1
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. From the Ca 2+-activated F 1F O-ATPase to the mitochondrial permeability transition pore: an overview. Biochimie 2018; 152:85-93. [PMID: 29964086 DOI: 10.1016/j.biochi.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Based on recent advances on the Ca2+-activated F1FO-ATPase features, a novel multistep mechanism involving the mitochondrial F1FO complex in the formation and opening of the still enigmatic mitochondrial permeability transition pore (MPTP), is proposed. MPTP opening makes the inner mitochondrial membrane (IMM) permeable to ions and solutes and, through cascade events, addresses cell fate to death. Since MPTP forms when matrix Ca2+ concentration rises and ATP is hydrolyzed by the F1FO-ATPase, conformational changes, triggered by Ca2+ insertion in F1, may be transmitted to FO and locally modify the IMM curvature. These events would cause F1FO-ATPase dimer dissociation and MPTP opening.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
2
|
Nesci S. New insight in a new entity: the mitochondrial permeability transition pore arises from the Ca 2+-activated F 1F O-ATPases. Sci Bull (Beijing) 2018; 63:143-145. [PMID: 36658996 DOI: 10.1016/j.scib.2017.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Ozzano Emilia, BO, Italy.
| |
Collapse
|
3
|
Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H +-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 2017; 74:2151-2166. [PMID: 28168445 PMCID: PMC5425498 DOI: 10.1007/s00018-017-2462-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem 2015; 290:6338-48. [PMID: 25605724 PMCID: PMC4358270 DOI: 10.1074/jbc.m114.631788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Indexed: 01/20/2023] Open
Abstract
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.
Collapse
Affiliation(s)
- Simona Barbato
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Gianluca Sgarbi
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Gorini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giancarlo Solaini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Martínez-Reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
|
6
|
Formentini L, Pereira MP, Sánchez-Cenizo L, Santacatterina F, Lucas JJ, Navarro C, Martínez-Serrano A, Cuezva JM. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO J 2014; 33:762-78. [PMID: 24521670 PMCID: PMC4000092 DOI: 10.1002/embj.201386392] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.
Collapse
Affiliation(s)
- Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de MadridMadrid, Spain
| | - Marta P Pereira
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
| | - Laura Sánchez-Cenizo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de MadridMadrid, Spain
| | - Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de MadridMadrid, Spain
| | - José J Lucas
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
| | - Carmen Navarro
- Departamento de Patología y Neuropatología, Instituto de Investigación Biomédica de Vigo (IBIV)Vigo, Spain
| | - Alberto Martínez-Serrano
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de MadridMadrid, Spain
| |
Collapse
|
7
|
O'Keeffe BA, Cilia S, Maiyar AC, Vaysberg M, Firestone GL. The serum- and glucocorticoid-induced protein kinase-1 (Sgk-1) mitochondria connection: identification of the IF-1 inhibitor of the F(1)F(0)-ATPase as a mitochondria-specific binding target and the stress-induced mitochondrial localization of endogenous Sgk-1. Biochimie 2013; 95:1258-65. [PMID: 23402912 PMCID: PMC3684451 DOI: 10.1016/j.biochi.2013.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
The expression, localization and activity of the serum- and glucocorticoid-induced protein kinase, Sgk-1, are regulated by multiple hormonal and environmental cues including cellular stress. Biochemical fractionation and indirect immunofluorescence demonstrated that sorbitol induced hyperosmotic stress stimulated expression and triggered the localization of endogenous Sgk-1 into the mitochondria of NMuMG mammary epithelial cells. The immunofluorescence pattern of endogenous Sgk-1 was similar to that of a green fluorescent linked fusion protein linked to the N-terminal Sgk-1 fragment that encodes the mitochondrial targeting signal. In the presence or absence of cellular stress, exogenously expressed wild type Sgk-1 efficiently compartmentalized into the mitochondria demonstrating the mitochondrial import machinery per se is not stressed regulated. Co-immunoprecipitation and GST-pull down assays identified the IF-1 mitochondrial matrix inhibitor of the F1F0-ATPase as a new Sgk-1 binding partner, which represents the first observed mitochondrial target of Sgk-1. The Sgk-1/IF-1 interaction requires the 122-176 amino acid region within the catalytic domain of Sgk-1 and is pH dependent, occurring at neutral pH but not at slightly acidic pH, which suggests that this interaction is dependent on mitochondrial integrity. An in vitro protein kinase assay showed that the F1F0-ATPase can be directly phosphorylated by Sgk-1. Taken together, our results suggest that stress-induced Sgk-1 localizes to the mitochondria, which permits access to physiologically appropriate mitochondrial interacting proteins and substrates, such as IF-1 and the F1F0-ATPase, as part of the cellular stressed induced program.
Collapse
Affiliation(s)
- Bridget A O'Keeffe
- Department of Molecular and Cell Biology and the Cancer Research Laboratory, 591 LSA, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Recent findings in colon cancer cells indicate that inhibition of the mitochondrial H+-adenosine triphosphate (ATP) synthase by the ATPase inhibitory factor 1 (IF1) promotes aerobic glycolysis and a reactive oxygen species (ROS)-mediated signal that enhances proliferation and cell survival. Herein, we have studied the expression, biological relevance, mechanism of regulation and potential clinical impact of IF1 in some prevalent human carcinomas. We show that IF1 is highly overexpressed in most (>90%) of the colon (n=64), lung (n=30), breast (n=129) and ovarian (n=10) carcinomas studied as assessed by different approaches in independent cohorts of cancer patients. The expression of IF1 in the corresponding normal tissues is negligible. By contrast, the endometrium, stomach and kidney show high expression of IF1 in the normal tissue revealing subtle differences by carcinogenesis. The overexpression of IF1 also promotes the activation of aerobic glycolysis and a concurrent ROS signal in mitochondria of the lung, breast and ovarian cancer cells mimicking the activity of oligomycin. IF1-mediated ROS signaling activates cell-type specific adaptive responses aimed at preventing death in these cell lines. Remarkably, regulation of IF1 expression in the colon, lung, breast and ovarian carcinomas is exerted at post-transcriptional levels. We demonstrate that IF1 is a short-lived protein (t1/2 ∼100 min) strongly implicating translation and/or protein stabilization as main drivers of metabolic reprogramming and cell survival in these human cancers. Analysis of tumor expression of IF1 in cohorts of breast and colon cancer patients revealed its relevance as a predictive marker for clinical outcome, emphasizing the high potential of IF1 as therapeutic target.
Collapse
|
9
|
Abstract
IEX-1 (Immediate Early response gene X-1) is a stress-inducible gene. It suppresses production of reactive oxygen species (ROS) and protects cells from apoptosis induced by a wide range of stimuli, but the underlying mechanism is not known. This study reveals that IEX-1 targets the mitochondrial F1Fo-ATPase Inhibitor (IF1) for degradation, resulting in acceleration of ATP hydrolysis, concomitant with reduction in ROS production. A prominent role for IF1 degradation in the function of IEX-1 was corroborated by siRNA-mediated gene silencing of IF1 that recapitulated the effects of IEX-1 on ATP hydrolysis and ROS production. Moreover, progressive C-terminal truncation studies demonstrated that IEX-1 interacted with the C terminus of IF1 and the interaction might render IF1 prone to degradation by an as yet unidentified mitochondrial protease. In support of a physiological importance of IEX-1 in the modulation of IF1 expression, gene-targeted deletion of IEX-1 stabilized IF1 and reduced mitochondrial F1Fo-ATPase activity in vivo. The altered activity of the F1Fo enzyme may account for a metabolic switch from oxidative phosphorylation toward glycolysis in IEX-1 deficient cells. Thus, IEX-1 deficient cells were more susceptible to glucose deprivation than wild type counterparts and displayed increased glucose uptake and lactate production in hypoxic conditions. The cells were also relatively refractory to oligomycin-mediated inhibition of ATP production. The studies offer novel insights into the primary role of IEX-1 in regulating a balance between energy provision and ROS production.
Collapse
Affiliation(s)
- L Shen
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - L Zhi
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - W Hu
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - MX Wu
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA
| |
Collapse
|
10
|
Domínguez-Ramírez L, Gómez-Puyou A, de Gómez-Puyou MT. A hinge of the endogeneous ATP synthase inhibitor protein: the link between inhibitory and anchoring domains. Proteins 2006; 65:999-1007. [PMID: 17019684 DOI: 10.1002/prot.21189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ATP synthase of bovine heart mitochondria possesses a regulatory subunit called the endogenous inhibitory protein (IF(1)). This subunit regulates the catalytic activity of the F(1) sector in the mitochondrial inner membrane. When DeltamuH(+) falls, IF(1) binds to the enzyme and inhibits ATP hydrolysis. On the other hand, the establishment of a DeltamuH(+) induces the release of the inhibitory action of IF(1), allowing ATP synthesis to proceed. IF(1) is also involved in the dimerization of soluble F(1). Dynamic domain analysis and normal mode analysis of the reported crystallographic structure of IF(1) revealed that it has an effective hinge formed by residues 46-52. Molecular dynamics data of a 27 residue fragment confirmed the existence of the hinge. The hinge may act as a regulatory region that links the inhibitory and anchoring domains of IF(1). The residues assigned to the hinge are conserved between mammals, but not in other species, such as yeasts. Likewise, unlike the heart inhibitor, the yeast protein does not have the residues that allow it to form stable dimers through coiled-coil interactions. Collectively, the data suggest that the hinge and the dimerization domain of the inhibitor protein from bovine heart are related to its ability to form stable dimers and to interact with other subunits of the ATP synthase.
Collapse
Affiliation(s)
- L Domínguez-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México D.F., Mexico.
| | | | | |
Collapse
|
11
|
de Gómez-Puyou MT, Domínguez-Ramírez L, Pérez-Hernández G, Gómez-Puyou A. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. Arch Biochem Biophys 2005; 439:129-37. [PMID: 15950171 DOI: 10.1016/j.abb.2005.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/03/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
The effect of guanidinium hydrochloride (GdnHCl) on multisite and unisite ATPase activity by F0F1 of submitochondrial particles from bovine hearts was studied. In particles without control by the inhibitor protein, 50 mM GdnHCl inhibited multisite hydrolysis by about 85%; full inhibition required around 500 mM. In the range of 500-650 mM, GdnHCl enhanced the rate of unisite catalysis by promoting product release; it also increased the rate of hydrolysis of ATP bound to the catalytic site without GdnHCl. GdnHCl diminished the affinity of the enzyme for aurovertin. The effects of GdnHCl were irreversible. The results suggest that disruption of intersubunit contacts in F0F1 abolishes multisite hydrolysis and stimulates of unisite hydrolysis. Particles under control by the inhibitor protein were insensitive to concentrations of GdnHCl that induce the aforementioned alterations of F0F1 free of inhibitor protein, indicating that the protein stabilizes the global structure of particulate F1.
Collapse
Affiliation(s)
- Marietta Tuena de Gómez-Puyou
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70243, 04510 México, D. F., Mexico.
| | | | | | | |
Collapse
|
12
|
Corvest V, Sigalat C, Venard R, Falson P, Mueller DM, Haraux F. The binding mechanism of the yeast F1-ATPase inhibitory peptide: role of catalytic intermediates and enzyme turnover. J Biol Chem 2005; 280:9927-36. [PMID: 15640141 DOI: 10.1074/jbc.m414098200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.
Collapse
Affiliation(s)
- Vincent Corvest
- Service de Bioénergétique, Département de Biologie Joliot-Curie and CNRS-URA 2096, CEA Saclay, F 91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
13
|
Di Pancrazio F, Mavelli I, Isola M, Losano G, Pagliaro P, Harris DA, Lippe G. In vitro and in vivo studies of F(0)F(1)ATP synthase regulation by inhibitor protein IF(1) in goat heart. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1659:52-62. [PMID: 15511527 DOI: 10.1016/j.bbabio.2004.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/30/2004] [Indexed: 11/28/2022]
Abstract
A method has been developed to allow the level of F(0)F(1)ATP synthase capacity and the quantity of IF(1) bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF(1) content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF(1) antibodies. Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF(1) content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF(1). In addition, both in vivo and in vitro, 1.3-1.4 mol of IF(1) was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF(1) in the F(0) sector.
Collapse
Affiliation(s)
- Francesca Di Pancrazio
- Department of Biomedical Sciences and Technologies and M.A.T.I. Center of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Ichikawa N, Ogura C. Overexpression, purification, and characterization of human and bovine mitochondrial ATPase inhibitors: comparison of the properties of mammalian and yeast ATPase inhibitors. J Bioenerg Biomembr 2003; 35:399-407. [PMID: 14740888 DOI: 10.1023/a:1027383629565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial ATP synthase (F1F0-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In this study, we overexpressed and purified human and bovine ATPase inhibitors and their properties were compared with those of a yeast inhibitor. The human and bovine inhibitors inhibited bovine ATPase in a similar way. The yeast inhibitor also inhibited bovine F1F0-ATPase, although the activity was about three times lower than the mammalian inhibitors. All three inhibitors inhibited yeast F1F0-ATPase in a similar way. The activities of all inhibitors decreased at higher pH, but the magnitude of the decrease was different for each combination of inhibitor and ATPase. The results obtained in this study show that the inhibitory mechanism of the inhibitors was basically shared in yeast and mammals, but that mammalian inhibitors require unique residues, which are lacking in the yeast inhibitor, for their maximum inhibitory activity. Common inhibitory sites of mammalian and yeast inhibitors are suggested.
Collapse
Affiliation(s)
- Naoki Ichikawa
- Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | | |
Collapse
|
15
|
Venard R, Brèthes D, Giraud MF, Vaillier J, Velours J, Haraux F. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase. Biochemistry 2003; 42:7626-36. [PMID: 12809520 DOI: 10.1021/bi034394t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of the yeast F(0)F(1)-ATP synthase by the regulatory peptides IF1 and STF1 was studied using intact mitochondria and submitochondrial particles from wild-type cells or from mutants lacking one or both peptides. In intact mitochondria, endogenous IF1 only inhibited uncoupled ATP hydrolysis and endogenous STF1 had no effect. Addition of alamethicin to mitochondria readily made the mitochondrial membranes permeable to nucleotides, and bypassed the kinetic control exerted on ATP hydrolysis by the substrate carriers. In addition, alamethicin made the regulatory peptides able to cross mitochondrial membranes. At pH 7.3, F(0)F(1)-ATPase, initially inactivated by either endogenous IF1 or endogenous STF1, was completely reactivated hours or minutes after alamethicin addition, respectively. Previous application of a membrane potential favored the release of endogenous IF1 and STF1. These observations showed that IF1 and STF1 can fully inhibit ATP hydrolysis at physiological concentrations and are sensitive to the same effectors. However, ATP synthase has a much lower affinity for STF1 than for IF1, as demonstrated by kinetic studies of ATPase inhibition in submitochondrial particles by externally added IF1 and STF1 at pHs ranging from 5.5 to 8.0. Our data do not support previously proposed effects of STF1, like the stabilization of the IF1-F(0)F(1) complex or the replacement of IF1 on its binding site in the presence of the proton-motive force or at high pH, and raise the question of the conditions under which STF1 could regulate ATPase activity in vivo.
Collapse
Affiliation(s)
- Renée Venard
- Service de Bioénergétique & CNRS-URA 2096, DBJC, CEA Saclay, F91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
16
|
Tomasetig L, Di Pancrazio F, Harris DA, Mavelli I, Lippe G. Dimerization of F0F1ATP synthase from bovine heart is independent from the binding of the inhibitor protein IF1. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:133-41. [PMID: 12460670 DOI: 10.1016/s0005-2728(02)00344-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Solubilization of heavy bovine heart mitochondria with Triton X-100 leads to the selective extraction of F0F1ATP synthase monomer and dimer in a 2:1 ratio, as revealed by blue native gel electrophoresis (BN-PAGE). Second dimensional SDS-PAGE and immunoblotting with IF1 and F1 antibodies following BN-PAGE show that both aggregation states of the ATP synthase contain IF1. The monomer/dimer ratio does not change in extracts from mitochondria subjected to different energy conditions accompanied by IF1 binding modulation or from submitochondrial particles differing in IF1 content. In addition, the usual monomer/dimer ratio is observed even in submitochondrial particles deprived of IF1. Histochemical staining for ATPase activity demonstrates that the dimer is inactive, irrespective of its IF1 content. It is concluded that in the membrane of bovine heart mitochondria the ATP synthase dimer is a stable inactive structure, whose formation is not mediated by IF1 binding.
Collapse
Affiliation(s)
- Lara Tomasetig
- Department of Biomedical Sciences and Technologies, University of Udine, p.le Kolbe 4, 33100, Udine, Italy
| | | | | | | | | |
Collapse
|
17
|
Minauro-Sanmiguel F, Bravo C, García JJ. Cross-linking of the endogenous inhibitor protein (IF1) with rotor (gamma, epsilon) and stator (alpha) subunits of the mitochondrial ATP synthase. J Bioenerg Biomembr 2002; 34:433-43. [PMID: 12678435 DOI: 10.1023/a:1022514008462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The location of the endogenous inhibitor protein (IF1) in the rotor/stator architecture of the bovine mitochondrial ATP synthase was studied by reversible cross-linking with dithiobis(succinimidylpropionate) in soluble F1I and intact F1F0I complexes of submitochondrial particles. Reducing two-dimensional electrophoresis, Western blotting, and fluorescent cysteine labeling showed formation of alpha-IF1, IF1-IF1, gamma-IF1, and epsilon-IF1 cross-linkages in soluble F1I and in native F1F0I complexes. Cross-linking blocked the release of IF1 from its inhibitory site and therefore the activation of F1I and F1F0I complexes in a dithiothreitol-sensitive process. These results show that the endogenous IF1 is at a distance < or = 12 angstroms to gamma and epsilon subunits of the central rotor of the native mitochondrial ATP synthase. This finding strongly suggests that, without excluding the classical assumption that IF1 inhibits conformational changes of the catalytic beta subunits, the inhibitory mechanism of IF1 may involve the interference with rotation of the central stalk.
Collapse
Affiliation(s)
- Fernando Minauro-Sanmiguel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D.F. 14080, México
| | | | | |
Collapse
|
18
|
Aggeler R, Coons J, Taylor SW, Ghosh SS, Garcia JJ, Capaldi RA, Marusich MF. A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies. J Biol Chem 2002; 277:33906-12. [PMID: 12110673 DOI: 10.1074/jbc.m204538200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial F(1)F(0) ATP synthase was isolated with a one-step immunological approach, using a monoclonal antibody against F(1) in a 96-well microplate activity assay system, to establish a method for fast high throughput screening of inhibitors, toxins, and drugs with very small amounts of enzyme. For preparative purification, mitochondria from human heart tissue as well as cultured fibroblasts were solubilized with dodecyl-beta-d-maltoside, and the F(1)F(0) was isolated with anti-F(1) monoclonal antibody coupled to protein G-agarose beads. The immunoprecipitated F(1)F(0) contained a full complement of subunits that were identified with specific antibodies against five of the subunits (alpha, beta, OSCP, d, and IF(1)) and by MALDI-TOF and/or LC/MS/MS for all subunits except subunit c, which could not be resolved by these methods because of the limits of detection. Microscale immunocapture of F(1)F(0) from detergent-solubilized mitochondria or whole cell fibroblast extracts was performed using anti-F(1) monoclonal antibody immobilized on 96-well microplates. The captured complex V displayed ATP hydrolysis activity that was fully oligomycin and inhibitor protein IF(1)-sensitive. Moreover, IF(1) could be co-isolated with F(1)F(0) when the immunocapture procedure was carried out at pH 6.5 but was absent when the ATP synthase was isolated at pH 8.0. Immunocaptured F(1)F(0) lacking IF(1) could be inhibited by more than 90% by addition of recombinant inhibitor protein, and conversely, F(1)F(0) containing IF(1) could be activated more than 10-fold by brief exposure to pH 8.0, inducing the release of inhibitor protein. With this microplate system an ATP hydrolysis assay of complex V could be carried out with as little as 10 ng of heart mitochondria/well and as few as 3 x 10(4) cells/well from fibroblast cultures. The system is therefore suitable to screen patient-derived samples for alterations in amount or functionality of both the F(1)F(0) ATPase and IF(1).
Collapse
Affiliation(s)
- Robert Aggeler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Domínguez-Ramírez L, Mendoza-Hernandez G, Carabez-Trejo A, Gómez-Puyou A, Tuena de Gómez-Puyou M. Equilibrium between monomeric and dimeric mitochondrial F1-inhibitor protein complexes. FEBS Lett 2001; 507:191-4. [PMID: 11684096 DOI: 10.1016/s0014-5793(01)02979-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mg-ATP particles from bovine heart mitochondria have more than 95% of their F1 in complex with the inhibitor protein (IF1). The F1-IF1 complex was solubilized and purified. The question addressed was if this naturally occurring complex existed as monomers or dimers. Size exclusion chromatography and electron microscopy showed that most of the purified F1-IF1 complex was a dimer of two F1-IF1. As determined by the former method, the relative concentrations of dimeric and monomeric F1-IF1 depended on the concentration of protein that was applied to the column. Apparently, there is an equilibrium between the two forms of F1-IF1.
Collapse
Affiliation(s)
- L Domínguez-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | | | | | | | | |
Collapse
|
20
|
Hanson BJ, Marusich MF, Capaldi RA. Antibody-based approaches to diagnosis and characterization of oxidative phosphorylation diseases. Mitochondrion 2001; 1:237-48. [PMID: 16120281 DOI: 10.1016/s1567-7249(01)00026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2001] [Revised: 06/29/2001] [Accepted: 07/09/2001] [Indexed: 11/22/2022]
Abstract
Mitochondrial disorders caused by defects in oxidative phosphorylation function are difficult to diagnose. Here we review the emerging use of antibody-based approaches for this diagnosis. Novel methods involving immunohistochemistry and immunocapture of defective enzymes for characterization are described that add to the arsenal of approaches available.
Collapse
Affiliation(s)
- B J Hanson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403 1229, USA
| | | | | |
Collapse
|
21
|
Liu J, Wang C, Murakami Y, Gong G, Ishibashi Y, Prody C, Ochiai K, Bache RJ, Godinot C, Zhang J. Mitochondrial ATPase and high-energy phosphates in failing hearts. Am J Physiol Heart Circ Physiol 2001; 281:H1319-26. [PMID: 11514303 DOI: 10.1152/ajpheart.2001.281.3.h1319] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined high-energy phosphates (HEP) and mitochondrial ATPase protein expression in hearts in which myocardial infarction resulted in either compensated left ventricular remodeling (LVR) or congestive heart failure (CHF). The response of HEP (measured via (31)P magnetic resonance spectroscopy) to a modest increase in the cardiac work state produced by dobutamine-dopamine infusion and pacing (if needed) was examined in 17 pigs after left circumflex coronary artery ligation (9 with LVR and 8 with CHF) and compared with 7 normal pigs. In hearts with LVR, the baseline phosphocreatine (PCr)-to-ATP ratio decreased, and calculated ADP increased; these changes were most severe in hearts with CHF. HEP levels did not change in normal or LVR hearts during dobutamine-dopamine infusion. However, in hearts with CHF, the PCr-to-ATP ratio decreased further, and free ADP increased. The mitochondrial protein levels of the F(0)F(1)-ATPase subunits were normal in hearts with compensated LVR. However, in failing hearts, the alpha-subunit decreased by 36%, the beta-subunit decreased by 16%, the oligomycin sensitivity-conferring protein subunit decreased by 40%, and the initiation factor 1 subunit decreased by 41%. Thus in failing hearts, reductions in mitochondrial F(0)F(1)-ATPase protein expression are associated with increased myocardial free ADP.
Collapse
Affiliation(s)
- J Liu
- Department of Medicine, University of Minnesota Health Sciences, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nijtmans LG, Henderson NS, Attardi G, Holt IJ. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. J Biol Chem 2001; 276:6755-62. [PMID: 11076946 DOI: 10.1074/jbc.m008114200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Molecular Pathology, University of Dundee, Ninewells Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
23
|
Bosetti F, Yu G, Zucchi R, Ronca-Testoni S, Solaini G. Myocardial ischemic preconditioning and mitochondrial F1F0-ATPase activity. Mol Cell Biochem 2000; 215:31-7. [PMID: 11204453 DOI: 10.1023/a:1026558922596] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A short period of ischemia followed by reperfusion (ischemic preconditioning) is known to trigger mechanisms that contribute to the prevention of ATP depletion. In ischemic conditions, most of the ATP hydrolysis can be attributed to mitochondrial F1F0-ATPase (ATP synthase). The purpose of the present study was to examine the effect of myocardial ischemic preconditioning on the kinetics of ATP hydrolysis by F1F0-ATPase. Preconditioning was accomplished by three 3-min periods of global ischemia separated by 3 min of reperfusion. Steady state ATP hydrolysis rates in both control and preconditioned mitochondria were not significantly different. This suggests that a large influence of the enzyme on the preconditioning mechanism may be excluded. However, the time required by the reaction to reach the steady state rate was increased in the preconditioned group before sustained ischemia, and it was even more enhanced in the first 5 min of reperfusion (101 +/- 3.0 sec in preconditioned vs. 83.4 +/- 4.4 sec in controls, p < 0.05). These results suggest that this transient increase in activation time may contribute to the cardioprotection by slowing the ATP depletion in the very critical early phase of post-ischemic reperfusion.
Collapse
Affiliation(s)
- F Bosetti
- Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Pisa, Italy
| | | | | | | | | |
Collapse
|
24
|
Solaini G, Baracca A, Gabellieri E, Lenaz G. Modification of the mitochondrial F1-ATPase epsilon subunit, enhancement of the ATPase activity of the IF1-F1 complex and IF1-binding dependence of the conformation of the epsilon subunit. Biochem J 1997; 327 ( Pt 2):443-8. [PMID: 9359414 PMCID: PMC1218814 DOI: 10.1042/bj3270443] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of bovine heart submitochondrial particles with a low concentration of 2-hydroxy-5-nitrobenzyl bromide (HNB), a selective reagent for the Trp residue of the epsilon subunit [Baracca, Barogi, Lenaz and Solaini (1993) Int. J. Biochem. 25, 1269-1275], enhances the ATP hydrolytic activity of the particles exclusively when the natural inhibitor protein IF1 is present. Similarly, isolated F1 [the catalytic sector of the mitochondrial H+-ATPase complex (ATP synthase)] treated with the reagent has the ATPase activity enhanced exclusively if IF1 is bound to it. These experiments suggest that the modification of the epsilon subunit decreases the inhibitory activity of IF1, eliciting the search for a relationship between the epsilon subunit and the inhibitory protein. Certainly, a reverse relationship exists because HNB binds covalently to the isolated F1 exclusively when the inhibitory protein is present. This finding is consistent with the existence of the epsilon subunit in different conformational states depending on whether IF1 is bound to F1 or not. Support for this assertion is obtained by measurements of the intrinsic phosphorescence decay rate of F1, a probe of the Trp epsilon subunit conformation in situ [Solaini, Baracca, Parenti-Castelli and Strambini (1993) Eur. J. Biochem. 214, 729-734]. A significant difference in phosphorescence decay rate is detected when IF1 is added to preparations of F1 previously devoid of the inhibitory protein. These studies indicate that IF1 and the epsilon subunit of the mitochondrial F1-ATPase complex are related, suggesting a possible role of the epsilon subunit in the mechanism of regulation of the mitochondrial ATP synthase.
Collapse
Affiliation(s)
- G Solaini
- Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Via G. Carducci, 40, 56127 Pisa, Italy
| | | | | | | |
Collapse
|
25
|
Papa S, Zanotti F, Cocco T, Perrucci C, Candita C, Minuto M. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:461-7. [PMID: 8841413 DOI: 10.1111/j.1432-1033.1996.0461h.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peptide segments of the inhibitor protein (IF1) of the F0F1 ATP synthase complex from bovine-heart mitochondria have been constructed by chemical synthesis. The IF1-(42-58)-peptide was equally effective as IF1 in inhibiting the ATPase activity of both the F0F1 complex in the mitochondrial membrane deprived of IF1 (SMP) and soluble F1. The IF1-(22-46)-peptide inhibited the ATPase activity in the soluble F1 but had no effect on either the ATPase activity or H+ conduction in SMP. Substitution of the His or Lys residues with Ala in the IF1-(42-58)-peptide decreased the inhibition of ATP hydrolysis. The inhibition exerted by the IF1-(42-58)-peptide on ATP hydrolysis in SMP exhibited a pH dependence, similar to that observed with IF1, which was lost upon replacement of His or Lys with Ala. In soluble F1, inhibition of ATP hydrolysis by IF1, the IF1-(42-58)-peptide and the IF1-(22-46)-peptide was pH dependent when F1 was first incubated with ATP. The IF1-(42-58)-peptide also caused inhibition of passive H+ conduction in SMP. This activity of the synthetic peptide was weaker, as compared to that of IF1, and practically unaffected by substitution of His or Lys with Ala. An antibody against the IF1-(42-58)-synthetic peptide stimulated ATP hydrolysis in the membrane-bound F0F1 complex with associated IF1 but was without effect on H+ conduction. An antibody against IF1 stimulated both processes.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Krippner A, Matsuno-Yagi A, Gottlieb RA, Babior BM. Loss of function of cytochrome c in Jurkat cells undergoing fas-mediated apoptosis. J Biol Chem 1996; 271:21629-36. [PMID: 8702951 DOI: 10.1074/jbc.271.35.21629] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function was examined in Jurkat cells undergoing Fas-mediated apoptosis. With succinate or ascorbate/tetramethylphenylenediamine as substrate, oxygen uptake by digitonin-permeabilized apoptotic mitochondria was greatly decreased as compared with control. Assessment of the function of the cytochrome c-cytochrome oxidase segment of the electron transport chain of apoptotic mitochondria showed that the activity of cytochrome oxidase appeared to be normal, but that of cytochrome c was greatly diminished. A death protease was found to participate in the events leading to the loss of cytochrome c activity, but the cytochrome did not seem to be extensively degraded during the course of apoptosis. Our results suggest that a rapid loss in mitochondrial function due at least in part to the inhibition or inactivation of cytochrome c is a potentially fatal component of the apoptosis program of Jurkat cells.
Collapse
Affiliation(s)
- A Krippner
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
27
|
Vázquez-Contreras E, Vázquez-Laslop N, Dreyfus G. The native F0F1-inhibitor protein complex from beef heart mitochondria and its reconstitution in liposomes. J Bioenerg Biomembr 1995; 27:109-16. [PMID: 7629042 DOI: 10.1007/bf02110338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975). Biochemistry 14, 1727-1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984). Anal. Biochem. 142, 215-220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed a Vmax of 1.28 mumol min-1 mg-1, whereas the Vmax of the complex without the inhibitor was 8.3 mumol min-1 mg-1. In contrast, the Km for Mg-ATP of F0F1I was 148 microM, comparable to the Km value of 142 microM of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60 degrees C at pH 6.8, reaching a maximal ATPase activity of 9.5 mumol min-1 mg-1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncoupler p-trifluoromethoxyphenylhydrazone.
Collapse
Affiliation(s)
- E Vázquez-Contreras
- Departamento de Bioenergética, Universidad Nacional Autónoma de México, México, D.F
| | | | | |
Collapse
|
28
|
Abstract
ATP synthase is regulated so as to prevent futile hydrolysis of ATP when the transmembrane proton electrochemical gradient, delta mu H+, falls. Mitochondria and chloroplasts have different mechanisms for inhibition of ATP synthase: by binding an inhibitor protein, and by stabilization of the ADP-inhibited state by making an intramolecular disulphide bond, respectively. The recently determined structure of bovine F1-ATPase is locked in a conformation that probably represents the ADP-inhibited state of the enzyme.
Collapse
Affiliation(s)
- J E Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
29
|
Grandier-Vazeille X, Ouhabi R, Guérin M. Antibodies against subunits of F0 sector of ATP synthase from Saccharomyces cerevisiae. Stimulation of ATP synthase by subunit-8-reactive antibodies and inhibition by subunit-9-reactive antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:521-8. [PMID: 8055922 DOI: 10.1111/j.1432-1033.1994.tb19021.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polyclonal antibodies against the three purified proteolipids of the F0 sector [subunit 6 (Su6), subunit 8 (Su8), subunit 9 (Su9)] and against the beta subunit (F1) of ATP synthase were raised in rabbits. All antisera showed ELISA reactivities with F0F1-ATPase. Antisera used to immunoblot partially purified ATP synthase labeled a single band migrating with the same molecular mass as that of the purified protein. Mitochondria were incubated with IgG of each antiserum and oxidative phosphorylation was measured. Anti-Su6 IgG, as anti-Su beta IgG, was without effect whereas anti-Su9 IgG decrease both respiration and ATP-synthesis rates, resulting in a decrease of ATP/O. In contrast, anti-Su8 IgG enhanced respiratory control and stimulated the ATP-synthesis rate, resulting in an increase of ATP/O. In the same manner, anti-Su9 IgG inhibited ATP hydrolysis whereas anti-Su8 IgG stimulated this activity. Antimycin titration of phosphorylation and respiration rates demonstrated that anti-Su9 IgG decreased the H+/ATP ratio and promoted a H+ leak, whereas anti-Su8 IgG increased H+/ATP without modification of the proton permeability. Anti-Su9 IgG decreased proton-motive force whereas anti-Su8 IgG did not. It is proposed that both antibodies promoted opposite mechanistic changes of the H+/ATP stoichiometry of the ATP synthase, and that in vivo Su8 could have a negative regulatory role in the oxidative phosphorylation process.
Collapse
Affiliation(s)
- X Grandier-Vazeille
- Institut de Biochimie et de Génétique Cellularies du CNRS, Université de Bordeaux II, France
| | | | | |
Collapse
|