1
|
Santella L, Chun JT. Structural actin dynamics during oocyte maturation and fertilization. Biochem Biophys Res Commun 2022; 633:13-16. [DOI: 10.1016/j.bbrc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
|
2
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
3
|
Kyogoku H, Kitajima TS, Miyano T. Nucleolus precursor body (NPB): a distinct structure in mammalian oocytes and zygotes. Nucleus 2015; 5:493-8. [PMID: 25495074 DOI: 10.4161/19491034.2014.990858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nucleoli in mammalian oocytes and zygotes, sometimes referred to as nucleolus precursor bodies (NPBs), are compact and morphologically different from nucleoli in somatic cells. We applied a unique NPB analyzing method "enucleolation" technique to zygotes to remove the NPBs. It has been reported that oocyte NPBs are essential for embryonic development; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygotes and embryos, leading to developmental failure. However, we found that when NPBs were removed from zygotes, the zygotes developed successfully to live-born pups. These results indicated that oocyte NPBs are essential for embryonic development, but zygote NPBs are not. In addition, the enucleolated zygotes formed somatic-type nucleoli during early embryonic development, demonstrating that somatic-type nucleoli do not originate from zygote NPBs. We summarize our recent investigation on NPBs, and provide additional comments and findings.
Collapse
Affiliation(s)
- Hirohisa Kyogoku
- a Laboratory for Chromosome Segregation ; Center for Developmental Biology ; RIKEN , Kobe , Japan
| | | | | |
Collapse
|
4
|
Santella L, Limatola N, Chun JT. Calcium and actin in the saga of awakening oocytes. Biochem Biophys Res Commun 2015; 460:104-13. [PMID: 25998739 DOI: 10.1016/j.bbrc.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm-egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent "excitable media" that quickly respond to the stimulus with the Ca(2+) swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca(2+) signals and in the control of monospermic fertilization.
Collapse
Affiliation(s)
- Luigia Santella
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy.
| | - Nunzia Limatola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| | - Jong T Chun
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| |
Collapse
|
5
|
Tosuji H, Seki Y, Kyozuka K. Two phases of calcium requirement during starfish meiotic maturation. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:432-7. [PMID: 17317251 DOI: 10.1016/j.cbpa.2007.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/18/2007] [Accepted: 01/21/2007] [Indexed: 11/15/2022]
Abstract
During meiosis in oocytes of the starfish, Asterina pectinifera, a Ca(2+) transient has been observed. To clarify the role of Ca(2+) during oocyte maturation in starfish, an intracellular Ca(2+) blocker, TMB-8, was applied. The oocyte maturation induced by 1-methyladenine (1-MA) was blocked by 100 microM TMB-8. Reinitiation of meiosis with germinal vesicle breakdown (GVBD) and the following chromosome condensation did not take place. Maturation-promoting factor (MPF) activity did not increase and GVBD and chromosome condensation did not occur. Ca(2+) transient observed immediately after 1-MA application in control oocytes was also blocked by TMB-8. When calyculin A, which activate the MPF directly, was applied to the oocytes instead of 1-MA in seawater containing 100 microM TMB-8, GVBD and chromosome condensation were blocked. Cytoplasmic transplantation studies confirmed that MPF was activated, although TMB-8 blocked GVBD. These results show that TMB-8 blocked the increase of MPF activity induced by 1-MA and the process of active MPF inducing GVBD and subsequent chromosome condensation. Together with the above phenomena, it is conceivable that there are two phases of Ca(2+) requirement during starfish oocyte maturation. These are the activation of MPF, moreover, GVBD, and the subsequent chromosome condensation.
Collapse
Affiliation(s)
- Hiroaki Tosuji
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan.
| | | | | |
Collapse
|
6
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
7
|
McRae RS, Johnston HM, Mihm M, O'Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology 2005; 146:309-17. [PMID: 15459113 DOI: 10.1210/en.2004-0999] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Changes in gene expression during granulosa cell luteinization have been measured using serial analysis of gene expression (SAGE). Immature normal mice were treated with pregnant mare serum gonadotropin (PMSG) or PMSG followed, 48 h later, by human chorionic gonadotropin (hCG). Granulosa cells were collected from preovulatory follicles after PMSG injection or PMSG/hCG injection and SAGE libraries generated from the isolated mRNA. The combined libraries contained 105,224 tags representing 40,248 unique transcripts. Overall, 715 transcripts showed a significant difference in abundance between the two libraries of which 216 were significantly down-regulated by hCG and 499 were significantly up-regulated. Among transcripts differentially regulated, there were clear and expected changes in genes involved in steroidogenesis as well as clusters of genes involved in modeling of the extracellular matrix, regulation of the cytoskeleton and intra and intercellular signaling. The SAGE libraries described here provide a base for functional investigation of the regulation of granulosa cell luteinization.
Collapse
Affiliation(s)
- R S McRae
- Department of Veterinary Preclinical Studies, University of Glasgow Veterinary School, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | | | | | | |
Collapse
|
8
|
Avazeri N, Courtot AM, Lefevre B. Regulation of spontaneous meiosis resumption in mouse oocytes by various conventional PKC isozymes depends on cellular compartmentalization. J Cell Sci 2004; 117:4969-78. [PMID: 15367584 DOI: 10.1242/jcs.01375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the spatio-temporal distribution of conventional protein kinases C (cPKC) isoforms PKC-alpha, PKC-betaI, PKC-betaII and PKC-gamma in mouse oocytes. The cPKCs were present in the cytoplasm at the start of the process and migrated to the nucleus (or germinal vesicle) before germinal vesicle breakdown, except for PKC-gamma which remained cytoplasmic. In both compartments, the fully phosphorylated form corresponding to the 'mature' enzyme was revealed for PKC-alpha, PKC-betaI and PKC-betaII. Microinjection of specific antibodies against each isozyme in one or the other cell compartment at different times of the meiotic process, permitted us to observe the following: (1) When located in the cytoplasm at the beginning of the process, PKC-alpha is not implicated in germinal vesicle breakdown, PKC-betaI and PKC-gamma are involved in maintaining the meiotic arrest, and PKC-betaII plays a role in meiosis reinitiation. Furthermore, just before germinal vesicle breakdown, these cytoplasmic cPKCs were no longer implicated. (2) When located in the germinal vesicle, PKC-alpha, PKC-betaI and PKC-betaII are involved in meiosis reinitiation. Our data highlight not only the importance of the nuclear pathways in the cell cycle progression, but also their independence of the cytoplasmic ones. Further investigations are however necessary to discover the molecular targets of these cPKCs to better understand the links with the cell cycle progression.
Collapse
Affiliation(s)
- Nathalie Avazeri
- Institut National de la Santé et de la Recherche Médicale Unité 566 Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses CEDEX, France
| | | | | |
Collapse
|
9
|
Lim D, Ercolano E, Kyozuka K, Nusco GA, Moccia F, Lange K, Santella L. The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton. J Biol Chem 2003; 278:42505-14. [PMID: 12867432 DOI: 10.1074/jbc.m301851200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The resumption of the meiotic cycle (maturation) induced by 1-methyladenine in prophase-arrested starfish oocytes is indicated by the breakdown of the germinal vesicle and is characterized by the increased sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate (InsP3) to InsP3 starting at the animal hemisphere (where the germinal vesicle was originally located) and propagating along the animal/vegetal axis of the oocyte. This initiates Ca2+ signals around the germinal vesicle before nuclear envelope breakdown. Previous studies have suggested that the final activation of the maturation-promoting factor (MPF), a cyclin-dependent kinase, which is the major element controlling the entry of eukaryotic cells into the M phase, occurs in the nucleus. MPF is then exported to the cytoplasm where its activity is autocatalytically amplified following a similar animal/vegetal spatial pattern. We have investigated whether activated MPF was involved in the increased sensitivity of the Ca2+ response to InsP3. We have found that the development of increased sensitivity of the Ca2+ stores to InsP3 receptors together with the Ca2+ signals in the perinuclear region was blocked in oocytes treated with the specific MPF inhibitor roscovitine. That the nuclear MPF activation is indeed required for changes of the InsP3 receptors sensitivity was shown by enucleating or by dissecting oocytes into vegetal and animal hemispheres prior to the addition of 1-MA. MPF activity 50 min after 1-methyladenine addition was much lower in the enucleated oocytes and in the vegetal hemisphere, which did not contain the germinal vesicle, as compared with the animal hemisphere, which did contain it. The Ca2+ increase induced by InsP3 under these experimental conditions correlated with the changes in actin cytoskeleton induced by MPF.
Collapse
Affiliation(s)
- Dmitri Lim
- Laboratory of Cell Biology, Stazione Zoologica A. Dohrn, I-80121 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Avazeri N, Courtot AM, Pesty A, Duquenne C, Lefèvre B. Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol Biol Cell 2000; 11:4369-80. [PMID: 11102530 PMCID: PMC15079 DOI: 10.1091/mbc.11.12.4369] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The location of the phospholipase C beta 1-isoform (PLC-beta 1) in the mouse oocyte and its role in the resumption of meiosis were examined. We used specific monoclonal antibodies to monitor the in vitro dynamics of the subcellular distribution of the enzyme from the release of the oocyte from the follicle until breakdown of the germinal vesicle (GVBD) by Western blotting, electron microscope immunohistochemistry, and confocal microscope immunofluorescence. PLC-beta 1 became relocated to the oocyte cortex and the nucleoplasm during the G2/M transition, mainly in the hour preceding GVBD. The enzyme was a 150-kDa protein, corresponding to PLC-beta 1a. Its synthesis in the cytoplasm increased during this period, and it accumulated in the nucleoplasm. GVBD was dramatically inhibited by the microinjection of anti-PLC-beta1 monoclonal antibody into the germinal vesicle (GV) only when this accumulation was at its maximum. In contrast, PLC-gamma 1 was absent from the GV from the time of release from the follicle until 1 h later, and microinjection of anti-PLC-gamma 1 into the GV did not affect GVBD. Our results demonstrate a relationship between the relocation of PLC-beta 1 and its role in the first step of meiosis.
Collapse
Affiliation(s)
- N Avazeri
- Institut National de la Santé et de la Recherche Médicale Unité 355, 92140 Clamart, France
| | | | | | | | | |
Collapse
|
11
|
Khoo KM, Han MK, Park JB, Chae SW, Kim UH, Lee HC, Bay BH, Chang CF. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem 2000; 275:24807-17. [PMID: 10818108 DOI: 10.1074/jbc.m908231199] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD38 is a type II transmembrane glycoprotein found on both hematopoietic and non-hematopoietic cells. It is known for its involvement in the metabolism of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. It is generally believed that CD38 is an integral protein with ectoenzymatic activities found mainly on the plasma membrane. Here we show that enzymatically active CD38 is present intracellularly on the nuclear envelope of rat hepatocytes. CD38 isolated from rat liver nuclei possessed both ADP-ribosyl cyclase and NADase activity. Immunofluorescence studies on rat liver cryosections and isolated nuclei localized CD38 to the nuclear envelope of hepatocytes. Subcellular localization via immunoelectron microscopy showed that CD38 is located on the inner nuclear envelope. The isolated nuclei sequestered calcium in an ATP-dependent manner. cADPR elicited a rapid calcium release from the loaded nuclei, which was independent of inositol trisphosphate and was inhibited by 8-amino-cADPR, a specific antagonist of cADPR, and ryanodine. However, nicotinic acid adenine dinucleotide phosphate failed to elicit any calcium release from the nuclear calcium stores. The nuclear localization of CD38 shown in this study suggests a novel role of CD38 in intracellular calcium signaling for non-hematopoietic cells.
Collapse
Affiliation(s)
- K M Khoo
- Clinical Research Unit, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, S308433, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee HC. A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP. Biol Chem 1999; 380:785-93. [PMID: 10494827 DOI: 10.1515/bc.1999.098] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize Ca2+ from two different types of intracellular stores and through completely independent mechanisms. The two Ca2+ messengers are also structurally distinct. cADPR is a cyclic nucleotide derived from NAD, while NAADP is a linear metabolite of NADP. Systems responsive to these two novel signaling molecules are widespread among eukaryotes and include protozoan, plant, invertebrate, mammalian as well as human cells. Despite their functional and structural differences, cADPR and NAADP are sibling messengers synthesized by a single enzyme, ADP-ribosyl cyclase. In this article the recent progress in understanding the physiological roles of cADPR and NAADP is briefly reviewed. A unified mechanism of catalysis is also proposed, which takes into consideration the crystallographic structure of ADP-ribosyl cyclase and accounts for its novel multi-functionality.
Collapse
Affiliation(s)
- H C Lee
- Department of Physiology, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
13
|
Pesty A, Avazeri N, Lefèvre B. Nuclear calcium release by InsP3-receptor channels plays a role in meiosis reinitiation in the mouse oocyte. Cell Calcium 1998; 24:239-51. [PMID: 9883278 DOI: 10.1016/s0143-4160(98)90048-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our purpose was to investigate the presence of nuclear specific elements of the phosphoinositide pathway, and the link between nuclear calcium events and the first step of meiosis resumption, i.e. germinal vesicle breakdown (GVB) in mouse immature oocytes. Using confocal laser scanning microscopy, we analyzed the effects of nuclear microinjection of inositol 1,4,5-trisphosphate (InsP3), heparin and anti-InsP3 receptor monoclonal antibodies on both spontaneous nuclear and cytoplasmic calcium oscillations, as well as the effects of these components on the GVB. First we observed that nuclear Ca2+ events were dependent upon both nucleoplasmic and cytoplasmic InsP3 levels, highlighting a cross-talk between the GV and the cytoplasm concerning the Ca2+/InsP3 pathway. We demonstrated also that: 1) type 1 InsP3 receptors were localized at the nuclear membrane level while type 3 were absent from the nucleus; 2) calcium release from nuclear stores was mediated by type 1 rather than type 3 InsP3 receptor associated channels; 3) the anti-InsP3 R-1 mAB microinjected into the nucleus inhibited the GVB. These results demonstrate that reinitiation of meiosis requires an increase in nuclear phosphoinositide dependent Ca2+. Thus, the role of nuclear Ca2+ homeostasis is discussed with particular emphasis on nuclear envelope dynamics.
Collapse
Affiliation(s)
- A Pesty
- Institut National de la Santé et de la Recherche Médicale Unité 355, Clamart, France.
| | | | | |
Collapse
|
14
|
Bagavandoss P, Sage EH, Vernon RB. Secreted protein, acidic and rich in cysteine (SPARC) and thrombospondin in the developing follicle and corpus luteum of the rat. J Histochem Cytochem 1998; 46:1043-49. [PMID: 9705970 DOI: 10.1177/002215549804600908] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In adult mammals, growth of new vasculature from extant blood vessels (angiogenesis) is rare in the absence of pathology. However, nonpathogenic angiogenesis occurs in the cycling ovary when the avascular postovulatory follicle transforms into a highly vascularized corpus luteum (CL). To improve our understanding of molecular mechanisms that regulate nonpathogenic vascular growth, we characterized the expression of two secreted matricellular proteins associated with angiogenesis, SPARC and thrombospondin (TSP), in postovulatory preluteal follicles and CL of hormone-primed immature rats. By indirect immunofluorescence with specific antibodies, we found SPARC in the cytoplasOFFf granulosa cells and thecal cells of preluteal follicles, in connective tissue cells of the ovarian interstitium, and in the oocyte nucleus. Administration of a luteinizing stimulus (chorionic gonadotropin) increased the expression of SPARC in granulosa cells. TSP was prominent in the basement membranes of growing follicles. Many cells in the early vascularizing CL expressed both SPARC and TSP. Neovascularization of CL was accompanied by expression of SPARC in nascent vessels and concentration of TSP in central avascular areas. In mature CL, steroidogenic luteal cells expressed both SPARC and TSP. Luteal cells of regressing CL retained SPARC to a variable degree but did not express TSP. The observed changes in expression of SPARC and TSP during development of the CL support distinct roles for these matricellular proteins in nonpathological morphogenesis and angiogenesis.
Collapse
Affiliation(s)
- P Bagavandoss
- Department of Biological Sciences, Kent State University, Canton, OH 44720, USA
| | | | | |
Collapse
|
15
|
Abstract
The regulation of cell cycle progression is a complex process which involves kinase cascades, protease action, production of second messengers and other operations. Increasing evidence now compellingly suggests that changes in the intracellular Ca2+ concentration may also have a crucial role. Ca2+ transients occur at the awakening from quiescence, at the G/S transition, during S-phase, and at the exit from mitosis. They may lead to the activation of Ca2+ binding proteins like S-100, but the key decoder of the Ca2+ signals in the cycle is calmodulin. Activation of calmodulin leads to the stimulation of protein kinases, i.e., CaM-kinase II, and of the CaM-dependent protein phosphatase calcineurin. Ample evidence now indicates the G/S transition, the progression from G2 to M, and the metaphase/anaphase transition as specific points of intervention of CaM-kinase II. Another attractive possibility for the role of Ca2+ in the cycle is through the activation of the Ca(2+)-dependent protease calpain: other proteases (e.g., the proteasome) have been suggested to be responsible for the degradation of some of cyclins, which is essential to the progression of the cycle. One of the cyclins, however, (D1) is instead degraded by calpain, which has been shown to promote both mitosis and meiosis when injected into somatic cells or oocytes.
Collapse
Affiliation(s)
- L Santella
- Laboratory of Cell Biology, Stazione Zoologica A. Dohrn, Napoli, Italy.
| |
Collapse
|