current expression systems is also significant from a process viewpoint since, using strains harboring pCLL2902, not only could glucose replace PAA as a carbon source of Escherichia coli cultures for production of PAC but also the volumetric PAC activity was highly improved.
Collapse
Affiliation(s)
- C P Chou
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Done SH, Brannigan JA, Moody PC, Hubbard RE. Ligand-induced conformational change in penicillin acylase. J Mol Biol 1998; 284:463-75. [PMID: 9813130 DOI: 10.1006/jmbi.1998.2180] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzyme penicillin acylase (penicillin amidohydrolase EC 3.5.1. 11) catalyses the cleavage of the amide bond in the benzylpenicillin (penicillin G) side-chain to produce phenylacetic acid and 6-aminopenicillanic acid (6-APA). The enzyme is of great pharmaceutical importance, as the product 6-APA is the starting point for the synthesis of many semi-synthetic penicillin antibiotics. Studies have shown that the enzyme is specific for hydrolysis of phenylacetamide derivatives, but is more tolerant of features in the rest of the substrate. It is this property that has led to many other applications for the enzyme, and greater knowledge of the enzyme's structure and specificity could facilitate engineering of the enzyme, enhancing its potential for chemical and industrial applications. An extensive study of the binding of a series of phenylacetic acid derivatives has been carried out. A measure of the relative degree of inhibition of the enzyme by each of the compounds has been obtained using a competitive inhibition assay, and the structures of a number of these complexes have been determined by X-ray crystallography. The structures reveal a clear rationale for the observed kinetic results, but show also that some of the ligands cause a conformational change within the binding pocket. This change can generally be understood in terms of the size and orientation of the ligand within the active site.The results reveal that ligand binding in penicillin acylase is facilitated by certain amino acid residues that can adopt two distinct, energetically favourable positions in order to accommodate a variety of compounds within the active site. The structures of these complexes provide evidence for conformational changes in the substrate-binding region that may act as a switch in the mechanism of autocatalytic processing of this enzyme.
Collapse
Affiliation(s)
- S H Done
- Department of Chemistry, University of York, Heslington, YO1 5DD, UK.
| | | | | | | |
Collapse
|
45
|
Li Y, Jiang W, Yang Y, Zhao G, Wang E. Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase. Protein Expr Purif 1998; 12:233-8. [PMID: 9518465 DOI: 10.1006/prep.1997.0823] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene encoding glutaryl 7-amino cephalosporanic acid acylase (GL-7ACA acylase) from Pseudomonas sp. 130 has been cloned and expressed in Escherichia coli using a high-level expression system. The specific activity of the acylase in the crude extract of cells in this system is approximately 10 times that in the previous one. The overproduced enzyme can be easily isolated within 3 days to a purity of over 90% by a simple and inexpensive two-step preparative chromatographic method with an overall yield of nearly 50%. The deletion of the signal peptide and mutation in the alpha-subunit of the acylase have little influence on its posttranslational processing and its kinetic parameters.
Collapse
Affiliation(s)
- Y Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, China
| | | | | | | | | |
Collapse
|
46
|
Hoskins LC, Boulding ET, Larson G. Purification and characterization of blood group A-degrading isoforms of alpha-N-acetylgalactosaminidase from Ruminococcus torques strain IX-70. J Biol Chem 1997; 272:7932-9. [PMID: 9065462 DOI: 10.1074/jbc.272.12.7932] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To cleave blood group A immunodeterminants from erythrocytes (Hoskins, L. C., Larson, G., and Naff, G. B. (1995) Transfusion 35, 813-821), we purified and characterized alpha-N-acetylgalactosaminidase (EC 3.2.1.49) activity from culture supernatants of the human fecal bacterium Ruminococcus torques strain IX-70. Three isoforms separated during hydrophobic interaction chromatography. Hydroxyapatite chromatography further resolved the most hydrophilic, isoform I, into isoforms IA and IB. The most hydrophobic, isoform III, differed from IA and IB by a more acidic pH optimum, greater heat resistance, greater sensitivity to alkylating agents, and anomalous retardation during gel filtration chromatography. Isoform IB differed from IA and III in N-terminal amino acid sequence and in sensitivity to EDTA inhibition. Each cleaved nonreducing alpha(1-->3)-N-acetylgalactosamine residues from human blood group A and AB mucin glycoproteins, Forssman hapten, and blood group A lacto series glycolipids. The apparent molecular mass of denatured isoform subunits of IA, IB, and III-PII (158, 173, and 201 kDa, respectively) bore no integer relationship to the apparent molecular mass of the native isoforms (265, 417, and 530 kDa), but the latter bore a ratio of 1.96:3.09:3.93 to the weight-average apparent molecular mass of native IA (135 kDa), suggesting that the isoforms are multimers of a 135-kDa sequence. Isoforms IA and III-PII had an identical N-terminal amino acid sequence which showed homologies to the N-terminal sequence of sialidases produced by Bacteroides fragilis SBT3182, another commensal enteric bacterium.
Collapse
Affiliation(s)
- L C Hoskins
- Department of Medicine, Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
47
|
del Río G, López-Munguía A, Soberón X. An engineered penicillin acylase with altered surface charge is more stable in alkaline pH. Ann N Y Acad Sci 1996; 799:61-4. [PMID: 8958074 DOI: 10.1111/j.1749-6632.1996.tb33178.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G del Río
- Instituto de Biotechnología, Universidad Nacional Autonoma de Mexico, Morelos, Mexico
| | | | | |
Collapse
|
48
|
Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 1995; 378:416-9. [PMID: 7477383 DOI: 10.1038/378416a0] [Citation(s) in RCA: 453] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structures of three amidohydrolases have been determined recently: glutamine PRPP amidotransferase (GAT), penicillin acylase, and the proteasome. These enzymes use the side chain of the amino-terminal residue, incorporated in a beta-sheet, as the nucleophile in the catalytic attack at the carbonyl carbon. The nucleophile is cysteine in GAT, serine in penicillin acylase, and threonine in the proteasome. Here we show that all three enzymes share an unusual fold in which the nucleophile and other catalytic groups occupy equivalent sites. This fold provides both the capacity for nucleophilic attack and the possibility of autocatalytic processing. We suggest the name Ntn (N-terminal nucleophile) hydrolases for this structural superfamily of enzymes which appear to be evolutionarily related but which have diverged beyond any recognizable sequence similarity.
Collapse
|
49
|
MartÃn L, Prieto MA, Cortés E, GarcÃa J. Cloning and sequencing of thepacgene encoding the penicillin G acylase ofBacillus megateriumATCC 14945. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07370.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Laczaová A, Pechan T, Stuchlík S, Kormutáková R, Turňa J. Cloning of E. coli penicillin G acylase gene with mini-Mu containing a plasmid replicon. Biotechnol Lett 1995. [DOI: 10.1007/bf00134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|