1
|
Lee A, Park N, Song C, Cha J. AmyA contributes to the glycogen synthesis in Sulfolobus acidocaldarius. Int J Biol Macromol 2025; 306:141431. [PMID: 40032102 DOI: 10.1016/j.ijbiomac.2025.141431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 03/05/2025]
Abstract
Glycogen, an α-1,4 linked glucose polymer with α-1,6 linked branches, accumulates in Sulfolobus acidocaldarius in granular form and contributes to stress resistance. While the glg operon responsible for glycogen metabolism has been studied, the gene responsible for branch formation remained elusive. Interestingly, the ΔAmyA mutant failed to accumulate glycogen. We hypothesized that amyA is responsible for branch formation in glycogen. In this study, AmyA was characterized to have dual activities as an α-amylase and a glycogen-branching enzyme. Glycogen extracted from S. acidocaldarius exhibited α-1,6 linked glucose branches, with most branches containing 5-13 glucose units. AmyA showed a preference for synthesizing branches with a degree of polymerization of 6. Structural modeling of AmyA, in comparison with GH57 glycogen-branching enzymes (GBE), revealed the presence of key amino acids essential for branching activity, located in positions structurally analogous to those in GH57 GBEs, enabling AmyA to function as a glycogen-branching enzyme. Alignment of the glg operons showed that amyA is conserved, while glgB is absent in most Crenarchaeota. Based on these findings, we propose that AmyA synthesizes α-1,6 branches in glycogen, substituting for the role of GlgB in Crenarchaeota.
Collapse
Affiliation(s)
- Areum Lee
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Nahyun Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Chihong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaeho Cha
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea; Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Zhang K, Yue L, Cong J, Zhang J, Feng Z, Yang Q, Lu X. Increased production of pullulan in Aureobasidium pullulans YQ65 through reduction of intracellular glycogen content. Carbohydr Polym 2025; 352:123196. [PMID: 39843098 DOI: 10.1016/j.carbpol.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH. It is subsequently analyzed using the Conserved Domains and Expasy tools. It has been found that compared with its wild type, the △ApGph1 strain exhibits no significant differences in its growth pattern and morphology but a production volume of pullulan inversely proportional to its glycogen content. In addition, through fed-batch fermentation, an over-expressed ApGph1 strain can produce 42.7 g/L of pullulan within 144 h, which is related to the increased expression of key genes involved in pullulan synthesis. The results can provide a guide for the industrial production of pullulan.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Lei Yue
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jingxian Cong
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jianlong Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Zhibin Feng
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuechun Lu
- LuDong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| |
Collapse
|
3
|
Kamau SM, Li Y, Sun T, Liu F, Zhu QH, Zhang X, Sun J, Li Y. VdPAT1 encoding a pantothenate transporter protein is required for fungal growth, mycelial penetration and pathogenicity of Verticillium dahliae. Front Microbiol 2025; 15:1508765. [PMID: 39895932 PMCID: PMC11783681 DOI: 10.3389/fmicb.2024.1508765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction The soil-borne vascular fungus Verticillium dahliae is a phytopathogenic fungus known to attack cotton crop causing Verticillium wilt. In previous study, we identified a pantothenate transporter gene (VdPAT1) in V. dahliae which can be induced by root exudates from a susceptible cotton variety. Methods In this study, we generated VdPAT1 deletion mutants and complementary strain via homologous recombination by a PEG-mediated transformation method and used for the gene functional characterization. Results and discussion The VdPAT1 deletion mutants displayed reduced colony growth, melanin production, spore yield and germination rate, showed abnormal mycelial branching and decreased ability of mycelial penetration and utilization of nutrients (carbon, amino acids and vitamin), leading to a lower pathogenicity. Comparative transcriptome analysis of wild-type and mutant strain cultivated on sterilized carboxymethyl cellophane membranes found that the amino sugar and nucleotide sugar metabolism pathway, which was related to chitin synthesis and degradation as well as UDP-glucose synthesis, was the most significantly down-regulated pathway in VdPAT1 deletion mutant. Chitin and β-1,3-glucan content determination found that the chitin content in VdPAT1 deletion mutants was significantly lower, while β-1,3-glucan content was higher than that of wild-type and complementary strains. The ratio change of chitin and β-1,3-glucan content in VdPAT1 deletion mutants might lead to abnormal branching of mycelium, resulting in the reduced penetration ability of V. dahliae. The decreased chitin content in VdPAT1 mutants impaired the fungal cell wall integrity, leading to their increased sensitivity to external stresses. Conclusion Together, the results demonstrated that VdPAT1 is required for growth, development, resistance to external stresses, mycelial penetration and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Stephen Mwangi Kamau
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Cui FJ, Fu X, Sun L, Zan XY, Meng LJ, Sun WJ. Recent insights into glucans biosynthesis and engineering strategies in edible fungi. Crit Rev Biotechnol 2024; 44:1262-1279. [PMID: 38105513 DOI: 10.1080/07388551.2023.2289341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 12/19/2023]
Abstract
Fungal α/β-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/β-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/β-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| | - Xin Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, P. R. China
| |
Collapse
|
5
|
Groß M, Dika B, Loos E, Aliyeva-Schnorr L, Deising HB. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Mol Microbiol 2024; 121:912-926. [PMID: 38400525 DOI: 10.1111/mmi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched β-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.
Collapse
Affiliation(s)
- Maximilian Groß
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Dika
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisabeth Loos
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lala Aliyeva-Schnorr
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Han X, D'Angelo C, Otamendi A, Cifuente JO, de Astigarraga E, Ochoa-Lizarralde B, Grininger M, Routier FH, Guerin ME, Fuehring J, Etxebeste O, Connell SR. CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from Aspergillus nidulans reveals key conformations for activity regulation and function. mBio 2023; 14:e0041423. [PMID: 37409813 PMCID: PMC10470519 DOI: 10.1128/mbio.00414-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Xu Han
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cecilia D'Angelo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Ainara Otamendi
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Javier O. Cifuente
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Elisa de Astigarraga
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Borja Ochoa-Lizarralde
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcelo E. Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jana Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Sean R. Connell
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Cao L, Lu M, Zhao M, Zhang Y, Nong Y, Hu M, Wang Y, Li T, Chen F, Wang M, Liu J, Li E, Sun H. Physiological and transcriptional studies reveal Cr(VI) reduction mechanisms in the exoelectrogen Cellulomonas fimi Clb-11. Front Microbiol 2023; 14:1161303. [PMID: 37303804 PMCID: PMC10251745 DOI: 10.3389/fmicb.2023.1161303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
A facultative exoelectrogen, Cellulomonas fimi strain Clb-11, was isolated from polluted river water. This strain could generate electricity in microbial fuel cells (MFCs) with carboxymethyl cellulose (CMC) as the carbon source, and the maximum output power density was 12.17 ± 2.74 mW·m-2. In addition, Clb-11 could secrete extracellular chromate reductase or extracellular electron mediator to reduce Cr(VI) to Cr(III). When the Cr(VI) concentration was less than 0.5 mM in Luria-Bertani (LB) medium, Cr(VI) could be completely reduced by Clb-11. However, the Clb-11 cells swelled significantly in the presence of Cr(VI). We employed transcriptome sequencing analysis to identify genes involved in different Cr(VI) stress responses in Clb-11. The results indicate that 99 genes were continuously upregulated while 78 genes were continuously downregulated as the Cr(VI) concentration increased in the growth medium. These genes were mostly associated with DNA replication and repair, biosynthesis of secondary metabolites, ABC transporters, amino sugar and nucleotide sugar metabolism, and carbon metabolism. The swelling of Clb-11 cells might have been related to the upregulation of the genes atoB, INO1, dhaM, dhal, dhak, and bccA, which encode acetyl-CoA C-acetyltransferase, myo-inositol-1-phosphate synthase, phosphoenolpyruvate-glycerone phosphotransferase, and acetyl-CoA/propionyl-CoA carboxylase, respectively. Interestingly, the genes cydA and cydB related to electron transport were continuously downregulated as the Cr(VI) concentration increased. Our results provide clues to the molecular mechanism of Cr(VI) reduction by microorganisms in MFCs systems.
Collapse
|
8
|
Qiu C, Tao H, Shen Y, Qi Q, Hou J. Dynamic-tuning yeast storage carbohydrate improves the production of acetyl-CoA-derived chemicals. iScience 2022; 26:105817. [PMID: 36636342 PMCID: PMC9830206 DOI: 10.1016/j.isci.2022.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acetyl-coenzyme A (Acetyl-CoA) and malonyl-coenzyme A (malonyl-CoA) are important precursors for producing various chemicals, and their availability affects the production of their downstream chemicals. Storage carbohydrates are considered important carbon and energy reservoirs. Herein, we find that regulating the storage carbohydrate synthesis improves metabolic fluxes toward malonyl-CoA. Interestingly, not only directly decreasing storage carbohydrate accumulation improved malonyl-CoA availability but also increasing the storage carbohydrate by UGP1 overexpression enables an even higher production of acetyl-CoA- and malonyl-CoA-derived chemicals. We find that Ugp1p overexpression dynamically regulates the carbon flux to storage carbohydrate synthesis. In early exponential phases, Ugp1 overexpression causes more storage carbohydrate accumulation, while the carbon flux is then redirected toward acetyl-CoA and malonyl-CoA in later phases, thereby contributing to the synthesis of their derived products. Our study demonstrates the importance of storage carbohydrates rearrangement for the availability of acetyl-CoA and malonyl-CoA and therefore will facilitate the synthesis of their derived chemicals.
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China,Corresponding author
| |
Collapse
|
9
|
Xu Z, He J, Tehseen Azhar M, Zhang Z, Fan S, Jiang X, Jia T, Shang H, Yuan Y. UDP-glucose pyrophosphorylase: genome-wide identification, expression and functional analyses in Gossypium hirsutum. PeerJ 2022; 10:e13460. [PMID: 35663522 PMCID: PMC9161816 DOI: 10.7717/peerj.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes were identified from the genomes of four cotton species, which are the members of Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship, gene structure, and expression provides the basis for studies on function of UGP genes in cotton. The evolutionary tree and gene structure analysis revealed that the UGP gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that amplification of UGP genes is due to repetitive crosstalk generating between new family genes, while being under strong selection pressure. The analysis of cis-acting elements exhibited that UGP genes play important role in cotton growth, development, abiotic and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at 15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency promoted the development of ovules and fiber clusters, and qRT-PCR showed that expression of these six UGP genes was differentially increased. These results suggest that the UGP gene may play an important role in fiber development, and provides the opportunity to plant researchers to explore the mechanisms involve in fiber development in cotton.
Collapse
Affiliation(s)
- Zhongyang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiasen He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministryof Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
10
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
11
|
Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna. Sci Rep 2021; 11:9418. [PMID: 33941791 PMCID: PMC8093252 DOI: 10.1038/s41598-021-87784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Morels are some of the most highly prized edible and medicinal mushrooms, with great economic and scientific value. Outdoor cultivation has been achieved and expanded on a large scale in China in recent years. Sclerotial formation is one of the most important phases during the morel life cycle, and previous reports indicated that reactive oxygen species (ROS) play an important role. However, ROS response mechanisms at sclerotial initiation (SI) stage are poorly understood. In this study, comparative transcriptome analyses were performed with sclerotial and hyphal cells at different areas in the same plate at SI stage. Gene expression was significantly different at SI stage between sclerotial formation and mycelia growth areas. GO and KEGG analyses indicated more vigorous metabolic characteristics in the hyphae area, while transcription process, DNA repair, and protein processing were enriched in sclerotial cells. Gene expression related to H2O2 production was high in the hyphae area, while expression of H2O2-scavenging genes was high in sclerotial cells, leading to a higher H2O2 concentration in the hyphal region than in the sclerotium. Minor differences were observed in gene expression of H2O2-induced signaling pathway in sclerotial and hyphal cells; however, expression levels of the target genes of transcription factor MSN2, important in the H2O2-induced signaling pathways, were significantly different. MSN2 enhanced stress response regulation in sclerotia by regulating these target genes. Small molecular HSPs were also found upregulated in sclerotial cells. This study indicated that sclerotial cells are more resistant to ROS stress than hyphal cells through transcriptional regulation of related genes.
Collapse
|
12
|
MAL62 overexpression enhances uridine diphosphoglucose-dependent trehalose synthesis and glycerol metabolism for cryoprotection of baker's yeast in lean dough. Microb Cell Fact 2020; 19:196. [PMID: 33076920 PMCID: PMC7574194 DOI: 10.1186/s12934-020-01454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Saccharomyces cerevisiae, alpha-glucosidase (maltase) is a key enzyme in maltose metabolism. In addition, the overexpression of the alpha-glucosidase-encoding gene MAL62 has been shown to increase the freezing tolerance of yeast in lean dough. However, its cryoprotection mechanism is still not clear. RESULTS RNA sequencing (RNA-seq) revealed that MAL62 overexpression increased uridine diphosphoglucose (UDPG)-dependent trehalose synthesis. The changes in transcript abundance were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme activity assays. When the UDPG-dependent trehalose synthase activity was abolished, MAL62 overexpression failed to promote the synthesis of intracellular trehalose. Moreover, in strains lacking trehalose synthesis, the cell viability in the late phase of prefermentation freezing coupled with MAL62 overexpression was slightly reduced, which can be explained by the increase in the intracellular glycerol concentration. This result was consistent with the elevated transcription of glycerol synthesis pathway members. CONCLUSIONS The increased freezing tolerance by MAL62 overexpression is mainly achieved by the increased trehalose content via the UDPG-dependent pathway, and glycerol also plays an important role. These findings shed new light on the mechanism of yeast response to freezing in lean bread dough and can help to improve industrial yeast strains.
Collapse
|
13
|
Deng S, Yao C, Zhang X, Jia Z, Shan C, Luo X, Lin L. Involvement of UDP-glucose pyrophosphorylase from Verticillium dahliae in cell morphogenesis, stress responses, and host infection. Fungal Biol 2020; 124:648-660. [PMID: 32540188 DOI: 10.1016/j.funbio.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/15/2019] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP, EC 2.7.7.9) is an essential enzyme involved in carbohydrate metabolism. In Saccharomyces cerevisiae and other fungi, the UGP gene is indispensable for normal cell development, polysaccharide synthesis, and stress response. However, the function of the UGP homolog in plant pathogenic fungi has been rarely explored during pathogenesis. In this study, we characterize a UGP homolog named VdUGP from Verticillium dahliae, a soil-borne fungus that causes plant vascular wilt. In comparison with wild-type strain V07DF2 and complementation strains, the VdUGP knocked down mutant 24C9 exhibited sensitivity to sodium dodecyl sulfate (perturbing membrane integrity) and high sodium chloride concentration (high osmotic pressure stress). More than 25 % of the conidia of the mutant developed into short and swollen hypha and formed hyperbranching and compact colonies. The mutant exhibited decreased virulence on cotton and tobacco seedlings. Further investigation determined that the germination of the mutant spores was significantly delayed compared with the wild-type strain on the host roots. RNA-seq analysis revealed that a considerable number of genes encoding secreted proteins and carbohydrate-active enzymes were significantly downregulated in the mutant at an early stage of infection compared with those of the wild-type strain. RNA-seq data indicated that mutation affected many Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways both in the pathogen and in the inoculated plants at the infection stage. These alterations of the mutant in cultural phenotypes, virulence, and gene expression profiles clearly indicated that VdUGP played important roles in fungal cell morphogenesis, stress responses, and host infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chuanfei Yao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Zhaozhao Jia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chenyang Shan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoyu Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| |
Collapse
|
14
|
UDP-glucose pyrophosphorylase gene affects mycelia growth and polysaccharide synthesis of Grifola frondosa. Int J Biol Macromol 2020; 161:1161-1170. [PMID: 32561281 DOI: 10.1016/j.ijbiomac.2020.06.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
To elucidate potential roles of UDP-glucose pyrophosphorylase (UGP) in mycelial growth and polysaccharide synthesis of Grifola frondosa, a putative 2036-bp UDP-glucose pyrophosphorylase gene gfugp encoding a 53.17-kDa protein was cloned and re-annotated. Two dual promoter RNA silencing vectors of pAN7-iUGP-P-dual and pAN7-iUGP-C-dual were constructed to down-regulate gfugp expression by targeting its promoter or conserved functional sequences, respectively. Results showed that silence of gfugp promoter sequence had a higher down-regulating efficiency with slower mycelial growth and polysaccharide production than those of conserved sequence. The monosaccharide compositions/percentages of mycelial and exo-polysaccharides significantly changed with the increase of galactose and arabinose contents possibly due to block of UDP-glucose supply by gfugp silence and alteration of sugar metabolism via up-regulation of UDP-glucose-4-epimerase (gfuge) and UDP-xylose-4-epimerase (gfuxe) transcription. Our findings would provide a reference to know the biosynthesis pathway of mushroom polysaccharides and improve their production by metabolic regulation.
Collapse
|
15
|
Liu J, Li J, Gao N, Zhang X, Zhao G, Song X. Identification and characterization of a protein Bro1 essential for sophorolipids synthesis in Starmerella bombicola. J Ind Microbiol Biotechnol 2020; 47:437-448. [PMID: 32377991 DOI: 10.1007/s10295-020-02272-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
Abstract
Sophorolipids (SLs) are surface-active molecules produced by the non-pathogenic yeast Starmerella bombicola CGMCC 1576. Several genes involved in the synthesis of SLs have been identified. However, the regulation mechanism of the synthesis pathway for SLs has not been investigated. We recently discovered a protein in S. bombicola, which is structurally related to Yarrowia lipolytica YlBro1. To identify the function of the protein SbBro1 in S. bombicola, the deletion, overexpression, and complementary mutant strains were constructed. We found that the deletion mutant no longer produced SLs. Transcriptome analysis indicated that the expression levels of the key enzyme genes of SLs biosynthetic pathway were significantly down-regulated in the Δbro1, especially the expression level of cyp52m1 encoding the first rate-limiting enzyme in SL synthesis pathway was down-regulated 13-folds and the expression of fatty acid β-oxidation-related enzymes was also down-regulated. This study can give insight into the regulation of SL synthesis.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Jiashan Li
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Na Gao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China. .,National Glycoengineering Research Center, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Nan W, Zhao F, Zhang C, Ju H, Lu W. Promotion of compound K production in Saccharomyces cerevisiae by glycerol. Microb Cell Fact 2020; 19:41. [PMID: 32075645 PMCID: PMC7029525 DOI: 10.1186/s12934-020-01306-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ginsenoside compound K (CK), one of the primary active metabolites of protopanaxadiol-type ginsenosides, is produced by the intestinal flora that degrade ginseng saponins and exhibits diverse biological properties such as anticancer, anti-inflammatory, and anti-allergic properties. However, it is less abundant in plants. Therefore, enabling its commercialization by construction of a Saccharomyces cerevisiae cell factory is of considerable significance. RESULTS We induced overexpression of PGM2, UGP1, and UGT1 genes in WLT-MVA5, and obtained a strain that produces ginsenoside CK. The production of CK at 96 h was 263.94 ± 2.36 mg/L, and the conversion rate from protopanaxadiol (PPD) to ginsenoside CK was 64.23 ± 0.41%. Additionally, it was observed that the addition of glycerol was beneficial to the synthesis of CK. When 20% glucose (C mol) in the YPD medium was replaced by the same C mol glycerol, CK production increased to 384.52 ± 15.23 mg/L, which was 45.68% higher than that in YPD medium, and the PPD conversion rate increased to 77.37 ± 3.37% as well. As we previously observed that ethanol is beneficial to the production of PPD, ethanol and glycerol were fed simultaneously in the 5-L bioreactor fed fermentation, and the CK levels reached 1.70 ± 0.16 g/L. CONCLUSIONS In this study, we constructed an S. cerevisiae cell factory that efficiently produced ginsenoside CK. Glycerol effectively increased the glycosylation efficiency of PPD to ginsenoside CK, guiding higher carbon flow to the synthesis of ginsenosides and effectively improving CK production. CK production attained in a 5-L bioreactor was 1.7 g/L after simultaneous feeding of glycerol and ethanol.
Collapse
Affiliation(s)
- Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Fanglong Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350 People’s Republic of China
| |
Collapse
|
18
|
Pederson BA. Structure and Regulation of Glycogen Synthase in the Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:83-123. [PMID: 31667806 DOI: 10.1007/978-3-030-27480-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain glycogen synthesis is a regulated, multi-step process that begins with glucose transport across the blood brain barrier and culminates with the actions of glycogen synthase and the glycogen branching enzyme to elongate glucose chains and introduce branch points in a growing glycogen molecule. This review focuses on the synthesis of glycogen in the brain, with an emphasis on glycogen synthase, but draws on salient studies in mammalian muscle and liver as well as baker's yeast, with the goal of providing a more comprehensive view of glycogen synthesis and highlighting potential areas for further study in the brain. In addition, deficiencies in the glycogen biosynthetic enzymes which lead to glycogen storage diseases in humans are discussed, highlighting effects on the brain and discussing findings in genetically modified animal models that recapitulate these diseases. Finally, implications of glycogen synthesis in neurodegenerative and other diseases that impact the brain are presented.
Collapse
|
19
|
Aon JC, Tecson RC, Loladze V. Saccharomyces cerevisiae morphological changes and cytokinesis arrest elicited by hypoxia during scale-up for production of therapeutic recombinant proteins. Microb Cell Fact 2018; 17:195. [PMID: 30572885 PMCID: PMC6300885 DOI: 10.1186/s12934-018-1044-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
Background Scaling up of bioprocesses represents a crucial step in the industrial production of biologicals. However, our knowledge about the impact of scale-up on the organism’s physiology and function is still incomplete. Our previous studies have suggested the existence of morphological changes during the scale-up of a yeast (Saccharomyces cerevisiae) fermentation process as inferred from the volume fraction occupied by yeast cells and exometabolomics analyses. In the current study, we noticed cell morphology changes during scale-up of a yeast fermentation process from bench (10 L) to industrial scale (10,000 L). We hypothesized that hypoxia observed during scale-up partially impaired the availability of N-acetyl-glucosamine, a precursor of chitin synthesis, a key polysaccharide component of yeast mother-daughter neck formation. Results Using a combination of flow cytometry with two high throughput cell imaging technologies, Vi-CELL and Flow Imaging, we found changes in the distribution of cell size and morphology as a function of process duration at the industrial scale of the production process. At the end of run, concomitantly with lowest levels of dissolved oxygen (DO), we detected an increase in cell subpopulations exhibiting low aspect ratio corresponding to morphologies exhibited by large-single-budded and multi-budded cells, reflecting incomplete cytokinesis at the M phase of the yeast mitotic cycle. Metabolomics from the intracellular milieu pointed to an impaired supply of precursors for chitin biosynthesis likely affecting the septum formation between mother and daughter and cytokinesis. Inducing hypoxia at the 10 L bench scale by varying DO levels, confirmed the existence and impact of hypoxic conditions on yeast cell size and morphology observed at the industrial scale. Conclusions We conclude that the observed increments in wet cell weight at the industrial scale correspond to morphological changes characterized by the large diameter and low aspect ratio exhibited by cell subpopulations comprising large single-budded and multi-budded cells. These changes are consistent with impairment of cytokinesis triggered by hypoxia as indicated by experiments mimicking this condition at DO 5% and 10 L scale. Mechanistically, hypoxia impairs N-acetyl-glucosamine availability, a key precursor of chitin synthesis.
Collapse
Affiliation(s)
- Juan C Aon
- Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA.
| | - Ricardo C Tecson
- Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| | - Vakhtang Loladze
- Department of Bioanalytical Sciences, Research and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA, 19406, USA
| |
Collapse
|
20
|
Zhou J, Bai Y, Dai R, Guo X, Liu ZH, Yuan S. Improved Polysaccharide Production by Homologous Co-overexpression of Phosphoglucomutase and UDP Glucose Pyrophosphorylase Genes in the Mushroom Coprinopsis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4702-4709. [PMID: 29693394 DOI: 10.1021/acs.jafc.8b01343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coprinopsis polysaccharides exhibit hypoglycemic and antioxidant activities. In this report, increases in polysaccharide production by homologous co-overexpression or individual homologous overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase gene in Coprinopsis cinerea, which participate in polysaccharide biosynthesis. The transcription levels of the target genes were upregulated significantly in the oePGM-UGP strain when compared with the oePGM or oeUGP strain. The maximum intracellular polysaccharide content obtained in the oePGM-UGP strain was 1.49-fold higher than that of the WT strain, whereas a slight improvement in polysaccharide production was obtained in the oePGM and oeUGP strains. Extracellular polysaccharide production was enhanced by 75% in the oePGM-UGP strain when compared with that of the WT strain, whereas improvements of 30% and 16% were observed for the oePGM and oeUGP strains, respectively. These results show that multiple interventions in polysaccharide biosynthesis pathways of Basidiomycetes might improve polysaccharide yields when compared with that of single interventions.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Rujuan Dai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Xiaoli Guo
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Zhong-Hua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| |
Collapse
|
21
|
Gibson BR, Graham NS, Boulton CA, Box WG, Lawrence SJ, Linforth RST, May ST, Smart KA. Differential Yeast Gene Transcription during Brewery Propagation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2009-1123-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Brian R. Gibson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Neil S. Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Chris A. Boulton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Wendy G. Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stephen J. Lawrence
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Robert S. T. Linforth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Sean T. May
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
22
|
Zhu M, Fan W, Cha Y, Yang X, Lai Z, Li S, Wang X. Dynamic cell responses in Thermoanaerobacterium sp. under hyperosmotic stress. Sci Rep 2017; 7:10088. [PMID: 28855699 PMCID: PMC5577258 DOI: 10.1038/s41598-017-10514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
As a nongenetic engineering technique, adaptive evolution is an effective and easy-to-operate approach to strain improvement. In this work, a commercial Thermoanaerobacterium aotearoense SCUT27/Δldh-G58 was successfully isolated via sequential batch fermentation with step-increased carbon concentrations. Mutants were isolated under selective high osmotic pressures for 58 passages. The evolved isolate rapidly catabolized sugars at high concentrations and subsequently produced ethanol with good yield. A 1.6-fold improvement of ethanol production was achieved in a medium containing 120 g/L of carbon substrate using the evolved strain, compared to the start strain. The analysis of transcriptome and intracellular solute pools suggested that the adaptive evolution altered the synthesis of some compatible solutes and activated the DNA repair system in the two Thermoanaerobacterium sp. evolved strains. Overall, the results indicated the potential of adaptive evolution as a simple and effective tool for the modification and optimization of industrial microorganisms.
Collapse
Affiliation(s)
- Muzi Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wudi Fan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Cha
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaofeng Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhicheng Lai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Benini S, Toccafondi M, Rejzek M, Musiani F, Wagstaff BA, Wuerges J, Cianci M, Field RA. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1348-1357. [PMID: 28844747 DOI: 10.1016/j.bbapap.2017.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.
Collapse
Affiliation(s)
- Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy.
| | - Mirco Toccafondi
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna 40127, Italy
| | - Ben A Wagstaff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jochen Wuerges
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Universita' Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
24
|
Wilson WA, Pradhan P, Madhan N, Gist GC, Brittingham A. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family. Biochimie 2017; 138:90-101. [PMID: 28465215 DOI: 10.1016/j.biochi.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023]
Abstract
Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| | - Prajakta Pradhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Nayasha Madhan
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Galen C Gist
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| | - Andrew Brittingham
- Department of Microbiology & Immunology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
25
|
Suarez-Mendez C, Hanemaaijer M, ten Pierick A, Wolters J, Heijnen J, Wahl S. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis. Metab Eng Commun 2016; 3:52-63. [PMID: 29468113 PMCID: PMC5779734 DOI: 10.1016/j.meteno.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.
Collapse
Key Words
- 2PG, 2-phosphoglycerate
- 3PG, 3-phosphoglycerate
- 6PG, 6-phospho gluconate
- ACO, aconitate hydratase
- AK, adenylate kinase
- ALA, alanine
- ASP, aspartate
- Amino acids
- CoA, coenzyme-A
- DHAP, dihydroxy acetone phosphate
- DO, dissolved oxygen
- E4P, erythrose-4-phosphate
- ENO, phosphopyruvate hydratase
- F6P, fructose-6-phosphate
- FBA, fructose-bisphosphate aldolase
- FBP, fructose-1,6-bis-phosphate
- FMH, fumarate hydratase
- FUM, fumarate
- Flux estimation
- G1P, glucose-1-phosphate
- G6P, glucose-6-phosphate
- G6PDH, glucose-6-phosphate dehydrogenase
- GAP, glyceraldehyde-3-phosphate
- GAPDH&PGK, glyceraldehyde-3-phosphate dehydrogenase+phosphoglycerate kinase
- GLN, glutamine
- GLU, glutamate
- GLY, glycine
- GPM, phosphoglycerate mutase
- Glycogen
- IDMS, Isotope dilution mass spectrometry
- Iso-Cit, isocitrate
- LEU, leucine
- LYS, lysine
- MAL, malate
- METH, methionine
- Non-stationary 13C labeling
- OAA, oxaloacetate
- OUR, Oxygen uptake rate
- PEP, phospho-enol-pyruvate
- PFK, 6-phosphofructokinase
- PGI, glucose-6-phosphate isomerase
- PGM, phosphoglucomutase
- PMI, mannose-6-phosphate isomerase
- PPP, pentose phosphate pathway
- PRO, proline
- PYK, pyruvate kinase
- PYR, pyruvate
- RPE, ribulose-phosphate 3-epimerase
- RPI, ribose-5-phosphate isomerase
- Rib5P, ribose-5-phosphate
- Ribu5P, ribulose-5-phosphate
- S7P, sedoheptulose-7-phosphate
- SER, serine
- SUC, succinate
- T6P, trehalose-6-phosphate
- TCA, tricarboxylic acid cycle.
- TPP, trehalose- phosphatase
- TPS, alpha,alpha-trehalose-phosphate synthase
- Trehalose
- UDP, uridine-5-diphosphate
- UDPG, UDP-glucose
- UTP, uridine-5-triphosphate
- X5P, xylulose-5-phosphate
- α-KG, oxoglutarate
Collapse
Affiliation(s)
- C.A. Suarez-Mendez
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - M. Hanemaaijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
| | - Angela ten Pierick
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
| | - J.C. Wolters
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - J.J. Heijnen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - S.A. Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| |
Collapse
|
26
|
Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility. PLoS Genet 2016; 12:e1006184. [PMID: 27448207 PMCID: PMC4957761 DOI: 10.1371/journal.pgen.1006184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. Most polypeptides by necessity must fold into three-dimensional structures in order to become functional proteins. Misfolding, either during or subsequent to initial folding, can result in toxic protein aggregation. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. One cause of misfolding is the presence of missense mutations, which account for over half of all the reported mutations in the Human Gene Mutation Database. Here we establish a model cytosolic protein substrate whose stability is temperature dependent. We then perform a flow cytometry based screen to identify factors that promote the degradation of our model substrate. We identified the E3 ubiquitin ligase Ubr1 and the prefoldin chaperone complex subunit Gim3. Prefoldin forms a “jellyfish-like” structure and aids in nascent protein folding and prevents protein aggregation. We show that prefoldin promotes protein degradation by maintaining substrate solubility. Our work adds to that of others highlighting the importance of the prefoldin complex in preventing potentially toxic protein aggregation.
Collapse
|
27
|
Léger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. Mol Cell Proteomics 2016; 15:2308-23. [PMID: 27125826 DOI: 10.1074/mcp.m116.059378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes by affecting several critical protein quality control systems through the alteration of the protein glycosylation machinery.Data are available via ProteomeXchange with identifier PXD003677.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
28
|
Zhang Y, Luo K, Zhao Q, Qi Z, Nielsen LK, Liu H. Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2016; 100:3611-20. [DOI: 10.1007/s00253-016-7286-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/27/2022]
|
29
|
Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2016; 82:340-51. [PMID: 26497456 PMCID: PMC4702617 DOI: 10.1128/aem.02977-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022] Open
Abstract
The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yukiko Sugimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kenichi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hitoshi Shimoi
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
30
|
Zhu ZY, Liu XC, Dong FY, Guo MZ, Wang XT, Wang Z, Zhang YM. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Appl Microbiol Biotechnol 2015; 100:3909-21. [DOI: 10.1007/s00253-015-7235-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
31
|
Characterization of UGPase from Aureobasidium pullulans NRRL Y-12974 and Application in Enhanced Pullulan Production. Appl Biochem Biotechnol 2015; 178:1141-53. [DOI: 10.1007/s12010-015-1934-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
|
32
|
Yi DG, Huh WK. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2015; 467:657-63. [PMID: 26498530 DOI: 10.1016/j.bbrc.2015.10.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/18/2015] [Indexed: 11/17/2022]
Abstract
Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates.
Collapse
Affiliation(s)
- Dae-Gwan Yi
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.
| |
Collapse
|
33
|
Li M, Chen T, Gao T, Miao Z, Jiang A, Shi L, Ren A, Zhao M. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose. Fungal Genet Biol 2015; 82:251-63. [PMID: 26235043 DOI: 10.1016/j.fgb.2015.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP) is a key enzyme involved in carbohydrate metabolism, but there are few studies on the functions of this enzyme in fungi. The ugp gene of Ganoderma lucidum was cloned, and enzyme kinetic parameters of the UGP recombinant protein were determined in vitro, revealing that this protein was functional and catalyzed the reversible conversion between Glc-1-P and UDP-Glc. ugp silencing by RNA interference resulted in changes in the levels of the intermediate metabolites Glc-1-P and UDP-Glc. The compounds and structure of the cell wall in the silenced strains were also altered compared with those in the wild-type strains. Moreover, the number of hyphal branches was also changed in the silenced strains. To verify the role of UGP in hyphal branching, a ugp-overexpressing strain was constructed. The results showed that the number of hyphal branches was influenced by UGP. The mechanism underlying hyphal branching was further investigated by adding exogenous Glc-1-P. Our results showed that hyphal branching was regulated by a change in the cytosolic Ca(2+) concentration, which was affected by the level of the intermediate metabolite Glc-1-P, in G. lucidum. Our findings indicate the existence of an interaction between carbon metabolism and Ca(2+) signaling in this fungus.
Collapse
Affiliation(s)
- Mengjiao Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tianxi Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhigang Miao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ailiang Jiang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Yi DG, Huh WK. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast. FEBS Lett 2015; 589:2409-16. [DOI: 10.1016/j.febslet.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
|
35
|
Tripodi F, Nicastro R, Reghellin V, Coccetti P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta Gen Subj 2015; 1850:620-7. [DOI: 10.1016/j.bbagen.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
36
|
Klein T, Niklas J, Heinzle E. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol 2015; 42:453-64. [PMID: 25561318 DOI: 10.1007/s10295-014-1569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022]
Abstract
Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.
Collapse
Affiliation(s)
- Tobias Klein
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | | | | |
Collapse
|
37
|
Toccafondi M, Cianci M, Benini S. Expression, purification, crystallization and preliminary X-ray analysis of glucose-1-phosphate uridylyltransferase (GalU) from Erwinia amylovora. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1249-51. [PMID: 25195902 DOI: 10.1107/s2053230x14016458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022]
Abstract
Glucose-1-phosphate uridylyltransferase from Erwinia amylovora CFPB1430 was expressed as a His-tag fusion protein in Escherichia coli. After tag removal, the purified protein was crystallized from 100 mM Tris pH 8.5, 2 M ammonium sulfate, 5% ethylene glycol. Diffraction data sets were collected to a maximum resolution of 2.46 Å using synchrotron radiation. The crystals belonged to the hexagonal space group P62, with unit-cell parameters a = 80.67, b = 80.67, c = 169.18. The structure was solved by molecular replacement using the structure of the E. coli enzyme as a search model.
Collapse
Affiliation(s)
- Mirco Toccafondi
- Laboratory of Bioorganic Chemistry and Bio-Crystallography (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | | | - Stefano Benini
- Laboratory of Bioorganic Chemistry and Bio-Crystallography (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
38
|
Chen Y, Liu Q, Chen X, Wu J, Xie J, Guo T, Zhu C, Ying H. Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability. Appl Microbiol Biotechnol 2014; 98:6621-32. [PMID: 24769901 DOI: 10.1007/s00253-014-5701-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/14/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
Abstract
Adenosine triphosphate (ATP), the most important energy source for metabolic reactions and pathways, plays a vital role in control of metabolic flux. Considering the importance of ATP in regulation of the glycolytic pathway, the use of ATP-oriented manipulation is a rational and efficient route to regulate metabolic flux. In this paper, a series of efficient ATP-oriented regulation methods, such as changing ambient temperature and altering reduced nicotinamide adenine dinucleotide (NADH), was developed. To satisfy the different demand for ATP at different phases in directed biosynthesis of uridine-phosphoryl compounds, a multiphase ATP supply regulation strategy was also used to enhance to yield of target metabolites.
Collapse
Affiliation(s)
- Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xin mofan Road 5, Nanjing, 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xia Z. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749. Carbohydr Polym 2013; 98:178-80. [DOI: 10.1016/j.carbpol.2013.05.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
40
|
Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013359. [PMID: 23751184 DOI: 10.1101/cshperspect.a013359] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jörg Breitling
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
41
|
Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. EUKARYOTIC CELL 2013; 12:998-1008. [PMID: 23666623 PMCID: PMC3697460 DOI: 10.1128/ec.00085-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/07/2013] [Indexed: 11/20/2022]
Abstract
In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Ray D, Ye P. Characterization of the metabolic requirements in yeast meiosis. PLoS One 2013; 8:e63707. [PMID: 23675502 PMCID: PMC3650881 DOI: 10.1371/journal.pone.0063707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The diploid yeast Saccharomyces cerevisiae undergoes mitosis in glucose-rich medium but enters meiosis in acetate sporulation medium. The transition from mitosis to meiosis involves a remarkable adaptation of the metabolic machinery to the changing environment to meet new energy and biosynthesis requirements. Biochemical studies indicate that five metabolic pathways are active at different stages of sporulation: glutamate formation, tricarboxylic acid cycle, glyoxylate cycle, gluconeogenesis, and glycogenolysis. A dynamic synthesis of macromolecules, including nucleotides, amino acids, and lipids, is also observed. However, the metabolic requirements of sporulating cells are poorly understood. In this study, we apply flux balance analyses to uncover optimal principles driving the operation of metabolic networks over the entire period of sporulation. A meiosis-specific metabolic network is constructed, and flux distribution is simulated using ten objective functions combined with time-course expression-based reaction constraints. By systematically evaluating the correlation between computational and experimental fluxes on pathways and macromolecule syntheses, the metabolic requirements of cells are determined: sporulation requires maximization of ATP production and macromolecule syntheses in the early phase followed by maximization of carbohydrate breakdown and minimization of ATP production in the middle and late stages. Our computational models are validated by in silico deletion of enzymes known to be essential for sporulation. Finally, the models are used to predict novel metabolic genes required for sporulation. This study indicates that yeast cells have distinct metabolic requirements at different phases of meiosis, which may reflect regulation that realizes the optimal outcome of sporulation. Our meiosis-specific network models provide a framework for an in-depth understanding of the roles of enzymes and reactions, and may open new avenues for engineering metabolic pathways to improve sporulation efficiency.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Biological Systems Engineering, Washington State University, Pullman, Washington, United States of America
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Feizi A, Österlund T, Petranovic D, Bordel S, Nielsen J. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One 2013; 8:e63284. [PMID: 23667601 PMCID: PMC3646752 DOI: 10.1371/journal.pone.0063284] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/31/2013] [Indexed: 11/19/2022] Open
Abstract
The protein secretory machinery in Eukarya is involved in post-translational modification (PTMs) and sorting of the secretory and many transmembrane proteins. While the secretory machinery has been well-studied using classic reductionist approaches, a holistic view of its complex nature is lacking. Here, we present the first genome-scale model for the yeast secretory machinery which captures the knowledge generated through more than 50 years of research. The model is based on the concept of a Protein Specific Information Matrix (PSIM: characterized by seven PTMs features). An algorithm was developed which mimics secretory machinery and assigns each secretory protein to a particular secretory class that determines the set of PTMs and transport steps specific to each protein. Protein abundances were integrated with the model in order to gain system level estimation of the metabolic demands associated with the processing of each specific protein as well as a quantitative estimation of the activity of each component of the secretory machinery.
Collapse
Affiliation(s)
- Amir Feizi
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Österlund
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Sergio Bordel
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
44
|
Führing J, Damerow S, Fedorov R, Schneider J, Münster-Kühnel AK, Gerardy-Schahn R. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase. Glycobiology 2012; 23:426-37. [PMID: 23254995 DOI: 10.1093/glycob/cws217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.
Collapse
Affiliation(s)
- Jana Führing
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
46
|
Pan S, Yao D, Chen J, Wu S. Influence of controlled pH on the activity of UDPG-pyrophosphorylase in Aureobasidium pullulans. Carbohydr Polym 2012; 92:629-32. [PMID: 23218345 DOI: 10.1016/j.carbpol.2012.08.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 11/25/2022]
Abstract
UDPG-pyrophosphorylase is the key enzyme involved in pullulan biosynthesis and pullulan production by Aureobasidium pullulans. In this study, effect of controlled pH on fermentation time, pullulan production, biomass, and UDPG-pyrophosphorylase activity was investigated. Pullulan yield increased to reach a maximum within 4 days, and maximum UDPG-pyrophosphorylase activity was observed at day 3, while the biomass continued to increase until the end of the experimental period. The A. pullulans isolated from sea mud grew well at relatively low pH. UDPG-pyrophosphorylase activity was affected by the controlled pH and reached a maximum at pH 5.5. Results indicated that UDPG-pyrophosphorylase activity was highly correlated with controlled pH and pullulan biosynthesis rate.
Collapse
Affiliation(s)
- Saikun Pan
- School of Marine Science and Technology, HuaiHai Institute of Technology, 59 Cangwu Road, Xinpu 222005, China
| | | | | | | |
Collapse
|
47
|
Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microbiol 2012; 78:5052-9. [PMID: 22582063 DOI: 10.1128/aem.07617-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.
Collapse
|
48
|
The crystal structure of human UDP-glucose pyrophosphorylase reveals a latch effect that influences enzymatic activity. Biochem J 2012; 442:283-91. [DOI: 10.1042/bj20111598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UGPase (UDP-glucose pyrophosphorylase) is highly conserved among eukaryotes. UGPase reversibly catalyses the formation of UDP-glucose and is critical in carbohydrate metabolism. Previous studies have mainly focused on the UGPases from plants, fungi and parasites, and indicate that the regulatory mechanisms responsible for the enzyme activity vary among different organisms. In the present study, the crystal structure of hUGPase (human UGPase) was determined and shown to form octamers through end-to-end and side-by-side interactions. The observed latch loop in hUGPase differs distinctly from yUGPase (yeast UGPase), which could explain why hUGPase and yUGPase possess different enzymatic activities. Mutagenesis studies showed that both dissociation of octamers and mutations of the latch loop can significantly affect the UGPase activity. Moreover, this latch effect is also evolutionarily meaningful in UGPase from different species.
Collapse
|
49
|
Cardon CM, Beck T, Hall MN, Rutter J. PAS kinase promotes cell survival and growth through activation of Rho1. Sci Signal 2012; 5:ra9. [PMID: 22296835 DOI: 10.1126/scisignal.2002435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.
Collapse
Affiliation(s)
- Caleb M Cardon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
50
|
PAS kinase: integrating nutrient sensing with nutrient partitioning. Semin Cell Dev Biol 2012; 23:626-30. [PMID: 22245833 DOI: 10.1016/j.semcdb.2011.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
Recent data suggests that PAS kinase acts as a signal integrator to adjust metabolic behavior in response to nutrient conditions. Specifically, PAS kinase controls the partitioning of nutrient resources between the myriad of possible fates. In this capacity, PAS kinase elicits a pro-growth program, which includes both signaling and metabolic control, both in yeast and in mammals. We propose that, like other kinases possessing these properties-AMPK and TOR, PAS kinase might be target for therapy of diabetes, obesity and cancer.
Collapse
|