1
|
Nagai A, Mori K, Shiomi Y, Yoshihisa T. OTTER, a new method quantifying absolute amounts of tRNAs. RNA (NEW YORK, N.Y.) 2021; 27:rna.076489.120. [PMID: 33674420 PMCID: PMC8051270 DOI: 10.1261/rna.076489.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/27/2021] [Indexed: 05/03/2023]
Abstract
To maintain optimal proteome, both codon choice of each mRNA and supply of aminoacyl-tRNAs are two principal factors in translation. Recent reports have revealed that the amounts of tRNAs in cells are more dynamic than we had expected. High-throughput methods such as RNA-Seq and microarrays are versatile for comprehensive detection of changes in individual tRNA amounts, but they suffer from inability to assess signal production efficiencies of individual tRNA species. Thus, they are not the perfect choice to measure absolute amounts of tRNAs. Here, we introduce a novel method for this purpose, termed Oligonucleotide-directed Three-prime Terminal Extension of RNA (OTTER), which employs fluorescence-labeling at the 3'-terminus of a tRNA by optimized reverse primer extension and an assessment step of each labeling efficiency by northern blotting. Using this method, we quantified the absolute amounts of the 34 individual and 4 pairs of isoacceptor tRNAs out of the total 42 nuclear-encoded isoacceptors in the yeast Saccharomyces cerevisiae. We found that the amounts of tRNAs in log phase yeast cells grown in a rich glucose medium range from 0.030 to 0.73 pmol/µg RNA. The tRNA amounts seem to be altered at the isoacceptor level by a few folds in response to physiological growing conditions. The data obtained by OTTER are poorly correlated with those by simple RNA-Seq, marginally with those by microarrays and by microscale thermophoresis. However, the OTTER data showed good agreement with the data obtained by 2D-gel analysis of in vivo radiolabeled RNAs. Thus, OTTER is a suitable method for quantifying absolute amounts of tRNAs at the level of isoacceptor resolution.
Collapse
Affiliation(s)
- Akihisa Nagai
- Graduate School of Life Science, University of Hyogo
| | - Kohei Mori
- Graduate School of Life Science, University of Hyogo
| | - Yuma Shiomi
- Graduate School of Life Science, University of Hyogo
| | | |
Collapse
|
2
|
Ul-Haq Z, Khan W, Zarina S, Sattar R, Moin ST. Template-based structure prediction and molecular dynamics simulation study of two mammalian Aspartyl-tRNA synthetases. J Mol Graph Model 2010; 28:401-12. [DOI: 10.1016/j.jmgm.2009.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/14/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
3
|
Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, Frugier M. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem 2009; 284:18893-903. [PMID: 19443655 DOI: 10.1074/jbc.m109.015297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinctive features of aspartyl-transfer RNA (tRNA) synthetases (AspRS) from the protozoan Plasmodium genus are described. These apicomplexan AspRSs contain 29-31 amino acid insertions in their anticodon binding domains, a remarkably long N-terminal appendix that varies in size from 110 to 165 amino acids and two potential initiation codons. This article focuses on the atypical functional and structural properties of Plasmodium falciparum cytosolic AspRS, the causative parasite of human malaria. This species encodes a 626 or 577 amino acids AspRS depending on whether initiation starts on the first or second in-frame initiation codon. The longer protein has poor solubility and a propensity to aggregate. Production of the short version was favored as shown by the comparison of the recombinant protein with endogenous AspRS. Comparison of the tRNA aminoacylation activity of wild-type and mutant parasite AspRSs with those of yeast and human AspRSs revealed unique properties. The N-terminal extension contains a motif that provides unexpectedly strong RNA binding to plasmodial AspRS. Furthermore, experiments demonstrated the requirement of the plasmodial insertion for AspRS dimerization and, therefore, tRNA aminoacylation and other putative functions. Implications for the parasite biology are proposed. These data provide a robust background for unraveling the precise functional properties of the parasite AspRS and for developing novel lead compounds against malaria, targeting its idiosyncratic domains.
Collapse
Affiliation(s)
- Tania Bour
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Ador L, Jaeger S, Geslain R, Martin F, Cavarelli J, Eriani G. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase. Biochemistry 2004; 43:7028-37. [PMID: 15170340 DOI: 10.1021/bi049617+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases contain one or three Mg(2+) ions in their catalytic sites. In addition to their role in ATP binding, these ions are presumed to play a role in catalysis by increasing the electropositivity of the alpha-phosphate and stabilizing the pentavalent transition state. In the class II aaRS, two highly conserved carboxylate residues have been shown to participate with Mg(2+) ions in binding and coordination. It is shown here that these carboxylate residues are absolutely required for the activity of Saccharomyces cerevisiae aspartyl-tRNA synthetase. Mutants of these residues exhibit pleiotropic effects on the kinetic parameters suggesting an effect at an early stage of the aminoacylation reaction, such as the binding of ATP, Mg(2+), aspartic acid, or the amino acid activation. Despite genetic selections in an APS-knockout yeast strain, we were unable to select a single active mutant of these carboxylate residues. Nevertheless, we isolated an intragenic suppressor from a combinatorial library. The active mutant showed a second substitution close to the first one, and exhibited a significant increase of the tRNA aminoacylation rate. Structural analysis suggests that the acceptor stem of the tRNA might be repositioned to give a more productive enzyme:tRNA complex. Thus, the initial defect of the activation reaction was compensated by a significant increase of the aminoacylation rate that led to cellular complementation.
Collapse
Affiliation(s)
- Laurent Ador
- UPR 9002 SMBMR du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
5
|
Ryckelynck M, Giegé R, Frugier M. Yeast tRNA(Asp) charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J Biol Chem 2003; 278:9683-90. [PMID: 12486031 DOI: 10.1074/jbc.m211035200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the role of the N-terminal extension from yeast aspartyl-tRNA synthetase in tRNA aspartylation. The presence of an RNA-binding motif in this extension, conserved in eukaryotic class IIb aminoacyl-tRNA synthetases, provides nonspecific tRNA binding properties to this enzyme. Here, it is assumed that the additional contacts the 70 amino acid-long appendix of aspartyl-tRNA synthetase makes with tRNA could be important in expression of aspartate identity in yeast. Using in vitro transcripts mutated at identity positions, it is demonstrated that the extension grants better aminoacylation efficiency but reduced specificity to the synthetase, increasing considerably the risk of noncognate tRNA mischarging. Yeast tRNA(Glu(UUC)) and tRNA(Asn(GUU)) were identified as the most easily mischarged tRNA species. Both have a G at the discriminator position, and their anticodon differs only by one change from the GUC aspartate anticodon.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
6
|
Francin M, Mirande M. Functional dissection of the eukaryotic-specific tRNA-interacting factor of lysyl-tRNA synthetase. J Biol Chem 2003; 278:1472-9. [PMID: 12417586 DOI: 10.1074/jbc.m208802200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.
Collapse
Affiliation(s)
- Mathilde Francin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. J Mol Biol 2000; 299:1313-24. [PMID: 10873455 DOI: 10.1006/jmbi.2000.3791] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the specific charging of amino acid residues on tRNAs. Accurate recognition of a tRNA by its synthetase is achieved through sequence and structural signalling. It has been shown that tRNAs undergo large conformational changes upon binding to enzymes, but little is known about the conformational rearrangements in tRNA-bound synthetases. To address this issue the crystal structure of the dimeric class II aspartyl-tRNA synthetase (AspRS) from yeast was solved in its free form and compared to that of the protein associated to the cognate tRNA(Asp). The use of an enzyme truncated in N terminus improved the crystal quality and allowed us to solve and refine the structure of free AspRS at 2.3 A resolution. For the first time, snapshots are available for the different macromolecular states belonging to the same tRNA aminoacylation system, comprising the free forms for tRNA and enzyme, and their complex. Overall, the synthetase is less affected by the association than the tRNA, although significant local changes occur. They concern a rotation of the anticodon binding domain and a movement in the hinge region which connects the anticodon binding and active-site domains in the AspRS subunit. The most dramatic differences are observed in two evolutionary conserved loops. Both are in the neighborhood of the catalytic site and are of importance for ligand binding. The combination of this structural analysis with mutagenesis and enzymology data points to a tRNA binding process that starts by a recognition event between the tRNA anticodon loop and the synthetase anticodon binding module.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Binding Sites
- Catalytic Domain
- Conserved Sequence/genetics
- Crystallization
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Movement
- Nucleic Acid Conformation
- Protein Structure, Secondary
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Rotation
- Sequence Deletion/genetics
- Yeasts/enzymology
- Yeasts/genetics
Collapse
Affiliation(s)
- C Sauter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, Illkirch Cedex, UPR 9004, France
| | | | | | | | | |
Collapse
|
8
|
Frugier M, Moulinier L, Giegé R. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 2000; 19:2371-80. [PMID: 10811628 PMCID: PMC384352 DOI: 10.1093/emboj/19.10.2371] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase (AspRS) from Saccharomyces cerevisiae is a homodimer of 64 kDa subunits. Previous studies have emphasized the high sensitivity of the N-terminal region to proteolytic cleavage, leading to truncated species that have lost the first 20-70 residues but that retain enzymatic activity and dimeric structure. In this work, we demonstrate that the N-terminal extension in yeast AspRS participates in tRNA binding and we generalize this finding to eukaryotic class IIb aminoacyl-tRNA synthetases. By gel retardation studies and footprinting experiments on yeast tRNA(Asp), we show that the extension, connected to the anticodon-binding module of the synthetase, contacts tRNA on the minor groove side of its anticodon stem. Sequence comparison of eukaryotic class IIb synthetases identifies a lysine-rich 11 residue sequence ((29)LSKKALKKLQK(39) in yeast AspRS with the consensus xSKxxLKKxxK in class IIb synthetases) that is important for this binding. Direct proof of the role of this sequence comes from a mutagenesis analysis and from binding studies using the isolated peptide.
Collapse
Affiliation(s)
- M Frugier
- Département 'Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse', UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
9
|
Ador L, Camasses A, Erbs P, Cavarelli J, Moras D, Gangloff J, Eriani G. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. J Mol Biol 1999; 288:231-42. [PMID: 10329139 DOI: 10.1006/jmbi.1999.2679] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The active site of yeast aspartyl-tRNA synthetase has been characterised by structural and functional approaches. However, residues or structural elements that indirectly contribute to the active site organisation have still to be described. They have not been assessed by simple analysis of structural data or site-directed mutagenesis analysis, since rational targetting has proven difficult. Here, we attempt to locate these functional features by using a genetic selection method to screen a randomly mutated yeast AspRS library for mutations lethal for cell growth. This approach is an efficient method to map the active site residues, since of the 23 different mutations isolated, 13 are in direct contact with the substrates. Most of the mutations are located in a 15 A radius sphere around the ATP molecule, where they affect the very conserved residues of the class-defining motifs. The results also showed the importance of the dimer interface for the enzyme activity: a single mutation of the invariant proline residue of motif 1 led to a structural defect inactivating the enzyme. From in vivo complementation studies it appeared that the enzyme activity can be recovered by reconstitution of an intact interface through the formation of heterodimers. We also show that a single mutation affecting an interaction with G34 of the tRNA can inactivate the enzyme by inducing a relaxation of the tRNA recognition specificity. Finally, several mutants whose functional importance could not be assessed from the structural data were selected, demonstrating the importance of this type of approach in the context of a structure-function relationship study.
Collapse
Affiliation(s)
- L Ador
- UPR 9002 SMBMR, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15, rue René Descartes, Strasbourg, 67084, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Fujiwara S, Takagi M, Imanaka T. Archaeon Pyrococcus kodakaraensis KOD1: application and evolution. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:259-84. [PMID: 9890143 DOI: 10.1016/s1387-2656(08)70073-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Archaea is the third domain which is phylogenetically differentiated from the other two domains, bacteria and eucarya. Hyperthermophile within the archaea domain has evolved most slowly retaining many ancestral features of higher eukaryotes. Pyrococcus kodakaraensis KOD1, which grows at 95 degrees C optimally, is a newly isolated hyperthermophilc archaeon. The KOD1 strain possesses a circular genome, whose size is estimated to be approximately 2,036 kb. KOD1 enzymes involved in the genetic information processing system, such as DNA polymerase, Rec protein, aspartyl tRNA synthetase and molecular chaperonin, share features of eukaryotic enzymes. Rapid and accurate PCR method by KOD1 DNA polymerase and enzyme stabilization system by KOD1 chaperonin are also introduced in this article.
Collapse
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
11
|
Martin F, Sharples GJ, Lloyd RG, Eiler S, Moras D, Gangloff J, Eriani G. Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant. J Bacteriol 1997; 179:3691-6. [PMID: 9171418 PMCID: PMC179166 DOI: 10.1128/jb.179.11.3691-3696.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Escherichia coli tls-1 strain carrying a mutated aspS gene (coding for aspartyl-tRNA synthetase), which causes a temperature-sensitive growth phenotype, was cloned by PCR, sequenced, and shown to contain a single mutation resulting in substitution by serine of the highly conserved proline 555, which is located in motif 3. When an aspS fragment spanning the codon for proline 555 was transformed into the tls-1 strain, it was shown to restore the wild-type phenotype via homologous recombination with the chromosomal tls-1 allele. The mutated AspRS purified from an overproducing strain displayed marked temperature sensitivity, with half-life values of 22 and 68 min (at 42 degrees C), respectively, for tRNA aminoacylation and ATP/PPi exchange activities. Km values for aspartic acid, ATP, and tRNA(Asp) did not significantly differ from those of the native enzyme; thus, mutation Pro555Ser lowers the stability of the functional configuration of both the acylation and the amino acid activation sites but has no significant effect on substrate binding. This decrease in stability appears to be related to a conformational change, as shown by gel filtration analysis. Structural data strongly suggest that the Pro555Ser mutation lowers the stability of the Lys556 and Thr557 positions, since these two residues, as shown by the crystallographic structure of the enzyme, are involved in the active site and in contacts with the tRNA acceptor arm, respectively.
Collapse
Affiliation(s)
- F Martin
- UPR 9002, Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Agou F, Mirande M. Aspartyl-tRNA synthetase from rat: in vitro functional analysis of its assembly into the multisynthetase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:259-67. [PMID: 9030747 DOI: 10.1111/j.1432-1033.1997.0259a.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mammalian cells, nine aminoacyl-tRNA synthetases, including aspartyl-tRNA synthetase, are associated within a multienzyme complex. Rat aspartyl-tRNA synthetase has a N-terminal polypeptide extension of about 40 amino acid residues which can be removed without impairing its catalytic activity. Earlier, in vivo studies showed that enzymes deprive of this N-terminal segment behave in vivo as free entities. We designed an experimental in vitro approach, based on the exchange of the complexed endogenous enzyme by free recombinant species, to assess the contribution of that domain in the association of aspartyl-tRNA synthetase to the complex. A phosphorylation site was introduced at the N-terminus of rat aspartyl-tRNA synthetase. The enzyme served as a reporter protein to evaluate the dissociation constants of native and N-terminal-truncated species towards the complex. Our data show that a moderate but significant drop in affinity is inferred by the removal of the N-terminal domain. The results suggest that this domain binds to another component of the complex, but might primarily serve a targeting function absolutely required in vivo for the assembly within the multienzyme structure.
Collapse
Affiliation(s)
- F Agou
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|
13
|
Agou F, Waller JP, Mirande M. Expression of rat aspartyl-tRNA synthetase in Saccharomyces cerevisiae. Role of the NH2-terminal polypeptide extension on enzyme activity and stability. J Biol Chem 1996; 271:29295-303. [PMID: 8910590 DOI: 10.1074/jbc.271.46.29295] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase from mammals is one of the components of a multienzyme complex comprising nine synthetase activities. The presence of an amino-terminal extension composed of about 40 residues is a characteristic of the eukaryotic enzyme. We report here the expression in the yeast Saccharomyces cerevisiae of a native form of rat aspartyl-tRNA synthetase and of two truncated derivatives lacking 20 or 36 amino acid residues from their amino-terminal polypeptide extension. The three recombinant enzyme species were purified to homogeneity. They behave as alpha2 dimers and display catalytic parameters in the tRNA aminoacylation reaction identical to those determined for the native, complex-associated form of aspartyl-tRNA synthetase isolated from rat liver. Because the dimer dissociation constant of rat AspRS is much higher than that of its bacterial and yeast counterparts, we could establish a direct correlation between dissociation of the dimer and inactivation of the enzyme. Our results clearly show that the monomer is devoid of amino acid activation and tRNA aminoacylation activities, indicating that dimerization is essential to confer an active conformation on the catalytic site. The two NH2-terminal truncated derivatives were fully active, but proved to be more unstable than the recombinant native enzyme, suggesting that the polypeptide extension fulfills structural rather than catalytic requirements.
Collapse
Affiliation(s)
- F Agou
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
14
|
Fujiwara S, Lee SG, Haruki M, Kanaya S, Takagi M, Imanaka T. Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. FEBS Lett 1996; 394:66-70. [PMID: 8925930 DOI: 10.1016/0014-5793(96)00904-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aspA gene, encoding the aspartyl-tRNA synthetase (AspRS) from the hyperthermophilic archaeon Pyrococcus sp. KOD1, was expressed in Escherichia coli. The KOD1 AspRS, which was purified to homogeneity and was shown to be functional in dimeric form, aminoacylated tRNA from KOD1. The optimum temperature for this activity was 65 degrees C, which was lower than that for the cell growth of KOD1 (85 degrees C). However, it increased to 75 degrees C by the addition of polyamine molecules, such as putrescine, spermine, and spermidine. Analysis of the thermal denaturations of the enzyme and of KOD1-tRNA indicated that neither of them was denatured at temperatures below 70 degrees C. These results suggest polyamine is one of the factors which are required to stabilize the AspRS-tRNA complex in vivo. In order to determine whether the nucleotide triphosphate (NTP) is required for Asp-tRNA synthesis, the aminoacylation was examined in the presence of each of the four NTPs. AspRS most effectively aminoacylated tRNA in the presence of ATP. However, we also found that the enzyme aminoacylated it even in the presence of GTP and UTP as well. Archaeon synthetase may have an interesting system to utilize other NTPs than ATP. The extreme conditions of early life may have given rise to these unique characteristics which then disappeared from developed organisms through evolution.
Collapse
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
16
|
Dietrich A, Small I, Cosset A, Weil JH, Maréchal-Drouard L. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 1996; 78:518-29. [PMID: 8915541 DOI: 10.1016/0300-9084(96)84758-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recombinations and mutations that plant mitochondrial DNA has undergone during evolution have led to the inactivation or complete loss of a number of the 'native' transfer RNA genes deriving from the genome of the ancestral endosymbiont. Following sequence divergence in their genes, some native mitochondrial tRNAs are 'rescued' by editing, a post-transcriptional process which changes the RNA primary sequence. According to in vitro studies with the native mitochondrial tRNA(Phe) from potato and tRNA(His) from larch, editing is required for efficient processing. Some of the native tRNA genes which have been inactivated or lost have been replaced by tRNA genes present in plastid DNA sequences acquired by the mitochondrial genome during evolution, which raises the problem of the transcriptional regulation of tRNA genes in plant mitochondria. Finally, tRNAs for which no gene is present in the mitochondrial genome are imported from the cytosol. This process is highly specific for certain tRNAs, and it has been suggested that the cognate aminoacyl-tRNA synthetases may be responsible for this specificity. Indeed, a mutation which blocks recognition of the cytosolic Arabidopsis thaliana tRNA(Ala) by the corresponding alanyl-tRNA synthetase also prevents mitochondrial import of this tRNA in transgenic plants. Conversely, no significant mitochondrial co-import of the normally cytosol-specific tRNA(Asp) was detected in transgenic plants expressing the yeast cytosolic aspartyl-tRNA synthetase fused to a mitochondrial targeting sequence, suggesting that, although necessary, recognition by a cognate aminoacyl-tRNA synthetase might not be sufficient to allow tRNA import into plant mitochondria.
Collapse
Affiliation(s)
- A Dietrich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis-Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
17
|
Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Gene 1995; 164:153-6. [PMID: 7590306 DOI: 10.1016/0378-1119(95)00491-n] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aspartyl-tRNA synthetase (AspRS)-encoding gene from the archaeon, Pyrococcus sp. KOD1 (KOD1), was cloned and sequenced, and expressed in Escherichia coli. The purified AspRS possessed an aminoacyation activity for tRNA extracted from KOD1. Analysis of the deduced amino-acid sequence (438 aa, 50,893 Da) revealed that the AspRS of KOD1 is a chimerical protein of bacteria and eukarya. Regional analysis showed high sequence similarity to higher eukaryotic enzymes in the central and C-terminal regions which are important for catalytic activity of the enzyme. In contrast, the N-terminal portion exhibits bacterial features and does not possess the higher eukaryotic sequence which is involved in high molecular weight (HMW) complex formation. These results suggest that archaeon AspRS has a eukaryotic-type catalytic mechanism without forming the HMW complex. This is the first example which shows that an archaeal protein possesses eukaryotic and bacterial features.
Collapse
|
18
|
Agou F, Yang Y, Gesquière JC, Waller JP, Guittet E. Polyanion-induced alpha-helical structure of a synthetic 23-residue peptide representing the lysine-rich segment of the N-terminal extension of yeast cytoplasmic aspartyl-tRNA synthetase. Biochemistry 1995; 34:569-76. [PMID: 7819251 DOI: 10.1021/bi00002a023] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conformational studies were performed on the synthetic tricosapeptide N-acetyl-SKKALKKLQKEQEKQRKKEERAL-amide, representing the highly basic segment (residues 30-52) of the N-terminal extension of yeast cytoplasmic aspartyl-tRNA synthetase. Circular dichroism experiments show that, in aqueous solution at neutral pH, the peptide adopts a random conformation. The effects of pH, temperature, addition of trifluoroethanol (TFE), and titration with polyanions on the conformation of the peptide were studied. In TFE or in the presence of an equimolar concentration of (phosphate)18, the peptide adopts a 100% alpha-helical conformation. A partially alpha-helical conformation is induced by (phosphate)4 or d(pT)8 (respectively 40% and 35% helical content). Raising the pH in aqueous solution promotes 75% alpha-helicity, with a transition pK of 9.9 reflecting deprotonation of lysine residues. On the basis of these results, nuclear magnetic resonance studies were carried out in TFE as well as in aqueous solution in the presence of (phosphate)18, to determine the structure of the molecule. Complete 1H resonance assignments were obtained by conventional two-dimensional NMR techniques. A total of 138 interproton constraints derived from NOESY experiments were used to calculate the three-dimensional structure by a two-stage distance geometry/simulated annealing procedure. The two deduced structures were highly similar and show that nine cationic residues are segregated on one face of a helical structure, providing an ideal polycationic interface for binding to polyanionic surfaces.
Collapse
Affiliation(s)
- F Agou
- Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
19
|
Escalante C, Qasba PK, Yang DC. Expression of human aspartyl-tRNA synthetase in COS cells. Mol Cell Biochem 1994; 140:55-63. [PMID: 7877598 DOI: 10.1007/bf00928366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mammalian aspartyl-tRNA synthetase (DRS) occurs in a multi-enzyme complex of aminoacyl-tRNA synthetases, while DRS exists as free soluble enzymes in bacteria and yeast. The properties of human DRS transient expressed in COS cells were examined. After transfection of COS cells with the recombinant plasmids pSVL-63 that contained hDRS cDNA coding and non-coding sequences, and pSV-hDRS where the non-coding sequences were deleted, DRS in the transfected COS cells significantly increased compared to mock transfected cells. COS cells transfected with pSV-hDRS delta 32 that contained N-terminal 32 residue-coding sequence deleted hDRS cDNA showed no increase in DRS activity. Northern blot analysis showed that concentrations of corresponding mRNAs of hDRS and hDRS delta 32 were greatly enhanced in transfected cells. The increases in the level of the transcripts were much higher than those of the corresponding proteins. Gel filtration analysis showed that hDRS in pSV-hDRS transfected cells expressed as a low molecular weight form of hDRS and pSV-hDRS delta 32 transfected cells did not. Epitope tagging and indirect immunofluorescence microscopy was used to localize hDRS. Both hDRSmyc and hDRS delta 32myc were localized in the cytoplasm and showed diffused patterns. These results showed that hDRS has little tendency to aggregate in vivo and suggested that the N-terminal extension in hDRS was not involved in the expression and sub-cellular localization of hDRS, but may play a role in the maintenance of enzymatic activity of hDRS in COS cells.
Collapse
Affiliation(s)
- C Escalante
- Department of Chemistry, Georgetown University, Washington, DC 20057
| | | | | |
Collapse
|
20
|
Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci U S A 1993; 90:10816-20. [PMID: 8248175 PMCID: PMC47869 DOI: 10.1073/pnas.90.22.10816] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a Pro-273-->Gly (P273G) substitution on the catalytic properties of homo- and heterodimeric AspRS. Heterodimers of AspRS were produced in vivo by overexpression of their respective subunit variants from plasmid-encoded genes and purified to homogeneity in one HPLC step. The homodimer containing the P273G shows an 80% inactivation of the enzyme and an affinity decrease for its cognate tRNA(Asp) of one order of magnitude. The P273G-mutated subunit recovered wild-type enzymatic properties when associated with a native subunit or a monomer otherwise inactivated having an intact dimeric interface domain. These results, which can be explained by the crystal structure of the native enzyme complexed with its substrates, confirm the structural importance of Pro-273 for dimerization and clearly establish the functional interdependence of the AspRS subunits. More generally, the dimeric conformation may be a structural prerequisite for the activity of mononucleotide binding sites constructed from antiparallel beta strands.
Collapse
Affiliation(s)
- G Eriani
- Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance UPR 9002, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
21
|
Cavarelli J, Rees B, Ruff M, Thierry JC, Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 1993; 362:181-4. [PMID: 8450889 DOI: 10.1038/362181a0] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aminoacyl-RNA synthetases can be divided into two classes according to structural features inferred from sequence alignments. This classification correlates almost perfectly with the attachment of the amino acid to the 2'-OH (class I) or 3'-OH (class II) group of the terminal adenosine. Six subgroups of higher homology can be inferred from sequence analysis. The five aminoacyl-tRNA synthetases whose crystal structures are known (MetRS, TyrRS and GlnRS in class I, SerRS and AspRS in class II) belong to different subgroups. Two of them, GlnRS and AspRS, have been cocrystallized with their cognate tRNA. AspRS, like six other members of class II, is an alpha 2 dimer. Yeast tRNA(Asp) exhibits five identity determinants: the three anticodon bases, the discriminator base G73 and the base pair G10-U25. We report here that the refined crystal structure of AspRS complexed with tRNA(Asp) at 2.9 A resolution reveals three regions of contact, each involving a domain of AspRS and at least one identity determinant of tRNA(Asp). The mode of binding of the acceptor stem of tRNA(Asp) by AspRS can be generalized to class II aminoacyl-tRNA synthetases, whereas the deciphering of the anticodon, which involves a large conformational change of the loop and the formation of a bulge, is more specific to the aspartic system.
Collapse
Affiliation(s)
- J Cavarelli
- Laboratoire de Biologie Structurale, IBMC Strasbourg, France
| | | | | | | | | |
Collapse
|
22
|
Martinez R, Mirande M. The polyanion-binding domain of cytoplasmic Lys-tRNA synthetase from Saccharomyces cerevisiae is not essential for cell viability. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:1-11. [PMID: 1628641 DOI: 10.1111/j.1432-1033.1992.tb17012.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic Lys-tRNA synthetase (LysRS) from Saccharomyces cerevisiae is a dimeric enzyme made up of identical subunits of 68 kDa. By limited proteolysis, this enzyme can be converted to a truncated dimer without loss of activity. Whereas the native enzyme strongly interacts with polyanionic carriers, the modified form displays reduced binding properties. KRS1 is the structural gene for yeast cytoplasmic LysRS. It encodes a polypeptide with an amino-terminal extension composed of about 60-70 amino acid residues, compared to its prokaryotic counterpart. This segment, containing 13 lysine residues, is removed upon proteolytic treatment of the native enzyme. The aim of the present study was to probe in vivo the significance of this amino-terminal extension. We have constructed derivatives of the KRS1 gene, encoding enzymes lacking 58 or 69 amino-terminal residues and, by site-directed mutagenesis, we have changed four or eight lysine residues from the amino-terminal segment of LysRS into glutamic acids. Engineered proteins were expressed in vivo after replacement of the wild-type KRS1 allele. The mutant enzymes displayed reduced specific activities (2-100-fold). A series of carboxy-terminal deletions, encompassing 3, 10 or 15 amino acids, were introduced into the LysRS mutants with modified amino-terminal extensions. The removal of three residues led to a 2-7-fold increase in the specific activity of the mutant enzymes. This partial compensatory effect suggests that interactions between the two extreme regions of yeast LysRS are required for a proper conformation of the native enzyme. All KRS1 derivatives were able to sustain growth of yeast cells, although the mutant cell lines displaying a low LysRS activity grew more slowly. The expression, as single-copy genes, of mutant enzymes with a complete deletion of the amino-terminal extension or with four Lys----Glu mutations, that displayed specific activities close to that of the wild-type LysRS, had no discernable effect on cell growth. We conclude that the polycationic extensions of eukaryotic aminoacyl-tRNA synthetases are dispensable, in vivo, for aminoacylation activities. The results are discussed in relation to the triggering role in in situ compartmentalization of protein synthesis that has been ascribed to the polypeptide-chain extensions that characterize most, if not all, eukaryotic aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- R Martinez
- Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|