1
|
Yamada K, Hashimoto T, Yabuki C, Nagae Y, Tachikawa M, Strickland DK, Liu Q, Bu G, Basak JM, Holtzman DM, Ohtsuki S, Terasaki T, Iwatsubo T. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. J Biol Chem 2008; 283:34554-62. [PMID: 18940800 DOI: 10.1074/jbc.m801487200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolism of amyloid beta peptide (A beta) in the brain is crucial to the pathogenesis of Alzheimer disease. A body of evidence suggests that A beta is actively transported from brain parenchyma to blood across the blood-brain barrier (BBB), although the precise mechanism remains unclear. To unravel the cellular and molecular mechanism of A beta transport across the BBB, we established a new in vitro model of the initial internalization step of A beta transport using TR-BBB cells, a conditionally immortalized endothelial cell line from rat brain. We show that TR-BBB cells rapidly internalize A beta through a receptor-mediated mechanism. We also provide evidence that A beta internalization is mediated by LRP1 (low density lipoprotein receptor-related protein 1), since administration of LRP1 antagonist, receptor-associated protein, neutralizing antibody, or small interference RNAs all reduced A beta uptake. Despite the requirement of LRP1-dependent internalization, A beta does not directly bind to LRP1 in an in vitro binding assay. Unlike TR-BBB cells, mouse embryonic fibroblasts endogenously expressing functional LRP1 and exhibiting the authentic LRP1-mediated endocytosis (e.g. of tissue plasminogen activator) did not show rapid A beta uptake. Based on these data, we propose that the rapid LRP1-dependent internalization of A beta occurs under the BBB-specific cellular context and that TR-BBB is a useful tool for analyzing the molecular mechanism of the rapid transport of A beta across BBB.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Out R, Hoekstra M, de Jager SCA, de Vos P, van der Westhuyzen DR, Webb NR, Van Eck M, Biessen EAL, Van Berkel TJC. Adenovirus-mediated hepatic overexpression of scavenger receptor class B type I accelerates chylomicron metabolism in C57BL/6J mice. J Lipid Res 2005; 46:1172-81. [PMID: 15772431 DOI: 10.1194/jlr.m400361-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of HDL cholesteryl esters is well established. In SR-BI-deficient mice, we recently observed a delayed postprandial triglyceride (TG) response, suggesting an additional role for SR-BI in facilitating chylomicron (CM) metabolism. Here, we assessed the effect of adenovirus-mediated hepatic overexpression of SR-BI (Ad.SR-BI) in C57BL/6J mice on serum lipids and CM metabolism. Infection of 5 x 10(8) plaque-forming units per mouse of Ad.SR-BI significantly decreases serum cholesterol (>90%), phospholipids (>90%), and TG levels (50%), accompanied by a 41.4% reduction (P < 0.01) in apolipoprotein B-100 levels. The postprandial TG response is 2-fold lower in mice treated with Ad.SR-BI compared with control mice (area under the curve = 31.4 +/- 2.4 versus 17.7 +/- 3.2; P < 0.05). Hepatic mRNA expression levels of genes known to be involved in serum cholesterol and TG clearance are unchanged and thus could not account for the decreased plasma TG levels and the change in postprandial response. We conclude that overexpression of SR-BI accelerates CM metabolism, possibly by mediating the initial capture of CM remnants by the liver, whereby the subsequent internalization can be exerted by additional receptor systems such as the LDL receptor (LDLr) and LDLr-related protein 1.
Collapse
Affiliation(s)
- Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Out R, Kruijt JK, Rensen PCN, Hildebrand RB, de Vos P, Van Eck M, Van Berkel TJC. Scavenger receptor BI plays a role in facilitating chylomicron metabolism. J Biol Chem 2004; 279:18401-6. [PMID: 14970197 DOI: 10.1074/jbc.m401170200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of high density lipoprotein (HDL) cholesterol esters is well established. However, the potential role of SR-BI in chylomicron and chylomicron remnant metabolism is largely unknown. In the present investigation, we report that the cell association of 160 nm-sized triglyceride-rich chylomicron-like emulsion particles to freshly isolated hepatocytes from SR-BI-deficient mice is greatly reduced (>70%), as compared with wild-type littermate mice. Competition experiments show that the association of emulsion particles with isolated hepatocytes is efficiently competed for (>70%) by the well established SR-BI ligands, HDL and oxidized low density lipoprotein (LDL), whereas LDL is ineffective. Upon injection into SR-BI-deficient mice the hepatic association of emulsion particles is markedly decreased ( approximately 80%) as compared with wild-type mice. The relevance of these findings for in vivo chylomicron (remnant) metabolism was further evaluated by studying the effect of SR-BI deficiency on the intragastric fat load-induced postprandial triglyceride response. The postprandial triglyceride response is 2-fold higher in SR-BI-deficient mice as compared with wild-type littermates (area-under-the-curve 39.6 +/- 1.2 versus 21.1 +/- 3.6; p < 0.005), with a 4-fold increased accumulation of chylomicron (remnant)-associated triglycerides in plasma at 6 h after intragastric fat load. We conclude that SR-BI is important in facilitating chylomicron (remnant) metabolism and might function as an initial recognition site for chylomicron remnants whereby the subsequent internalization can be exerted by additional receptor systems like the LDL receptor and LDL receptor-related protein.
Collapse
Affiliation(s)
- Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
4
|
Croy JE, Shin WD, Knauer MF, Knauer DJ, Komives EA. All three LDL receptor homology regions of the LDL receptor-related protein bind multiple ligands. Biochemistry 2004; 42:13049-57. [PMID: 14596620 DOI: 10.1021/bi034752s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three complete human LDL receptor homology regions of the LDL receptor-related protein (sLRP2, sLRP3, and sLRP4) have been expressed in Pichia pastoris SMD1168 with constitutive coexpression of the receptor-associated protein (RAP). Each sLRP was purified to homogeneity after deglycosylation using a combination of anion-exchange and size exclusion chromatography. Mass spectrometry and N-terminal sequencing confirmed the identity of each fragment at purified yields of several milligrams per liter. Despite the large number of disulfide linkages and glycosylation sites in each LDL receptor homology region (sLRP), all were shown to be competent for binding to several LRP1 ligands. Each sLRP also bound human RAP, which is thought to be a generalized receptor antagonist, in solution-binding experiments. As expected, sLRP2 bound the receptor-binding domain of alpha(2)-macroglobulin (residues 1304-1451). All three sLRPs bound human apolipoprotein-enriched beta very low density lipoprotein, the canonical ligand for this receptor. All three sLRPs also bound lactoferrin and thrombin-protease nexin 1 complexes. Only sLRP4 bound thrombin-antithrombin III complexes. The results show that binding-competent LDL receptor homology regions (sLRPs) can be produced in high yield in P. pastoris and readily purified. Each sLRP has binding sites for multiple ligands, but not all ligand binding could be competed by RAP.
Collapse
Affiliation(s)
- Johnny E Croy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, USA
| | | | | | | | | |
Collapse
|
5
|
Huang SS, Ling TY, Tseng WF, Huang YH, Tang FM, Leal SM, Huang JS. Cellular growth inhibition by IGFBP‐3 and TGF‐β1requires LRP‐1. FASEB J 2003; 17:2068-81. [PMID: 14597676 DOI: 10.1096/fj.03-0256com] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The type V TGF-beta receptor (TbetaR-V)/IGFBP-3 receptor mediates the IGF-independent growth inhibition induced by IGFBP-3. It also mediates the growth inhibitory response to TGF-beta1 in concert with other TGF-beta receptor types, and its loss may contribute to the malignant phenotype of human carcinoma cells. Here we demonstrate that TbetaR-V is identical to LRP-1/alpha2M receptor as shown by MALDI-TOF analysis of tryptic peptides of TbetaR-V purified from bovine liver. In addition, 125I-IGFBP-3 affinity-labeled TbetaR-V in Mv1Lu cells is immunoprecipitated by antibodies to LRP-1 and TbetaR-V. RAP, an LRP-1 antagonist, inhibits binding of 125I-TGF-beta1 and 125I-IGFBP-3 to TbetaR-V and diminishes IGFBP-3-induced growth inhibition in Mv1Lu cells. Absent or low levels of LRP-1, as with TbetaR-V, have been linked to the malignant phenotype of carcinoma cells. Mutagenized Mv1Lu cells selected for reduced expression of LRP-1 have an attenuated growth inhibitory response to TGF-beta1 and IGFBP-3. LRP-1-deficient mouse embryonic fibroblasts lack a growth inhibitory response to TGF-beta1 and IGFBP-3. On the other hand, stable transfection of H1299 human lung carcinoma cells with LRP-1 cDNA restores the growth inhibitory response. These results suggest that the LRP-1/TbetaR-V/IGFBP-3 receptor is required for the growth inhibitory response to IGFBP-3 and TGF-beta1.
Collapse
Affiliation(s)
- Shuan Shian Huang
- Department of Biochemistry, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Van Eck M, Van Dijk KW, Herijgers N, Hofker MH, Groot PH, Van Berkel TJ. Essential role for the (hepatic) LDL receptor in macrophage apolipoprotein E-induced reduction in serum cholesterol levels and atherosclerosis. Atherosclerosis 2001; 154:103-12. [PMID: 11137088 DOI: 10.1016/s0021-9150(00)00471-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apolipoprotein E (apoE) is a high affinity ligand for several receptor systems in the liver, including the low-density lipoprotein (LDL) receptor, and non-LDL receptor sites, like the LDL receptor-related protein (LRP), the putative remnant receptor and/or proteoglycans. Although the liver is the major source of apoE synthesis, apoE is also produced by a wide variety of other cell types, including macrophages. In the present study, the role of the LDL receptor in the removal of lipoprotein remnants, enriched with macrophage-derived apoE from the circulation, was determined using the technique of bone marrow transplantation (BMT). Reconstitution of macrophage apoE production in apoE-deficient mice resulted in a serum apoE concentration of only 2% of the concentration in wild-type C57Bl/6 mice. This low level of apoE nevertheless reduced VLDL and LDL cholesterol 12-fold (P<0.001) and fourfold (P<0.001), respectively, thereby reducing serum cholesterol levels and the susceptibility to atherosclerosis. In contrast, reconstitution of macrophage apoE synthesis in mice lacking both apoE and the LDL receptor induced only a twofold (P<0.001) reduction in VLDL cholesterol and had no significant effect on atherosclerotic lesion development, although serum apoE levels were 93% of the concentration in normal C57Bl/6 mice. In conclusion, a functional (hepatic) LDL receptor is essential for the efficient removal of macrophage apoE-enriched lipoprotein remnants from the circulation and thus for normalization of serum cholesterol levels and protection against atherosclerotic lesion development in apoE-deficient mice.
Collapse
Affiliation(s)
- M Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Sylvius Laboratories, Leiden University, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Increased Clearance Explains Lower Plasma Levels of Tissue-Type Plasminogen Activator by Estradiol: Evidence for Potently Enhanced Mannose Receptor Expression in Mice. Blood 1999. [DOI: 10.1182/blood.v94.4.1330.416k19_1330_1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several clinical studies have demonstrated an inverse relationship between circulating levels of estrogen and tissue-type plasminogen activator (t-PA). The present study was designed to test the hypothesis that estrogens lower plasma levels of t-PA by increasing its clearance from the bloodstream. 17-Ethinyl estradiol (EE) treatment resulted in a significant increase in the clearance rate of recombinant human t-PA in mice (0.46 mL/min in treated mice v 0.32 mL/min in controls; P < .01). The clearance of endogenous, bradykinin-released t-PA in rats was also significantly increased after EE treatment (area under the curve [AUC], 24.9 ng/mL · min in treated animals v 31.9 ng/mL · min in controls; P < .05). Two distinct t-PA clearance systems exist in vivo: the low-density lipoprotein receptor-related protein (LRP) on liver parenchymal cells and the mannose receptor on mainly liver endothelial cells. Inhibition of LRP by intravenous injection of receptor-associated protein (RAP) as a recombinant fusion protein with Salmonella japonicum glutathione S-transferase (GST) significantly retarded t-PA clearance in control mice (from 0.41 to 0.25 mL/min; n = 5, P < .001) and EE-treated mice (from 0.66 to 0.35 mL/min; n = 5, P < .005), but did not eliminate the difference in clearance capacity between the 2 experimental groups. Similar results were obtained in mice in which LRP was inhibited via overexpression of the RAP gene in liver by adenoviral gene transduction. In contrast, administration of mannan, a mannose receptor antagonist, resulted in identical clearances (0.22 mL/min in controls and 0.24 mL/min in EE-treated mice). Northern blot analysis showed a 6-fold increase in mannose receptor mRNA expression in the nonparenchymal liver cells of EE-treated mice, whereas the parenchymal LRP mRNA levels remained unchanged. These findings were confirmed at the protein level by ligand blotting and Western blotting analysis. Our results demonstrate that EE treatment results in increased plasma clearance rate of t-PA via induction of the mannose receptor and could explain for the inverse relationship between estrogen status and plasma t-PA concentrations as observed in humans.
Collapse
|
8
|
Increased Clearance Explains Lower Plasma Levels of Tissue-Type Plasminogen Activator by Estradiol: Evidence for Potently Enhanced Mannose Receptor Expression in Mice. Blood 1999. [DOI: 10.1182/blood.v94.4.1330] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral clinical studies have demonstrated an inverse relationship between circulating levels of estrogen and tissue-type plasminogen activator (t-PA). The present study was designed to test the hypothesis that estrogens lower plasma levels of t-PA by increasing its clearance from the bloodstream. 17-Ethinyl estradiol (EE) treatment resulted in a significant increase in the clearance rate of recombinant human t-PA in mice (0.46 mL/min in treated mice v 0.32 mL/min in controls; P < .01). The clearance of endogenous, bradykinin-released t-PA in rats was also significantly increased after EE treatment (area under the curve [AUC], 24.9 ng/mL · min in treated animals v 31.9 ng/mL · min in controls; P < .05). Two distinct t-PA clearance systems exist in vivo: the low-density lipoprotein receptor-related protein (LRP) on liver parenchymal cells and the mannose receptor on mainly liver endothelial cells. Inhibition of LRP by intravenous injection of receptor-associated protein (RAP) as a recombinant fusion protein with Salmonella japonicum glutathione S-transferase (GST) significantly retarded t-PA clearance in control mice (from 0.41 to 0.25 mL/min; n = 5, P < .001) and EE-treated mice (from 0.66 to 0.35 mL/min; n = 5, P < .005), but did not eliminate the difference in clearance capacity between the 2 experimental groups. Similar results were obtained in mice in which LRP was inhibited via overexpression of the RAP gene in liver by adenoviral gene transduction. In contrast, administration of mannan, a mannose receptor antagonist, resulted in identical clearances (0.22 mL/min in controls and 0.24 mL/min in EE-treated mice). Northern blot analysis showed a 6-fold increase in mannose receptor mRNA expression in the nonparenchymal liver cells of EE-treated mice, whereas the parenchymal LRP mRNA levels remained unchanged. These findings were confirmed at the protein level by ligand blotting and Western blotting analysis. Our results demonstrate that EE treatment results in increased plasma clearance rate of t-PA via induction of the mannose receptor and could explain for the inverse relationship between estrogen status and plasma t-PA concentrations as observed in humans.
Collapse
|