1
|
Zhao L, Zhang H, Wang X, Han G, Ma W, Hu X, Li Y. Transcriptomic analysis of an l-threonine-producing Escherichia coli TWF001. Biotechnol Appl Biochem 2020; 67:414-429. [PMID: 31976571 DOI: 10.1002/bab.1890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023]
Abstract
Wild-type Escherichia coli usually does not accumulate l-threonine, but E. coli strain TWF001 could produce 30.35 g/L l-threonine after 23-H fed-batch fermentation. To understand the mechanism for the high yield of l-threonine production in TWF001, transcriptomic analyses of the TWF001 cell samples collected at the logarithmic and stationary phases were performed, using the wild-type E. coli strain W3110 as the control. Compared with W3110, 1739 and 2361 genes were differentially transcribed in the logarithmic and stationary phases, respectively. Most genes related to the biosynthesis of l-threonine were significantly upregulated. Some key genes related to the NAD(P)H regeneration were upregulated. Many genes relevant to glycolysis and TCA cycle were downregulated. The key genes involved in the l-threonine degradation were downregulated. The gene rhtA encoding the l-threonine exporter was upregulated, whereas the genes sstT and tdcC encoding the l-threonine importer were downregulated. The upregulated genes in the glutamate pathway might form an amino-providing loop, which is beneficial for the high yield of l-threonine production. Many genes encoding the 30S and 50S subunits of ribosomes were also upregulated. The findings are useful for gene engineering to increase l-threonine production in E. coli.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Han
- College of Modern Agriculture and Biological Engineering, Yangtze Normal University, Chongqing, 264005, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Batista MB, Teixeira CS, Sfeir MZT, Alves LPS, Valdameri G, Pedrosa FDO, Sassaki GL, Steffens MBR, de Souza EM, Dixon R, Müller-Santos M. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae. Front Microbiol 2018; 9:472. [PMID: 29599762 PMCID: PMC5862806 DOI: 10.3389/fmicb.2018.00472] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate) (PHB) enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a ΔphaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae. The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c-branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the ΔphaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.
Collapse
Affiliation(s)
- Marcelo B Batista
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Cícero S Teixeira
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Michelle Z T Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luis P S Alves
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Glaucio Valdameri
- Department of Clinical Analysis, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria B R Steffens
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Sedláček V, Ptáčková N, Rejmontová P, Kučera I. The flavoprotein FerB ofParacoccus denitrificansbinds to membranes, reduces ubiquinone and superoxide, and acts as anin vivoantioxidant. FEBS J 2014; 282:283-96. [DOI: 10.1111/febs.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Vojtĕch Sedláček
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Nikola Ptáčková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Petra Rejmontová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Igor Kučera
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
4
|
Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. PLoS One 2014; 9:e99960. [PMID: 24924203 PMCID: PMC4055684 DOI: 10.1371/journal.pone.0099960] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate), and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.
Collapse
Affiliation(s)
- Luiz R. Olchanheski
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Manuella N. Dourado
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Flávio L. Beltrame
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Ciências Farmacêuticas, Ponta Grossa, PR, Brazil
| | - Acácio A. F. Zielinski
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ivo M. Demiate
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Engenharia de Alimentos, Ponta Grossa, PR, Brazil
| | - Sônia A. V. Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Ricardo A. Azevedo
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
5
|
Krapp AR, Humbert MV, Carrillo N. The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. MICROBIOLOGY-SGM 2010; 157:957-965. [PMID: 21178165 DOI: 10.1099/mic.0.039461-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The soxRS regulon protects Escherichia coli cells against superoxide and nitric oxide. Oxidation of the SoxR sensor, a [2Fe-2S]-containing transcriptional regulator, triggers the response, but the nature of the cellular signal sensed by SoxR is still a matter of debate. In vivo, the sensor is maintained in a reduced, inactive state by the activities of SoxR reductases, which employ NADPH as an electron donor. The hypothesis that NADPH levels affect deployment of the soxRS response was tested by transforming E. coli cells with genes encoding enzymes and proteins that lead to either build-up or depletion of the cellular NADPH pool. Introduction of NADP(+)-reducing enzymes, such as wheat non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase or E. coli malic enzyme, led to NADPH accumulation, inhibition of the soxRS regulon and enhanced sensitivity to the superoxide propagator methyl viologen (MV). Conversely, expression of pea ferredoxin (Fd), a redox shuttle that can oxidize NADPH via ferredoxin-NADP(H) reductase, resulted in execution of the soxRS response in the absence of oxidative stress, and in higher tolerance to MV. Processes that caused NADPH decline, including oxidative stress and Fd activity, correlated with an increase in total (NADP(+)+NADPH) stocks. SoxS expression can be induced by Fd expression or by MV in anaerobiosis, under conditions in which NADPH is oxidized but no superoxide can be formed. The results indicate that activation of the soxRS regulon in E. coli cells exposed to superoxide-propagating compounds can be triggered by depletion of the NADPH stock rather than accumulation of superoxide itself. They also suggest that bacteria need to finely regulate homeostasis of the NADP(H) pool to enable proper deployment of this defensive response.
Collapse
Affiliation(s)
- Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María Victoria Humbert
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
6
|
Gray JP, Heck DE, Mishin V, Smith PJS, Hong JY, Thiruchelvam M, Cory-Slechta DA, Laskin DL, Laskin JD. Paraquat Increases Cyanide-insensitive Respiration in Murine Lung Epithelial Cells by Activating an NAD(P)H:Paraquat Oxidoreductase. J Biol Chem 2007; 282:7939-49. [PMID: 17229725 DOI: 10.1074/jbc.m611817200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10-100 microm) was found to cause a 2-4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 microm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.
Collapse
Affiliation(s)
- Joshua P Gray
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sermon J, Vanoirbeek K, De Spiegeleer P, Van Houdt R, Aertsen A, Michiels CW. Unique stress response to the lactoperoxidase-thiocyanate enzyme system in Escherichia coli. Res Microbiol 2004; 156:225-32. [PMID: 15748988 DOI: 10.1016/j.resmic.2004.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 09/22/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Using a differential fluorescence induction approach, we screened a promoter trap library constructed in a vector with a promoterless gfp gene for Escherichia coli MG1655 promoters that are induced upon challenge with the antimicrobial lactoperoxidase-thiocyanate enzyme system. None of the thirteen identified lactoperoxidase-inducible open reading frames was inducible by H(2)O(2) or by the superoxide generator plumbagin. However, analysis of specific promoters of known stress genes showed some of these, including recA, dnaK and sodA, to be inducible by the lactoperoxidase-thiocyanate enzyme system. The results show that the lactoperoxidase-thiocyanate enzyme system elicits a distinct stress response different from but partly overlapping other oxidative stress responses. Several of the induced genes or pathways may be involved in bacterial defense against the toxic effects of the lactoperoxidase-thiocyanate enzyme system.
Collapse
Affiliation(s)
- Jan Sermon
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven (Heverlee), Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Membrillo-Hernández J, Coopamah MD, Anjum MF, Stevanin TM, Kelly A, Hughes MN, Poole RK. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a "Nitric oxide Releaser," and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 1999; 274:748-54. [PMID: 9873011 DOI: 10.1074/jbc.274.2.748] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli possesses a flavohemoglobin (Hmp), product of hmp, the first microbial globin gene to be sequenced and characterized at the molecular level. Although related proteins occur in numerous prokaryotes and eukaryotic microorganisms, the function(s) of these proteins have been elusive. Here we report construction of a defined hmp mutation and its use to probe Hmp function. As anticipated from up-regulation of hmp expression by nitric oxide (NO), S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP), the hmp mutant is hypersensitive to these agents. The hmp promoter is more sensitive to SNP and S-nitroso-N-penicillamine (SNAP) than is the soxS promoter, consistent with the role of Hmp in protection from reactive nitrogen species. Additional functions for Hmp are indicated by (a) parallel sensitivity of the hmp mutant to the redox-cycling agent, paraquat, (b) inability of the mutant to up-regulate fully the soxS and sodA promoters in response to oxidative stress caused by paraquat, GSNO and SNP, and (c) failure of the mutant to accumulate reduced paraquat radical after anoxic growth. We conclude that Hmp plays a role in protection from nitrosating agents and NO-related species and oxidative stress. This protective role probably involves direct detoxification of those species and sensing of NO-related and oxidative stress.
Collapse
Affiliation(s)
- J Membrillo-Hernández
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Anjum MF, Ioannidis N, Poole RK. Response of the NAD(P)H-oxidising flavohaemoglobin (Hmp) to prolonged oxidative stress and implications for its physiological role in Escherichia coli. FEMS Microbiol Lett 1998; 166:219-23. [PMID: 9770277 DOI: 10.1111/j.1574-6968.1998.tb13893.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Escherichia coli flavohaemoglobin (Hmp) has a globin-like N-terminal domain and a ferredoxin-NADP-reductase-like C-terminal domain. We show here that purified Hmp oxidises both NADH and NADPH with Km values of 1.8 and 19.6 microM, respectively. Prolonged incubation of a hmp-lacZ fusion strain with the redox cycling agent paraquat resulted in a 28-fold induction of hmp gene expression, nearly 3-fold higher than after short periods of exposure. A strain overproducing Hmp was significantly more sensitive to paraquat than was the wild-type strain but, in vitro, purified Hmp was not an effective NADPH-paraquat diaphorase. Prolonged incubation of a wild-type strain with paraquat increased intracellular Hmp to spectrally detectable levels.
Collapse
Affiliation(s)
- M F Anjum
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | |
Collapse
|
10
|
Coves J, Zeghouf M, Macherel D, Guigliarelli B, Asso M, Fontecave M. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry 1997; 36:5921-8. [PMID: 9153434 DOI: 10.1021/bi9623744] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The flavoprotein component (SiR-FP) of the sulfite reductase from Escherichia coli is an octamer containing one FAD and one FMN as cofactors per polypeptide chain. We have constructed an expression vector containing the DNA fragment encoding for the FMN-binding domain of SiR-FP. The overexpressed protein (SiR-FP23) was purified as a partially flavin-depleted polymer. It could incorporate FMN exclusively upon flavin reconstitution to reach a maximum flavin content of 1.2 per polypeptide chain. Moreover, the protein could stabilize a neutral air-stable semiquinone radical over a wide range of pHs. During photoreduction, the flavin radical accumulated first, followed by the fully reduced state. The redox potentials, determined at room temperature [E'1 (FMNH./FMN) = -130 +/- 10 mV and E'2 (FMNH2/FMNH.) = -335 +/- 10 mV], were very close to those previously reported for Salmonella typhimurium SiR-FP [Ostrowski, J., Barber, M. J., Rueger, D. C., Miller, B. E., Siegel, L. M., & Kredich, N. M. (1989) J. Biol. Chem. 264, 15796-15808]. Both the radical and fully reduced forms of SiR-FP23 were able to transfer their electrons to cytochrome c quantitatively. Altogether, the results presented herein demonstrate that the N-terminal end of E. coli SiR-FP forms the FMN-binding domain. It folds independently, thus retaining the chemical properties of the bound FMN, and provides a good model of the FAD-depleted form of native SiR-FP. Moreover, the FMN prosthetic group in SiR-FP23 and native SiR-FP is compared to that of cytochrome P450 reductase and bacterial cytochrome P450, which also contain one FAD and one FMN per polypeptide chain.
Collapse
Affiliation(s)
- J Coves
- Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Unité Mixte de Recherche du Centre National de la Recherche Scientifique 5616, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Bacterial mutagenicity assays have been widely used in genotoxicology research for two decades. We discuss the development of such assays, especially the Ames test, with particular attention to strain engineering. Genes encoding enzymes of mutagen bioactivation, including N-acetyltransferase, nitroreductase, and cytochrome P450, have been introduced into tester strains. The processing of DNA damage by the bacterial strains has also been modified in several ways, so as to enhance mutagenesis. These efforts have greatly increased the sensitivity of mutation assays and have illuminated the molecular mechanisms of mutagenesis. We also discuss the relationship between bacterial assays and in vivo mutation assays which use transgenic rodents.
Collapse
Affiliation(s)
- P D Josephy
- Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
12
|
Abstract
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO. production to a minimum. O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction. In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the "free" iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors. The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.
Collapse
Affiliation(s)
- S L Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Hayashi M, Ohzeki H, Shimada H, Unemoto T. NADPH-specific quinone reductase is induced by 2-methylene-4-butyrolactone in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:165-70. [PMID: 8611590 DOI: 10.1016/0005-2728(95)00138-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
2-Methylene-4-butyrolactone (MBL), an inducer of NAD(P)H:(quinone acceptor) oxidoreductase (EC 1.699.2) in animal cells, was found to induce NADPH-specific quinone reductase about 25-fold in Escherichia coli. MBL induced NADPH-quinone reductases with relative mobilities (Rm) of 0.70, 0.76 and 0.91 on polyacrylamide gel electrophoresis (PAGE). These three enzymes were found to be charge isomers with the same molecular size of 42 kDA. Two NADPH-quinone reductases (A and B) were purified to single proteins both with an apparent mass of 21 kDa on SDS-PAGE. Enzyme A corresponded to the activity of the band at Rm 0.76 with a minor active band at Rm 0.70, and enzyme B to the activity of band Rm 0.91. Both enzymes reacted exclusively with NADPH and were most active toward quinone derivatives and ferricyanide with the optimum pH at 7.0. The reaction followed a ping-pong mechanism with Km values for NADPH and menadione of 10.5 microM and 6 microM, respectively. The sequences of 20 amino acids at the N-terminal of enzymes A and B were identical, and furthermore coincided with that of the E. coli modulator of drug activity (mda66) submitted under the accession number U18656.
Collapse
Affiliation(s)
- M Hayashi
- Laboratory of Membrane Biochemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
14
|
Bianchi V, Haggård-Ljungquist E, Pontis E, Reichard P. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. J Bacteriol 1995; 177:4528-31. [PMID: 7635836 PMCID: PMC177208 DOI: 10.1128/jb.177.15.4528-4531.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ferredoxin (flavodoxin) NADP+ oxidoreductase participates in methionine biosynthesis and in the function of two anaerobic enzymes, pyruvate formate-lyase and ribonucleotide reductase. We prepared insertion mutants of Escherichia coli lacking a functional enzyme. They do not require methionine and they grow well anaerobically, but they show increased sensitivity to paraquat.
Collapse
Affiliation(s)
- V Bianchi
- Department of Genetics, Stockholm University, Sweden
| | | | | | | |
Collapse
|