1
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
2
|
Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 2019; 20:465-477. [DOI: 10.2174/1389450119666181022154737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.
Collapse
Affiliation(s)
- Pedro Henrique Souza Cesar
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Danilo Luccas Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (FCFRP-USP), Ribeirão Preto-SP, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
3
|
Cheng CH, Chen YC, Shiu JH, Chang YT, Chang YS, Huang CH, Chen CY, Chuang WJ. Dynamics and functional differences between dendroaspin and rhodostomin: insights into protein scaffolds in integrin recognition. Protein Sci 2012; 21:1872-84. [PMID: 23033223 DOI: 10.1002/pro.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022]
Abstract
Dendroaspin (Den) and rhodostomin (Rho) are snake venom proteins containing a PRGDMP motif. Although Den and Rho have different 3D structures, they are highly potent integrin inhibitors. To study their structure, function, and dynamics relationships, we expressed Den and Rho in Pichia pastoris. The recombinant Den and Rho inhibited platelet aggregation with the K(I) values of 149.8 and 83.2 nM. Cell adhesion analysis showed that Den was 3.7 times less active than Rho when inhibiting the integrin αIIbβ3 and 2.5 times less active when inhibiting the integrin αvβ3. In contrast, Den and Rho were similarly active when inhibiting the integrin α5β1 with the IC₅₀ values of 239.8 and 256.8 nM. NMR analysis showed that recombinant Den and Rho have different 3D conformations for their arginyl-glycyl-aspartic acid (RGD) motif. However, the comparison with Rho showed that the docking of Den into integrin αvβ3 resulted in a similar number of contacts. Analysis of the dynamic properties of the RGD loop in Den and Rho showed that they also had different dynamic properties. These results demonstrate that protein scaffolds affect the function, structure, and dynamics of their RGD motif.
Collapse
Affiliation(s)
- Chun-Ho Cheng
- Department of Biochemistry and Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lu D, Scully M, Kakkar V, Lu X. ADAM-15 disintegrin-like domain structure and function. Toxins (Basel) 2010; 2:2411-27. [PMID: 22069559 PMCID: PMC3153164 DOI: 10.3390/toxins2102411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022] Open
Abstract
The ADAM (a disintegrin-like and metalloproteinase) proteins are a family of transmembrane cell-surface proteins with important functions in adhesion and proteolytic processing in all animals. Human ADAM-15 is the only member of the ADAM family with the integrin binding motif Arg-Gly-Asp (RGD) in its disintegrin-like domain. This motif is also found in most snake venom disintegrins and other disintegrin-like proteins. This unique RGD motif within ADAM-15 serves as an integrin ligand binding site, through which it plays a pivotal role in interacting with integrin receptors, a large family of heterodimeric transmembrane glycoproteins. This manuscript will present a review of the RGD-containing disintegrin-like domain structures and the structural features responsible for their activity as antagonists of integrin function in relation to the canonical RGD template.
Collapse
Affiliation(s)
- Dong Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Author to whom correspondence should be addressed; ; Tel.: +44-0207-351-8312; Fax: +44-0207-351-8324
| |
Collapse
|
5
|
Lu X, Davies J, Lu D, Xia M, Wattam B, Shang D, Sun Y, Scully M, Kakkar V. The effect of the single substitution of arginine within the RGD tripeptide motif of a modified neurotoxin dendroaspin on its activity of platelet aggregation and cell adhesion. ACTA ACUST UNITED AC 2006; 13:171-83. [PMID: 16798616 DOI: 10.1080/15419060600726183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Arg-Gly-Asp (RGD) tripeptide unit is a cell-cell and cell-extracellular matrix recognition sequence of some integrins that is found within several extracellular matrix glycoproteins and dendroaspin, a disintegrin-like venom protein isolated from the snake venom of the Dendroaspis jamsonii. In the present study, the RGD motif in dendroaspin was substituted by Lys-Gly-Asp (KGD), His-Gly-Asp (HGD), Gln-Gly-Asp (QGD) and Ala-Gly-Asp (AGD) denoted as KGD-den, HGD-den, QGD-den and AGD-den, respectively. Each of the mutants exhibited activity as inhibitor of ADP-induced platelet aggregation with IC50 values of 0.26, 2.5, 6, and 17 microM for KGD-den, HGD-den, QGD-den, and AGD-den, respectively, as compared with RGD-den (IC50 = 0.18 microM). Interestingly, HGD-den was approx. two-fold more potent and a more selective inhibitor than either the KGD-den or QGD-den counterpart at blocking A375-SM human melanoma cell adhesion to fibrinogen (beta3-mediated). KGD-den, HGD-den, and QGD-den were preferentially antagonists of A375-SM human melanoma cell adhesion to fibrinogen rather than to fibronectin (alpha5beta1-, beta3-mediated). Both HGD-den and KGD-den were equipotent as inhibitors of human erythroleukaemia (HEL) cell adhesion to fibrinogen (IC50 = 0.15 microM) and also preferential inhibitors of HEL cell adhesion to fibrinogen (beta3 and beta1-mediated) rather than to fibronectin. These findings show that the presence of the arginine within the RGD motif of dendroaspin is not obligatory and substitution of this residue can modulate inhibitory potency and integrin binding selectivity.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu J, Yang XW, Chen WQ, Tang JG. Effect of disulfide bond on the conformation and anticoagulant activity of an Arg-Gly-Asp motif displayed on a mutant insulin protein framework. Int J Pept Res Ther 2002. [DOI: 10.1007/bf02538380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Zachariah C, Cameron A, Lindberg I, Kao KJ, Beinfeld MC, Edison AS. Structural studies of a neuropeptide precursor protein with an RGD proteolytic site. Biochemistry 2001; 40:8790-9. [PMID: 11467939 DOI: 10.1021/bi010448s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The snail Lymnaea stagnalis produces a neuropeptide precursor protein that contains seven Arg-Gly-Asp (RGD) sites. These sites are recognized and cleaved by one or more prohormone convertases in the first processing step to yield mature neuropeptides in the secretory pathway. Conformations of two synthetic RGD-containing peptides derived from the L. stagnalis precursor protein were determined by NMR spectroscopy. The peptides were tested in a platelet aggregation assay for RGD activity and were processed in vitro by PC2 and furin. The native peptide with a proline following the RGD site has minimal structure around the RGD region, does not inhibit platelet aggregation, and is properly processed by the enzymes PC2 and furin. A variant of the native fragment with a serine following the RGD sequence has a significant amount of a reverse turn around the RGD region, is a potent inhibitor of platelet aggregation, and is processed with the same specificity as the native fragment. The large conformational differences between the two peptides provide a molecular mechanism for effects of proline residues following the RGD site and suggest that precursor processing is influenced more by flexibility than by the conformation of the processing site.
Collapse
Affiliation(s)
- C Zachariah
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lu X, Sun Y, Shang D, Wattam B, Egglezou S, Hughes T, Hyde E, Scully M, Kakkar V. Evaluation of the role of proline residues flanking the RGD motif of dendroaspin, an inhibitior of platelet aggregation and cell adhesion. Biochem J 2001; 355:633-8. [PMID: 11311124 PMCID: PMC1221777 DOI: 10.1042/bj3550633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of a panel of proline mutants of dendroaspin, an inhibitor of platelet aggregation and cell adhesion, including A(42)-dendroaspin, A(47)-dendroaspin, A(49)-dendroaspin, A(42,47)-dendroaspin and A(47,49)-dendroaspin, was investigated using platelet-aggregation and cell-adhesion assays. Here we show that a single alanine-for-proline substitution did not affect potency when measured as the ability either to inhibit platelet aggregation induced by ADP (IC(50) approximately 170 nM) or to block transfected A375-SM cell adhesion to fibrinogen in the presence of Mn(2+) as compared with wild-type dendroaspin. By comparison, double proline substitution with alanines significantly reduced the potency in both assays by approx. 5-8-fold. These observations, therefore, suggest that proline residues flanking the RGD motif in dendroaspin and other RGD-containing venom proteins, e.g. disintegrins, may contribute to maintaining a favourable conformation for the solvent-exposed RGD site for its recognition by integrin receptors.
Collapse
Affiliation(s)
- X Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Krezel AM, Ulmer JS, Wagner G, Lazarus RA. Recombinant decorsin: dynamics of the RGD recognition site. Protein Sci 2000; 9:1428-38. [PMID: 10975565 PMCID: PMC2144719 DOI: 10.1110/ps.9.8.1428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Decorsin is an antagonist of integrin alphaIIbbeta3 and a potent platelet aggregation inhibitor. A synthetic gene encoding decorsin, originally isolated from the leech Macrobdella decora, was designed, constructed, and expressed in Escherichia coli. The synthetic gene was fused to the stII signal sequence and expressed under the transcriptional control of the E. coli alkaline phosphatase promoter. The protein was purified by size-exclusion filtration of the periplasmic contents followed by reversed-phase high-performance liquid chromatography. Purified recombinant decorsin was found to be indistinguishable from leech-derived decorsin based on amino acid composition, mass spectral analysis, and biological activity assays. Complete sequential assignments of 1H and proton bound 13C resonances were established. Stereospecific assignments of 21 of 25 nondegenerate b-methylene groups were determined. The RGD adhesion site recognized by integrin receptors was found at the apex of a most exposed hairpin loop. The dynamic behavior of decorsin was analyzed using several independent NMR parameters. Although the loop containing the RGD sequence is the most flexible one in decorsin, the conformation of the RGD site itself is more restricted than in other proteins with similar activities.
Collapse
Affiliation(s)
- A M Krezel
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | | | | | |
Collapse
|
10
|
Kini RM. Proline brackets and identification of potential functional sites in proteins: toxins to therapeutics. Toxicon 1998; 36:1659-70. [PMID: 9792183 DOI: 10.1016/s0041-0101(98)00159-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein toxins induce their specific pharmacological effects through protein protein interaction. Identification of these protein-protein interaction sites could lead to prototypes of highly specific therapeutic agents. However, deciphering the structure function relationships of protein toxins and locating the functional sites is a difficult, tedious and cumbersome task. We recently developed a novel predictive method to identify potential protein protein interaction sites directly from the amino acid sequence of a protein (R. M. Kini and H. J. Evans (1996) FEBS Lett. 385, 81-86) based on the presence of proline residues, a common residue found predominantly in the flanking segments of protein-protein interaction sites (R. M. Kini and H. J. Evans (1996) Biochem. Biophys. Res. Commun. 212, 1115-1124). It is a simple and straight-forward method. This review describes the new method and its application to solve structure function relationships of protein toxins. The method is useful in identifying functional sites in toxins, despite the subtle and complex nature of their structure function relationships and saves significant amounts of time and money.
Collapse
Affiliation(s)
- R M Kini
- Bioscience Centre, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
11
|
Kini RM, Caldwell RA, Wu QY, Baumgarten CM, Feher JJ, Evans HJ. Flanking proline residues identify the L-type Ca2+ channel binding site of calciseptine and FS2. Biochemistry 1998; 37:9058-63. [PMID: 9636051 DOI: 10.1021/bi9802723] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calciseptine and FS2 are 60-amino acid polypeptides, isolated from venom of the black mamba (Dendroaspis polylepis polylepis), that block voltage-dependent L-type Ca2+ channels. We predicted that these polypeptides contain an identical functional site between residues 43 and 46 by searching for proline residues that mark the flanks of protein-protein interaction sites [Kini, R. M., and Evans, H. J. (1966) FEBS Lett. 385, 81-86]. The predicted Ca2+ channel binding site also occurs in closely related toxins, C10S2C2 and S4C8. Therefore, it is likely that these toxins also will block L-type Ca2+ channels. To test the proposed binding site on calciseptine and FS2, an eight-residue peptide, named L-calchin (L-type calcium channel inhibitor), was synthesized and examined for biological activity. As expected for an L-type Ca2+ channel blocker, L-calchin reduced peak systolic and developed pressure in isolated rat heart Langendorff preparations without affecting diastolic pressure or heart rate. Furthermore, L-calchin caused a voltage-independent block of L-type Ca2+ channel currents in whole-cell patch-clamped rabbit ventricular myocytes. Thus the synthetic peptide exhibits the L-type Ca2+ channel blocking properties of the parent molecules, calciseptine and FS2, but with a lower potency. These results strongly support the identification of a site in calciseptine and FS2 that is important for binding to L-type Ca2+ channels and reinforce the importance of proline brackets flanking protein-protein interaction sites.
Collapse
Affiliation(s)
- R M Kini
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lu X, Rahman S, Kakkar VV, Authi KS. Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem 1996; 271:289-94. [PMID: 8550575 DOI: 10.1074/jbc.271.1.289] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous studies have shown that the neurotoxin dendroaspin and the disintegrin kistrin, which show little overall sequence homology but similar residues around RGD (PRGDMP), preferentially inhibited platelet adhesion to fibrinogen. In contrast, the elegantin which has different amino acids around RGD (ARGDNP) preferentially inhibited platelet adhesion to fibronectin. To investigate further the role of amino acids around RGD in disintegrins, we have constructed the genes of a wild-type and of two mutant dendroaspins with substitutions around the RGD, namely [Asn46]- and [Ala42,Asn46]-dendroaspins. Proteins were expressed in Escherichia coli as glutathione S-transferase fusion recombinants and purified to homogeneity by affinity chromatography and reversed phase high performance liquid chromatography. Platelet aggregation studies revealed that wild-type dendroaspin showed an IC50 value similar to that of native dendroaspin, with [Ala42,Asn46]-dendroaspin showing an IC50 value similar to that of elegantin. Interestingly, in platelet adhesion assays, the mutants showed a progressive shift in inhibitory preference, in particular, [Ala42,Asn46]dendroaspin showed nearly identical behavior as elegantin when fibronectin was the immobilized ligand (IC50 = 0.33 microM and 0.6 microM, respectively, compared with 20 microM for native dendroaspin). Native and recombinant wild-type dendroaspin bound to a single class of binding site exhibiting a Kd = 67 nM; [Asn46]- and [Ala42,Asn46]dendroaspins, however, both produced biphasic isotherms with Kd values = 87 nM and 361 nM for [Asn46]dendroaspin and 33 nM and 371 nM for [Ala42,Asn46]dendroaspin, which are close to those of elegantin (Kd values = 18 nM and 179 nM). These studies prove that the amino acids flanking RGD provide an extended locus that regulate the affinity and selectivity of RGD protein dendroaspin.
Collapse
Affiliation(s)
- X Lu
- Platelet Section, Thrombosis Research Institute, London, United Kingdom
| | | | | | | |
Collapse
|