1
|
Hatanaka T, Uesugi Y, Arima J, Usuki H, Iwabuchi M. Biochemical characterization of a novel metalloendopeptidase from Streptomyces aureofaciens TH-3 with post-proline hydrolysis activity. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Krippner-Heidenreich A, Walsemann G, Beyrouthy MJ, Speckgens S, Kraft R, Thole H, Talanian RV, Hurt MM, Lüscher B. Caspase-dependent regulation and subcellular redistribution of the transcriptional modulator YY1 during apoptosis. Mol Cell Biol 2005; 25:3704-14. [PMID: 15831475 PMCID: PMC1084290 DOI: 10.1128/mcb.25.9.3704-3714.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator Yin Yang 1 (YY1) controls many aspects of cell behavior and is essential for development. We analyzed the fate of YY1 during apoptosis and studied the functional consequences. We observed that this factor is rapidly translocated into the cell nucleus in response to various apoptotic stimuli, including activation of Fas, stimulation by tumor necrosis factor, and staurosporine and etoposide treatment. Furthermore, YY1 is cleaved by caspases in vitro and in vivo at two distinct sites, IATD(12)G and DDSD(119)G, resulting in the deletion of the first 119 amino acids early in the apoptotic process. This activity generates an N-terminally truncated YY1 fragment (YY1Delta119) that has lost its transactivation domain but retains its DNA binding domain. Indeed, YY1Delta119 is no longer able to stimulate gene transcription but interacts with DNA. YY1Delta119 but not the wild-type protein or the caspase-resistant mutant YY1D12A/D119A enhances Fas-induced apoptosis, suggesting that YY1 is involved in a positive feedback loop during apoptosis. Our findings provide evidence for a new mode of regulation of YY1 and define a novel aspect of the involvement of YY1 in the apoptotic process.
Collapse
Affiliation(s)
- Anja Krippner-Heidenreich
- Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Universitätsklinikum der RWTH, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Estrogen receptors (ERs) of which two isoforms have been identified (alpha and beta) are subjected to phosphorylation, glycozylation, ubiquitination and other post-transcriptional conformational changes giving rise to a very high molecular heterogeneity. Partial proteolysis of these receptors, as well as their high tendency to associate within oligomeric structures, reinforces this property. Investigations demonstrated that this heterogeneity is not a biochemical artefact suggesting some biological relevance. Our purpose was to review this topic, especially with regard to ERalpha from breast cancers.
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire 1, Institut Jules Bordet, Service de Médecine Interne, rue héger-Bordet, 1-1000 Brussels, Belgium.
| |
Collapse
|
4
|
Krippner-Heidenreich A, Talanian RV, Sekul R, Kraft R, Thole H, Ottleben H, Lüscher B. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J 2001; 358:705-15. [PMID: 11535131 PMCID: PMC1222104 DOI: 10.1042/0264-6021:3580705] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Max is the central component of the Myc/Max/Mad network of transcription factors that regulate growth, differentiation and apoptosis. Whereas the Myc and Mad genes and proteins are highly regulated, Max expression is constitutive and no post-translational regulation is known. We have found that Max is targeted during Fas-induced apoptosis. Max is first dephosphorylated and subsequently cleaved by caspases. Two specific cleavage sites for caspases in Max were identified, one at IEVE(10) decreasing S and one at SAFD(135) decreasing G near the C-terminus, which are cleaved in vitro by caspase-5 and caspase-7 respectively. Mutational analysis indicates that both sites are also used in vivo. Thus Max represents the first caspase-5 substrate. The unusual cleavage after a glutamic acid residue is observed only with full-length, DNA-binding competent Max protein but not with corresponding peptides, suggesting that structural determinants might be important for this activity. Furthermore, cleavage by caspase-5 is inhibited by the protein kinase CK2-mediated phosphorylation of Max at Ser-11, a previously mapped phosphorylation site in vivo. These findings suggest that Fas-mediated dephosphorylation of Max is required for cleavage by caspase-5. The modifications that occur on Max in response to Fas signalling affect the DNA-binding activity of Max/Max homodimers. Taken together, our findings uncover three distinct processes, namely dephosphorylation and cleavage by caspase-5 and caspase-7, that target Max during Fas-mediated apoptosis, suggesting the regulation of the Myc/Max/Mad network through its central component.
Collapse
Affiliation(s)
- A Krippner-Heidenreich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30623 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Isenberg B, Thole H, Tümmler B, Demmer A. Identification and localization of three photobinding sites of iodoarylazidoprazosin in hamster P-glycoprotein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2629-34. [PMID: 11322883 DOI: 10.1046/j.1432-1327.2001.02155.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P-glycoprotein is an ATP-dependent drug-efflux pump which can transport a diverse range of structurally and functionally unrelated substrates across the plasma membrane. Overexpression of this protein may result in multidrug resistance and is a major cause of the failure of cancer chemotherapy. The most commonly used photoreactive substrate is iodoarylazidoprazosin. Its binding domains within the P-glycoprotein have so far been inferred from indirect methods such as epitope mapping. In this study, the binding sites were refined and relocalized by direct analysis of photolabeled peptides. P-glycoprotein-containing plasma membrane vesicles of Chinese hamster ovary B30 cells were photoaffinity-labeled with iodoarylazidoprazosin. After chemical cleavage behind tryptophan residues or enzymatic cleavage behind lysine residues, the resulting 125I-labeled peptides were separated by tricine/PAGE and HPLC and subjected to Edman sequencing. The major photoaffinity binding sites of iodoarylazidoprazosin were localized in the amino-acid regions 248-312 [transmembrane segment (TM)4 to TM5], 758-800 (beyond TM7 to beyond TM8) and 1160-1218 (after the Walker A motif of the second nucleotide-binding domain). Therefore the binding pocket of iodoarylazidoprazosin is made up of at least three binding epitopes.
Collapse
Affiliation(s)
- B Isenberg
- Klinische Forschergruppe, Zentrum Biochemie and Zentrum Kinderheilkunde, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
6
|
Christ F, Steuer S, Thole H, Wende W, Pingoud A, Pingoud V. A model for the PI-SceIxDNA complex based on multiple base and phosphate backbone-specific photocross-links. J Mol Biol 2000; 300:867-75. [PMID: 10891273 DOI: 10.1006/jmbi.2000.3872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have synthesized different oligodeoxynucleotides carrying, in single positions of the >36 bp recognition site of PI-SceI, photoreactive base analogues (5-iododeoxypyrimidines) or phosphate modifications (p-azidophenacylphosphorothioates) and used them in photocross-linking experiments with PI-SceI to probe the protein-DNA interface of the specific complex between the homing endonuclease PI-SceI and its DNA substrate. One base-specific and several backbone-specific cross-links were analyzed in detail: the cross-linking positions were identified by Edman degradation of isolated cross-linked peptidexoligodeoxynucleotide adducts and confirmed by site-directed mutagenesis. Based on these results and the crystal structure of PI-SceI, a model for the structure of the PI-SceIxDNA complex is proposed.
Collapse
Affiliation(s)
- F Christ
- Institut für Biochemie Fachbereich 08, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, Giessen, D-35392, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Qualmann B, Kessels MM, Thole HH, Sierralta WD. A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues. Eur J Cell Biol 2000; 79:383-93. [PMID: 10928453 DOI: 10.1078/0171-9335-00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.
Collapse
Affiliation(s)
- B Qualmann
- Max-Planck-Institut für experimentelle Endokrinologie, Hannover/Germany
| | | | | | | |
Collapse
|
8
|
Kubareva EA, Thole H, Karyagina AS, Oretskaya TS, Pingoud A, Pingoud V. Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Nucleic Acids Res 2000; 28:1085-91. [PMID: 10666447 PMCID: PMC102617 DOI: 10.1093/nar/28.5.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A target sequence-specific DNA binding region of the restriction endonuclease Sso II was identified by photocross-linking with an oligodeoxynucleotide duplex which was substituted with 5-iododeoxy-uridine (5-IdU) at the central position of the Sso II recognition site (CCNGG). For this purpose the Sso II-DNA complex was irradiated with a helium/cadmium laser (325 nm). The cross-linking yield obtained was approximately 50%. In the presence of excess unmodified oligodeoxynucleotide or with oligode-oxynucleotides substituted with 5-IdU elsewhere, no cross-linking was observed, indicating the specificity of the cross-linking reaction. The cross-linked Sso II-oligodeoxynucleotide complex was digested with chymotrypsin, a cross-linked peptide-oligodeoxy-nucleotide complex isolated and the site of cross-linking identified by Edman sequencing to be Trp61. In line with this identification is the finding that the W61A variant cannot be cross-linked with the IdU-substituted oligodeoxynucleotide, shows a decrease in affinity towards DNA and is inactive in cleavage. It is concluded that the region around Trp61 is involved in specific binding of Sso II to its DNA substrate.
Collapse
Affiliation(s)
- E A Kubareva
- A. N. Belozersky Institute of Physical and Chemical Biology and Chemistry Department, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Maaroufi Y, Lacroix M, Lespagnard L, Journé F, Larsimont D, Leclercq G. Estrogen receptor of primary breast cancers: evidence for intracellular proteolysis. Breast Cancer Res 2000; 2:444-54. [PMID: 11056692 PMCID: PMC13922 DOI: 10.1186/bcr92] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2000] [Revised: 07/10/2000] [Accepted: 08/07/2000] [Indexed: 11/12/2022] Open
Abstract
Iodinated oestradiol-labeled oestrogen receptor (ER) isoforms devoid of amino-terminal ABC domains represent about two-thirds of the whole receptor population detected in cytosol samples from human breast cancers. This high frequency could not be ascribed to the expression of truncated mRNAs, or to the proteolysis of the native ER peptide at the time of homogenization or assay, suggesting an intracellular proteolysis. Free amino-terminal and ligand-binding domains maintained together within oligomeric structure(s); increase of ionic strength separated them. The amino-terminal region was consistently detected in the cell nucleus by specific immunohistochemistry leading to the concept of a potential intranuclear association between ER cleavage products and/or other regulatory proteins.
Collapse
MESH Headings
- Adsorption
- Binding Sites
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/chemistry
- Cell Nucleus/metabolism
- Chromatography, Liquid
- Cytosol/chemistry
- Durapatite
- Electrophoresis, Polyacrylamide Gel
- Endopeptidases/metabolism
- Female
- Hot Temperature
- Humans
- Molecular Weight
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Osmolar Concentration
- Peptide Fragments/analysis
- Peptide Fragments/isolation & purification
- Potassium Chloride
- Protease Inhibitors/pharmacology
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
- Receptors, Estrogen/analysis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Recombinant Proteins/analysis
- Recombinant Proteins/metabolism
- Solvents
- Tumor Cells, Cultured
Collapse
|
10
|
Demmer A, Andreae S, Thole H, Tümmler B. Iodomycin and iodipine, a structural analogue of azidopine, bind to a common domain in hamster P-glycoprotein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:800-5. [PMID: 10491126 DOI: 10.1046/j.1432-1327.1999.00702.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both the overexpression of P-glycoprotein and the broad range of substrates of this ATP-binding cassette (ABC) transporter induce the phenomenon of multidrug resistance, one major cause of the failure of cancer chemotherapy in humans. This study reports that [125I]iodipine, a structural analogue of the 1,4-dihydropyridine azidopine, shares a common binding site with iodomycin, a Bolton-Hunter derivative of the anthracycline daunomycin. This binding site is different from that described for iodoarylazidoprazosin, which is presumed to share a common binding site with azidopine. Edman sequencing revealed that [125I]iodipine had photolabelled the same peptide as iodomycin and spans the primary sequence of hamster isoform pgp1 from amino acid 230 to amino acid 312.
Collapse
Affiliation(s)
- A Demmer
- Klinische Forschergruppe, Zentrum Biochemie, Medizinische Hochschule, Hannover, Germany.
| | | | | | | |
Collapse
|
11
|
Pingoud V, Thole H, Christ F, Grindl W, Wende W, Pingoud A. Photocross-linking of the homing endonuclease PI-SceI to its recognition sequence. J Biol Chem 1999; 274:10235-43. [PMID: 10187809 DOI: 10.1074/jbc.274.15.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PI-SceI is an intein-encoded protein that belongs to the LAGLIDADG family of homing endonucleases. According to the crystal structure and mutational studies, this endonuclease consists of two domains, one responsible for protein splicing, the other for DNA cleavage, and both presumably for DNA binding. To define the DNA binding site of PI-SceI, photocross-linking was used to identify amino acid residues in contact with DNA. Sixty-three double-stranded oligodeoxynucleotides comprising the minimal recognition sequence and containing single 5-iodopyrimidine substitutions in almost all positions of the recognition sequence were synthesized and irradiated in the presence of PI-SceI with a helium/cadmium laser (325 nm). The best cross-linking yield (approximately 30%) was obtained with an oligodeoxynucleotide with a 5-iododeoxyuridine at position +9 in the bottom strand. The subsequent analysis showed that cross-linking had occurred with amino acid His-333, 6 amino acids after the second LAGLIDADG motif. With the H333A variant of PI-SceI or in the presence of excess unmodified oligodeoxynucleotide, no cross-linking was observed, indicating the specificity of the cross-linking reaction. Chemical modification of His residues in PI-SceI by diethylpyrocarbonate leads to a substantial reduction in the binding and cleavage activity of PI-SceI. This inactivation can be suppressed by substrate binding. This result further supports the finding that at least one His residue is in close contact to the DNA. Based on these and published results, conclusions are drawn regarding the DNA binding site of PI-SceI.
Collapse
Affiliation(s)
- V Pingoud
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Lanisnik Rizner T, Moeller G, Thole HH, Zakelj-Mavric M, Adamski J. A novel 17beta-hydroxysteroid dehydrogenase in the fungus Cochliobolus lunatus: new insights into the evolution of steroid-hormone signalling. Biochem J 1999; 337 ( Pt 3):425-31. [PMID: 9895285 PMCID: PMC1219993 DOI: 10.1042/0264-6021:3370425] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase (17beta-HSD) from the filamentous fungus Cochliobolus lunatus (17beta-HSDcl) catalyses the reduction of steroids and of several o- and p-quinones. After purification of the enzyme, its partial amino acid sequence was determined. A PCR fragment amplified with primers derived from peptide sequences was generated for screening the Coch. lunatus cDNA library. Three independent full-length cDNA clones were isolated and sequenced, revealing an 810-bp open reading frame encoding a 270-amino-acid protein. After expression in Escherichia coli and purification to homogeneity, the enzyme was found to be active towards androstenedione and menadione, and was able to form dimers of Mr 60000. The amino acid sequence of the novel 17beta-HSD demonstrated high homology with fungal carbonyl reductases, such as versicolorin reductase from Emericella nidulans (Aspergillus nidulans; VerA) and Asp. parasiticus (Ver1), polyhydroxynaphthalene reductase from Magnaporthe grisea, the product of the Brn1 gene from Coch. heterostrophus and a reductase from Colletotrichum lagenarium, which are all members of the short-chain dehydrogenase/reductase superfamily. 17beta-HSDcl is the first discovered fungal 17beta-hydroxysteroid dehydrogenase belonging to this family. The primary structure of this enzyme may therefore help to elucidate the evolutionary history of steroid dehydrogenases.
Collapse
Affiliation(s)
- T Lanisnik Rizner
- Institute of Biochemistry, Medical Faculty, Vrazov Trg 2, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
13
|
Maalouf GJ, Xu W, Smith TF, Mohr SC. Homology model for the ligand-binding domain of the human estrogen receptor. J Biomol Struct Dyn 1998; 15:841-51. [PMID: 9619507 DOI: 10.1080/07391102.1998.10508206] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have modeled the ligand-binding domain (LBD) of the human estrogen receptor protein (hER) by homology to the known crystal structure of the LBD of the alpha isoform of human retinoate-X receptor (hRX). Alignment of hER with members of the nuclear receptor superfamily defined probable secondary structures which we used to constrain backbone torsion angles and hydrogen bonds. From published studies we identified key interactions between hER and estradiol to use to dock the hormone in its ligand-binding pocket. Since the hRX crystal structure corresponds to the unliganded form of the LBD, we adopted the "mousetrap" mechanism proposed by Renaud et al to predict the structure of the E2-bound hER. Refinement by molecular dynamics and energy minimization gave a model which matches well the known facts about the estradiol phamacophore. It also provides a possible explanation for how hER discriminates between estradiol and testosterone.
Collapse
Affiliation(s)
- G J Maalouf
- Boston University, BioMolecular Engineering Research Center, MA 02215, USA
| | | | | | | |
Collapse
|
14
|
Carlson KE, Choi I, Gee A, Katzenellenbogen BS, Katzenellenbogen JA. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 1997; 36:14897-905. [PMID: 9398213 DOI: 10.1021/bi971746l] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To elucidate the ligand binding properties of the estrogen receptor (ER) and how ligand access to and release from the ligand binding pocket is affected by the conformational state of the receptor, we have measured the rates of estradiol association and dissociation, the equilibrium binding, and the stability of estradiol binding to denaturants, comparing wild-type human ER and a point mutant (Y537S ER) that shows full constitutive activity, i.e., the same full transcriptional activity in the absence or presence of estrogen. Ligand binding kinetics and affinity were measured with the full-length (1-595) ERs and with truncated forms of both receptors containing domains C through F (including the DNA binding, hinge, and ligand binding domains, amino acids 175-595) or domains E and F (the ligand binding domain; amino acids 304-595). With all ERs, the rates of ligand association and dissociation were considerably slower with the Y537S mutant ER than with wild-type ER (6-fold and 3-4-fold, respectively). These marked differences in ligand on and off rates for the wild-type and Y537S receptors result in a predicted (k-1/k+1) and measured Kd that is 2-fold lower for Y537S ER compared to wild-type ER. The binding of estradiol by wild-type ER was disrupted by high concentrations of urea (above 2 M), whereas the Y537S ER was distinctly more resistant to this disruption. These results are consistent with a model in which wild-type ER in the absence of ligand adopts a transcriptionally inactive collapsed pocket conformation, stabilized by specific interactions of Y537 with nearby regions of ER. When estradiol is bound, the wild-type ER adopts a transcriptionally active, closed pocket (ligand occupied) conformation. By contrast, the Y537S mutant ER favors the transcriptionally active closed pocket conformation, whether occupied by ligand or not, the latter state (closed pocket but unoccupied) accounting for its constitutive activity. Our findings suggest that the entry or exit of ligand from the binding pocket requires that ER adopt an open pocket conformation. The reduced rates of ligand association and dissociation in the constitutively active form of the ER, as well as its greater resistance to disruption of ligand binding by urea, support the supposition that the rate at which this open pocket conformation can be accessed from the unoccupied or ligand-occupied Y537S ER is slower than from the unoccupied or occupied forms of wild-type ER. Thus, the binding and release of ligand by ER require that the receptor access an open pocket state, and the ease with which this state can be accessed is affected by mutations that alter receptor conformation.
Collapse
Affiliation(s)
- K E Carlson
- Department of Chemistry, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
15
|
Kasper B, Thole HH, Patterson SD, Welte K. Cytosolic proteins from neutrophilic granulocytes: a comparison between patients with severe chronic neutropenia and healthy donors. Electrophoresis 1997; 18:142-9. [PMID: 9059836 DOI: 10.1002/elps.1150180126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A modified technique of two-dimensional gel electrophoresis (2-DE) was used to investigate differences in the pattern of cytosolic proteins of neutrophilic granulocytes from patients with severe congenital neutropenia, cyclic neutropenia, and idiopathic neutropenia in comparison with healthy donors. At the time of study, all patients tested received treatment with a recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF; Filgrastim, Amgen). Using the Investigator 2-D Electrophoresis System (Millipore) we were able to detect more than 1000 protein spots in the cytosol of neutrophilic granulocytes from both patients and healthy controls. We investigated six patients with severe congenital neutropenia, five patients with cyclic neutropenia, four patients with idiopathic neutropenia, and 13 healthy donors. In the cytosol of neutrophilic granulocytes from patients we found an additional protein spot. This protein spot (molecular mass approximately 32.4 kDa, pI about 5.5) could be identified by internal sequencing after in-gel digestion with endoproteinase Lys-C as tropomyosin. The importance of the overexpression of tropomyosin in neutrophilic granulocytes from patients with severe chronic neutropenia is not yet understood.
Collapse
Affiliation(s)
- B Kasper
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Germany
| | | | | | | |
Collapse
|
16
|
Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996; 93:5925-30. [PMID: 8650195 PMCID: PMC39164 DOI: 10.1073/pnas.93.12.5925] [Citation(s) in RCA: 3232] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Collapse
Affiliation(s)
- G G Kuiper
- Center for Biotechnology and Department of Medical Nutrition, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|