1
|
Yarmolinsky D, Brychkova G, Fluhr R, Sagi M. Sulfite reductase protects plants against sulfite toxicity. PLANT PHYSIOLOGY 2013; 161:725-43. [PMID: 23221833 PMCID: PMC3561015 DOI: 10.1104/pp.112.207712] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/06/2012] [Indexed: 05/03/2023]
Abstract
Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.
Collapse
Affiliation(s)
- Dmitry Yarmolinsky
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Galina Brychkova
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Robert Fluhr
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Moshe Sagi
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| |
Collapse
|
2
|
Gao H, Carroll KS, Chen H, Bertozzi CR, Leary J. Noncovalent complexes of APS reductase from M. tuberculosis: delineating a mechanistic model using ESI-FTICR MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:167-78. [PMID: 17023175 PMCID: PMC2755055 DOI: 10.1016/j.jasms.2006.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
ESI-FTICR MS was utilized to characterize a 4Fe-4S containing protein Mycobacterium tuberculosis APS reductase. This enzyme catalyzes the reduction of APS to sulfite and AMP with reducing equivalents from the protein cofactor, thioredoxin. Under nondenaturing conditions, a distribution of the apoprotein, a 2Fe-2S intermediate, and the 4Fe-4S holoprotein were observed. Accurate mass measurements indicated an oxidation state of +2 for the 4Fe-4S cluster, with no disulfide bond in the holoenzyme. Gas-phase stability of the 4Fe-4S cluster was investigated using both in-source and collision induced dissociation, which provided information regarding the relative gas-phase binding strength of iron towards protein ligands and inorganic sulfides. Noncovalent complexes of the holoprotein with several ligands, including APS, thioredoxin, and AMP, were also investigated. Calculated values of dissociation constants for the complexes indicate that AMP binds with a higher affinity to the enzyme intermediate than to the free enzyme. The implications of the binary and ternary complexes observed by gas-phase noncovalent interactions in the mechanism of APS reduction are discussed.
Collapse
Affiliation(s)
- Hong Gao
- Section of Molecular Cell Biology and Department of Chemistry, University of California, Davis, CA 95616
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kate S. Carroll
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Huiyi Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute
| | - Julie Leary
- Section of Molecular Cell Biology and Department of Chemistry, University of California, Davis, CA 95616
- Correspondence should be addressed to: Julie A. Leary, Genome Center, One Shields Ave, Davis, CA 95616, USA, , Tel: 530-754-4987, Fax: 530-754-8370
| |
Collapse
|
3
|
Hernández H, Hewitson KS, Roach P, Shaw NM, Baldwin JE, Robinson CV. Observation of the iron-sulfur cluster in Escherichia coli biotin synthase by nanoflow electrospray mass spectrometry. Anal Chem 2001; 73:4154-61. [PMID: 11569804 DOI: 10.1021/ac0102664] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthase from Escherichia coli was analyzed by nanoflow electrospray ionization mass spectrometry. From solution conditions in which the protein is in its native state, a distribution of monomeric, dimeric, and tetrameric species was observed. The distribution of these species was sensitive to changes in ionic strength: in the positive ion spectrum, biotin synthase at low ionic strength (pH 7.0-8.5) yielded less than 10% dimer. The masses of the monomeric species were consistent with the presence of a [2Fe-2S] cluster with a mass difference of 175.3 Da from the apomonomer with one disulfide bond. Despite the molecular mass of the noncovalent dimer (77 kDa), it was possible to observe a dimeric species containing one iron-sulfur cluster in both positive and negative ion spectra. Additionally, observation of a series of charge states assigned to the apodimer indicated that binding of the iron-sulfur cluster was not required to maintain the dimer. Binding of Cu2+ to biotin synthase was also observed; in the presence of excess chelating agent, free metals were removed and the iron-sulfur cluster remained intact. Evidence for the coordination of the iron-sulfur cluster in biotin synthase was obtained in a tandem mass spectrometry experiment. A single charge state containing the cluster at m/z 2416.9 was isolated, and collision-induced dissociation resulted in sequential loss of sulfur and retention of Fe3+.
Collapse
Affiliation(s)
- H Hernández
- Oxford Centre for Molecular Sciences, Oxford University, New Chemistry Laboratory, UK
| | | | | | | | | | | |
Collapse
|
4
|
Armengaud J, Gaillard J, Timmis KN. A second [2Fe-2S] ferredoxin from Sphingomonas sp. Strain RW1 can function as an electron donor for the dioxin dioxygenase. J Bacteriol 2000; 182:2238-44. [PMID: 10735867 PMCID: PMC111273 DOI: 10.1128/jb.182.8.2238-2244.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 01/13/2000] [Indexed: 11/20/2022] Open
Abstract
The first step in the degradation of dibenzofuran and dibenzo-p-dioxin by Sphingomonas sp. strain RW1 is carried out by dioxin dioxygenase (DxnA1A2), a ring-dihydroxylating enzyme. An open reading frame (fdx3) that could potentially specify a new ferredoxin has been identified downstream of dxnA1A2, a two-cistron gene (J. Armengaud, B. Happe, and K. N. Timmis, J. Bacteriol. 180:3954-3966, 1998). In the present study, we report a biochemical analysis of Fdx3 produced in Escherichia coli. This third ferredoxin thus far identified in Sphingomonas sp. strain RW1 contained a putidaredoxin-type [2Fe-2S] cluster which was characterized by UV-visible absorption spectrophotometry and electron paramagnetic resonance spectroscopy. The midpoint redox potential of this ferredoxin (E'(0) = -247 +/- 10 mV versus normal hydrogen electrode at pH 8.0) is similar to that exhibited by Fdx1 (-245 mV), a homologous ferredoxin previously characterized in Sphingomonas sp. strain RW1. In in vitro assays, Fdx3 can be reduced by RedA2 (a reductase similar to class I cytochrome P-450 reductases), previously isolated from Sphingomonas sp. strain RW1. RedA2 exhibits a K(m) value of 3.2 +/- 0.3 microM for Fdx3. In vivo coexpression of fdx3 and redA2 with dxnA1A2 confirmed that Fdx3 can serve as an electron donor for the dioxin dioxygenase.
Collapse
Affiliation(s)
- J Armengaud
- Division of Microbiology, GBF-National Research Center for Biotechnology, D-38124 Braunschweig, Germany.
| | | | | |
Collapse
|
5
|
Johnson KA, Verhagen MF, Brereton PS, Adams MW, Amster IJ. Probing the stoichiometry and oxidation states of metal centers in iron-sulfur proteins using electrospray FTICR mass spectrometry. Anal Chem 2000; 72:1410-8. [PMID: 10763234 DOI: 10.1021/ac991183e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry is used to determine the stoichiometry and oxidation states of the metal centers in several iron-sulfur proteins. Samples are introduced into the ESI source under nondenaturing conditions in order to observe intact metal-containing protein ions. The stoichiometry and oxidation state of the metal or metal-sulfur cluster in the protein ion can be derived from the mass spectrum. Mononuclear metal-containing proteins and [4Fe-4S] centers are very stable and yield the molecular ion with little or no fragmentation. Proteins that contain [2Fe-2S] clusters are less stable and yield loss of one or two sulfur atoms from the molecular species, although the molecular ion is more abundant than the fragment peaks. [3Fe-4S]-containing proteins are the least stable of the species investigated, yielding abundant peaks corresponding to the loss of one to four sulfur atoms in addition to a peak representing the molecular ion. Isotope labeling experiments show that the sulfur loss originates from the [3Fe-4S] center. Negative ion mode mass spectra were obtained and found to produce much more stable [3Fe-4S]-containing ions than obtained in positive ion mode. ESI analysis of the same proteins under denaturing conditions yields mass spectra of the apo form of the proteins. Disulfide bonds are observed in the apoprotein mass spectra that are not present in the holoprotein. These result from oxidative coupling of the cysteinyl sulfur atoms that are responsible for binding the metal center. In addition, inorganic sulfide is found to incorporate itself into the apoprotein by forming sulfur bridges between cysteine residues.
Collapse
Affiliation(s)
- K A Johnson
- Department of Chemistry, University of Georgia, Athens 30602, USA
| | | | | | | | | |
Collapse
|
6
|
Armengaud J, Timmis KN, Wittich RM. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 1999; 181:3452-61. [PMID: 10348858 PMCID: PMC93813 DOI: 10.1128/jb.181.11.3452-3461.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Sphingomonas sp. strain RW1 is able to use dibenzo-p-dioxin, dibenzofuran, and several hydroxylated derivatives as sole sources of carbon and energy. We have determined and analyzed the nucleic acid sequence of a 9,997-bp HindIII fragment downstream of cistrons dxnA1A2, which encode the dioxygenase component of the initial dioxygenase system of the corresponding catabolic pathways. This fragment contains 10 colinear open reading frames (ORFs), apparently organized in one compact operon. The enzymatic activities of some proteins encoded by these genes were analyzed in the strain RW1 and, after hyperexpression, in Escherichia coli. The first three ORFs of the locus, designated dxnC, ORF2, and fdx3, specify a protein with a low homology to bacterial siderophore receptors, a polypeptide representing no significant homology to known proteins, and a putative ferredoxin, respectively. dxnD encodes a 69-kDa phenol monooxygenase-like protein with activity for the turnover of 4-hydroxysalicylate, and dxnE codes for a 37-kDa protein whose sequence and activity are similar to those of known maleylacetate reductases. The following gene, dxnF, encodes a 33-kDa intradiol dioxygenase which efficiently cleaves hydroxyquinol, yielding maleylacetate, the ketoform of 3-hydroxy-cis,cis-muconate. The heteromeric protein encoded by dxnGH is a 3-oxoadipate succinyl coenzyme A (succinyl-CoA) transferase, whereas dxnI specifies a protein exhibiting marked homology to acetyl-CoA acetyltransferases (thiolases). The last ORF of the sequenced fragment codes for a putative transposase. DxnD, DxnF, DxnE, DxnGH, and DxnI (the activities of most of them have also been detected in strain RW1) thus form a complete 4-hydroxysalicylate/hydroxyquinol degradative pathway. A route for the mineralization of the growth substrates 3-hydroxydibenzofuran and 2-hydroxydibenzo-p-dioxin in Sphingomonas sp. strain RW1 thus suggests itself.
Collapse
Affiliation(s)
- J Armengaud
- Division of Microbiology, GBF - National Research Centre for Biotechnology, D-38124 Braunschweig, Germany.
| | | | | |
Collapse
|
7
|
Menon AL, Hendrix H, Hutchins A, Verhagen MF, Adams MW. The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins. Biochemistry 1998; 37:12838-46. [PMID: 9737861 DOI: 10.1021/bi980979p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate ferredoxin oxidoreductase (POR) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) catalyzes the final oxidative step in carbohydrate fermentation in which pyruvate is oxidized to acetyl-CoA and CO2, coupled to the reduction of ferredoxin (Fd). POR is composed of two 'catalytic units' of molecular mass approximately 120 kDa. Each unit consists of four subunits, alpha beta gamma delta, with masses of approximately 44, 36, 20, and 12 kDa, respectively, and contains at least two [4Fe-4S] clusters. The precise mechanism of catalysis and the role of the individual subunits are not known. The gene encoding the delta-subunit of Pf POR has been expressed in E. coli, and the protein was purified after reconstitution with iron and sulfide. The reconstituted delta-subunit (recPOR-delta) is monomeric with a mass of 11 879 +/- 1.2 Da as determined by mass spectrometry, in agreement with that predicted from the gene sequence. Purified recPOR-delta contains 8 Fe mol/mol and remained intact when incubated at 85 degreesC for 2 h, as judged by its visible absorption properties. The reduced form of the protein exhibited an EPR spectrum characteristic of two, spin-spin interacting [4Fe-4S]1+ clusters. When compared with the EPR properties of the reduced holoenzyme, the latter was shown to contain a third [4Fe-4S]1+ cluster in addition to the two within the delta-subunit. The reduction potential of the two 4Fe clusters in isolated recPOR-delta (-403 +/- 8 mV at pH 8.0 and 24 degreesC) decreased linearly with temperature (-1.55 mV/ degreesC) up to 82 degreesC. RecPOR-delta replaced Pf Fd as an in vitro electron carrier for two oxidoreductases from Pf, POR and Fd:NADP oxidoreductase, and the POR holoenzyme displayed a higher apparent affinity for its own subunit (apparent Km = 1.0 microM at 80 degreesC) than for Fd (apparent Km = 4.4 microM). The molecular and spectroscopic properties and amino acid sequence of the isolated delta-subunit suggest that it evolved from an 8Fe-type Fd by the addition of approximately 40 residues at the N-terminus, and that this extension enabled it to interact with additional subunits within POR.
Collapse
Affiliation(s)
- A L Menon
- Department of Biochemistry and Molecular Biology, Center for Metalloenzyme Studies, University of Georgia, Athens 30602-7229, USA
| | | | | | | | | |
Collapse
|
8
|
Hallenbeck PC, Gennaro G. Stopped-flow kinetic studies of low potential electron carriers of the photosynthetic bacterium, Rhodobacter capsulatus: ferredoxin I and NifF. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:435-42. [PMID: 9711296 DOI: 10.1016/s0005-2728(98)00096-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The kinetics of electron-transfer reactions involving nif-specific proteins from Rhodobacter capsulatus; ferredoxin I, NifF, Fe-protein of nitrogenase and dithionite were studied using stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of a tight (0.44 microM) complex between NifF and Fe-protein. Under the same conditions, FdI interacted only weakly (Kd > 325 microM) with Fe-protein. There was no evidence for complex formation between NifF and FdI since the reaction NifFSQ + FdIred had a bimolecular rate constant of 12.5 +/- 1.2 x 10(3) M-1 s-1. These results suggest that NifF, which is present in only small quantities in the cell, can make a significant contribution to the overall rate of nitrogen fixation due its high reactivity with Fe-protein. Moreover, the apparent lack of specific interaction between NifF and FdI suggest that they act in vivo in parallel to reduce Fe-protein and not in series.
Collapse
Affiliation(s)
- P C Hallenbeck
- Département de Microbiologie et Immunologie, Université de Montréal, Que., Canada.
| | | |
Collapse
|
9
|
Bentrop D, Bertini I, Luchinat C, Nitschke W, Mühlenhoff U. Characterization of the unbound 2[Fe4S4]-ferredoxin-like photosystem I subunit PsaC from the Cyanobacterium synechococcus elongatus. Biochemistry 1997; 36:13629-37. [PMID: 9354632 DOI: 10.1021/bi9714058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recombinant PsaC was reconstituted in vitro and investigated by UV/vis, EPR, and 1H NMR spectroscopy. Its UV/vis and EPR spectroscopic properties correspond to those of the wild-type protein. Fast repetition 1D and 2D 1H NMR spectra allowed the sequence-specific assignment of the hyperfine-shifted proton resonances of the cluster-ligating resonances, taking advantage also of chemical shift analogies with other 4 and 8 Fe ferredoxins and a structural model for PsaC. The Calpha-Cbeta-S-Fe dihedral angles of the cluster ligands could be estimated from the chemical shifts and relaxation properties of their betaCH2 protons. All NMR-derived structural information on PsaC confirms its similarity to smaller 8Fe ferredoxins serving as electron transfer proteins in solution. Partial reduction of PsaC leads to an intermediate species with strongly exchange broadened 1H NMR resonances. The intermolecular electron exchange rate is estimated to be in the 10(2)-10(4) s-1 range, the intramolecular electron exchange rate between the two [Fe4S4] clusters to be higher than 10(4) s-1. The consequences of these findings for the electron transfer in photosystem I are discussed.
Collapse
Affiliation(s)
- D Bentrop
- Department of Chemistry, University of Florence, Italy
| | | | | | | | | |
Collapse
|
10
|
Uhlmann H, Iametti S, Vecchio G, Bonomi F, Bernhardt R. Pro108 is important for folding and stabilization of adrenal ferredoxin, but does not influence the functional properties of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:897-902. [PMID: 9342244 DOI: 10.1111/j.1432-1033.1997.00897.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The truncated mutant Met-adrenodoxin-(4-107)-peptide of bovine adrenal ferredoxin was expressed as apoprotein in Escherichia coli BL21 and could be reconstituted to the holoform by chemical or enzymatic methods. The reconstituted protein had spectroscopic, functional and redox properties similar to the Met-adrenodoxin-(4-108)-peptide of adrenal ferredoxin, into which the cluster was inserted upon expression in the same Escherichia coli strain. Rate of in vitro cluster insertion into the Met-adrenodoxin-(4-107) apoprotein was much lower than for the Met-adrenodoxin-(4-108) apoprotein under identical conditions. Comparative thermodynamic studies with the Met-adrenodoxin-(4-108)-peptide indicated that removal of Pro108 resulted in an extensive decrease of the overall stability of the protein in either oxidation state. The Met-adrenodoxin-(4-107)-peptide showed a higher sensitivity to urea denaturation and had a sensibly lower denaturation temperature, 44.8 degrees C, compared with 51.7 degrees C for mutant Met-adrenodoxin-(4-108). The stability of the reduced state of both mutants is slightly lower than that of the oxidized state indicating that this protein region does not undergo major structural changes upon reduction.
Collapse
Affiliation(s)
- H Uhlmann
- Fachbereich Pharmazie und Umwelttechnologie, Fachrichtung Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
11
|
Abstract
Electrospray ionization mass spectrometry has been used to study protein interactions driven by noncovalent forces. The gentleness of the electrospray ionization process allows intact protein complexes to be directly detected by mass spectrometry. Evidence from the growing body of literature suggests that the ESI-MS observations for these weakly bound systems reflect, to some extent, the nature of the interaction found in the condensed phase. Stoichiometry of the complex can be easily obtained from the resulting mass spectrum because the molecular weight of the complex is directly measured. For the study of protein interactions, ESI-MS is complementary to other biophysical methods, such as NMR and analytical ultracentrifugation. However, mass spectrometry offers advantages in speed and sensitivity. The experimental variables that play a role in the outcome of ESI-MS studies of noncovalently bound complexes are reviewed. Several applications of ESI-MS are discussed, including protein interactions with metal ions and nucleic acids and subunit protein structures (quaternary structure).
Collapse
Affiliation(s)
- J A Loo
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
12
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|