1
|
The leucine-rich repeat protein PRELP binds fibroblast cell-surface proteoglycans and enhances focal adhesion formation. Biochem J 2016; 473:1153-64. [PMID: 26920026 DOI: 10.1042/bcj20160095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
PRELP (proline/arginine-rich end leucine-rich repeat protein) is a member of the leucine-rich repeat (LRR) family of extracellular matrix proteins in connective tissue. In contrast with other members of the family, the N-terminal domain of PRELP has a high content of proline and positively charged amino acids. This domain has previously been shown to bind chondrocytes and to inhibit osteoclast differentiation. In the present study, we show that PRELP mediates cell adhesion by binding to cell-surface glycosaminoglycans (GAGs). Thus, rat skin fibroblasts (RSFs) bound to full-length PRELP and to the N-terminal part of PRELP alone, but not to truncated PRELP lacking the positively charged N-terminal region. Cell attachment to PRELP was inhibited by addition of soluble heparin or heparan sulfate (HS), by blocking sulfation of the fibroblasts or by treating the cells with a combination of chondroitinase and heparinase. Using affinity chromatography, we identified syndecan-1, syndecan-4 and glypican-1 as cell-surface proteoglycans (PGs) binding to the N-terminal part of PRELP. Finally, we show that the N-terminal domain of PRELP in combination with the integrin-binding domain of fibronectin, but neither of the fragments alone, induced fibroblast focal adhesion formation. These findings provide support for a role of the N-terminal region of PRELP as an important regulator of cell adhesion and behaviour, which may be of importance in pathological conditions.
Collapse
|
2
|
Frankenberger C, Borgia JA, Edirisinghe PD, Oegema TR. Incomplete elongation of the chondroitin sulfate linkage region on aggrecan and response to interleukin-1β. Connect Tissue Res 2013; 54:123-31. [PMID: 23237500 DOI: 10.3109/03008207.2012.756871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aggrecan is the prominent proteoglycan in cartilage and is modified with approximately 100 chondroitin sulfate (CS) chains through a tetrasaccharide linkage structure. In osteoarthritis (OA), the viscoelastic properties of cartilage are compromised on both the quantity and integrity of aggrecan core protein expressed as well as reduced overall CS chain length. Herein, we postulated that chronic low-level inflammation may also contribute to OA progression by promoting regulatory mechanisms in early CS biosynthesis that yield incomplete linkage structures on aggrecan. To test this idea, chondrocytes extracted from human tali were cultured in alginate beads and challenged with 5 ng/mL IL-1β as a model for chronic inflammation leading to OA progression. Novel mass spectrometry-based methods were devised to detect and quantify partially elongated linkage structures relative to control cultures. The total mole fraction of unelongated xylose residues per aggrecan was significantly less (p = 0.03) after IL-1β treatment compared to control cultures, with unelongated xylose residues constituting between 6% and 12% of the fraction of total CS measured. A portion (<1%) of the partially elongated linkage structures was found to be either phosphorylated or sulfated. These results establish quantitative mass spectrometry as a very sensitive and effective platform for evaluating truncated proteoglycan linkage structures. Our observations using this method suggest a possible role for aberrant linkage structure elongation in OA progression.
Collapse
Affiliation(s)
- Casey Frankenberger
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612-3823, USA
| | | | | | | |
Collapse
|
3
|
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Prydz K. Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 2012; 60:926-35. [PMID: 22941419 DOI: 10.1369/0022155412461256] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Molecular Biosciences, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
4
|
Prabhakar V, Sasisekharan R. The biosynthesis and catabolism of galactosaminoglycans. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:69-115. [PMID: 17239763 DOI: 10.1016/s1054-3589(05)53005-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
5
|
Abstract
Proteoglycans (PGs) have been suggested to work as receptors in lipoprotein uptake mechanisms. An interaction between apolipoprotein E (apoE) and glucosaminoglycans (GAG), polysaccharides linked to proteoglycans, has been proposed in this pathway. At the same time, proteoglycans, apoE as well as lipoprotein receptors have been reported to be constituents of amyloid plaques, one hallmark of Alzheimer's disease. With this study, we are the first to investigate the interaction between beta very low density lipoprotein (beta-VLDL) and a neuronal highly abundant GAG, chondroitin sulphate (CS), comparing hippocampal neurons, expressing high levels of low density lipoprotein receptor related protein (LRP) and U373 astrocytoma cells, highly positive for the low density lipoprotein receptor (LDLR). We were able demonstrate that degradation of chondroitin sulphate proteoglycans (CSPGs) with chondroitinase ABC resulted in reduced (125)I-beta-VLDL uptake. We showed that externally added CSs compete with internalization of beta-VLDL. The effect was found to be dose-dependent, but was influenced neither by cell type, nor receptor type. The position of sulphation of added CSs showed only a slight influence. The data generated suggested an interaction between apolipoproteins and soluble CSs; therefore, 3H-cholesterol linked to apoE was coadministered with CSs to the cells. The results revealed that apoE bound, but no unbound cholesterol, was reduced in cellular internalization, suggesting that CSPGs may be involved in lipoprotein uptake in the intact brain, mediated, at least in part, by apoE.
Collapse
Affiliation(s)
- Alfred Rapp
- MedUniWien, Center of Physiology and Pathophysiology, Department of Medical Chemistry, Währingerstrasse 10, 1090 Vienna, Austria.
| | | |
Collapse
|
6
|
Lindholm MW, Nilsson J, Moses J. Low density lipoprotein stimulation of human macrophage proteoglycan secretion. Biochem Biophys Res Commun 2005; 328:455-60. [PMID: 15694369 DOI: 10.1016/j.bbrc.2005.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
Lipoprotein trapping in arterial intima increases the risk for lipoprotein oxidation, foam cell formation, and inflammatory response in surrounding cells. Modified lipoproteins increase smooth muscle cell production of proteoglycans likely to retain lipoproteins in intimal extracellular matrix. We hypothesized that macrophage proteoglycan production is regulated in a similar manner, and characterized glycosaminoglycan side chains of secreted proteoglycans. Incubation with native low density lipoproteins (LDL) strongly stimulates total proteoglycan secretion in a time and concentration dependent manner. The main secretion product is small-sized (120 kDa) with unusually long galactosaminoglycan chains, predominantly chondroitin-6-O-sulfated. The effect appears specific for native LDL; oxidized LDL, very low density lipoproteins or phospholipid liposomes have only minor effects compared to control. These observations suggest that native LDL stimulate macrophages to secrete a chondroitin sulfate-rich proteoglycan moiety likely to have high capacity for vascular extracellular trapping of apolipoprotein B-containing lipoproteins.
Collapse
Affiliation(s)
- Marie Wickström Lindholm
- Department of Medicine, Lund University, Wallenberg Laboratory Plan 1, UMAS Ing. 46, 20502 Malmö, Sweden
| | | | | |
Collapse
|
7
|
Björnson A, Moses J, Ingemansson A, Haraldsson B, Sörensson J. Primary human glomerular endothelial cells produce proteoglycans, and puromycin affects their posttranslational modification. Am J Physiol Renal Physiol 2005; 288:F748-56. [PMID: 15585670 DOI: 10.1152/ajprenal.00202.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes the possible role of the endothelial cell-surface coat, containing proteoglycans (PGs) with connected glycosaminoglycans (GAGs), in maintaining glomerular permselectivity. Primary human glomerular endothelial cells (HGEC) in culture were treated with the nephrosis-inducing agent puromycin aminonucleoside (PAN). Analysis was made by TaqMan real-time PCR, Western blot analysis, and by metabolic labeling with [35S]sulfate. The HGECs express several PGs: syndecan, versican, glypican, perlecan, decorin, and biglycan, which may contribute to the glomerular charge barrier. PAN treatment downregulated both the protein expression (by 25%) and the mRNA expression (by 37 ± 6%, P < 0.001, n = 8) of versican compared with control. Transferases important for chondroitin and heparan sulfate biosynthesis were also significantly downregulated by PAN, resulting in less sulfate groups, shorter GAG chains, and reduced PG net-negative charge. Moreover, analysis of the cell media after PAN treatment revealed a reduced content of [35S]sulfate-labeled PGs (40% of control). We conclude that PAN may cause proteinuria by affecting the endothelial cell-surface layer and not only by disrupting the foot process arrangement of the podocytes. Thus the endothelium may be a more important component of the glomerular barrier than hitherto acknowledged.
Collapse
Affiliation(s)
- Anna Björnson
- Dept. of Nephrology, Göteborg Univ., Sahlgrenska Univ. Hospital, SE-413 45 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Gulberti S, Lattard V, Fondeur M, Jacquinet JC, Mulliert G, Netter P, Magdalou J, Ouzzine M, Fournel-Gigleux S. Phosphorylation and Sulfation of Oligosaccharide Substrates Critically Influence the Activity of Human β1,4-Galactosyltransferase 7 (GalT-I) and β1,3-Glucuronosyltransferase I (GlcAT-I) Involved in the Biosynthesis of the Glycosaminoglycan-Protein Linkage Region of Proteoglycans. J Biol Chem 2005; 280:1417-25. [PMID: 15522873 DOI: 10.1074/jbc.m411552200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined whether the two major structural modifications, i.e. phosphorylation and sulfation of the glycosaminoglycan-protein linkage region (GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1), govern the specificity of the glycosyltransferases responsible for the biosynthesis of the tetrasaccharide primer. We analyzed the influence of C-2 phosphorylation of Xyl residue on human beta1,4-galactosyltransferase 7 (GalT-I), which catalyzes the transfer of Gal onto Xyl, and we evaluated the consequences of C-4/C-6 sulfation of Galbeta1-3Gal (Gal2-Gal1) on the activity and specificity of beta1,3-glucuronosyltransferase I (GlcAT-I) responsible for the completion of the glycosaminoglycan primer sequence. For this purpose, a series of phosphorylated xylosides and sulfated C-4 and C-6 analogs of Galbeta1-3Gal was synthesized and tested as potential substrates for the recombinant enzymes. Our results revealed that the phosphorylation of Xyl on the C-2 position prevents GalT-I activity, suggesting that this modification may occur once Gal is attached to the Xyl residue of the nascent oligosaccharide linkage. On the other hand, we showed that sulfation on C-6 position of Gal1 of the Galbeta1-3Gal analog markedly enhanced GlcAT-I catalytic efficiency and we demonstrated the importance of Trp243 and Lys317 residues of Gal1 binding site for enzyme activity. In contrast, we found that GlcAT-I was unable to use digalactosides as acceptor substrates when Gal1 was sulfated on C-4 position or when Gal2 was sulfated on both C-4 and C-6 positions. Altogether, we demonstrated that oligosaccharide modifications of the linkage region control the specificity of the glycosyltransferases, a process that may regulate maturation and processing of glycosaminoglycan chains.
Collapse
Affiliation(s)
- Sandrine Gulberti
- UMR 7561 CNRS-Université Henri Poincaré Nancy 1, Faculté de Médecine, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yamada S, Okada Y, Ueno M, Iwata S, Deepa SS, Nishimura S, Fujita M, Van Die I, Hirabayashi Y, Sugahara K. Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J Biol Chem 2002; 277:31877-86. [PMID: 12058048 DOI: 10.1074/jbc.m205078200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans and Drosophila melanogaster are relevant models for studying the roles of glycosaminoglycans (GAG) during the development of multicellular organisms. The genome projects of these organisms have revealed the existence of multiple genes related to GAG-synthesizing enzymes. Although the putative genes encoding the enzymes that synthesize the GAG-protein linkage region have also been identified, there is no direct evidence that the GAG chains bind covalently to core proteins. This study aimed to clarify whether GAG chains in these organisms are linked to core proteins through the conventional linkage region tetrasaccharide sequence found in vertebrates and whether modifications by phosphorylation and sulfation reported for vertebrates are present also in invertebrates. The linkage region oligosaccharides were isolated from C. elegans chondroitin in addition to D. melanogaster heparan and chondroitin sulfate after digestion with the respective bacterial eliminases and were then derivatized with a fluorophore 2-aminobenzamide. Their structures were characterized by gel filtration and anion-exchange high performance liquid chromatography in conjunction with enzymatic digestion and matrix-assisted laser desorption ionization time-of-flight spectrometry, which demonstrated a uniform linkage tetrasaccharide structure of -GlcUA-Gal-Gal-Xyl- or -GlcUA-Gal-Gal-Xyl(2-O-phosphate)- for C. elegans chondroitin and D. melanogaster CS, respectively. In contrast, the unmodified and phosphorylated counterparts were demonstrated in heparan sulfate of adult flies at a molar ratio of 73:27, and in that of the immortalized D. melanogaster S2 cell line at a molar ratio of 7:93, which suggests that the linkage region in the fruit fly first becomes phosphorylated uniformly on the Xyl residue and then dephosphorylated. It has been established here that GAG chains in both C. elegans and D. melanogaster are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide sequence, suggesting that indispensable functions of the linkage region in the GAG synthesis have been well conserved during evolution.
Collapse
Affiliation(s)
- Shuhei Yamada
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.
Collapse
Affiliation(s)
- U Olsson
- Wallenberg Laboratory for Cardiovascular Research, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | |
Collapse
|
11
|
Ueno M, Yamada S, Zako M, Bernfield M, Sugahara K. Structural characterization of heparan sulfate and chondroitin sulfate of syndecan-1 purified from normal murine mammary gland epithelial cells. Common phosphorylation of xylose and differential sulfation of galactose in the protein linkage region tetrasaccharide sequence. J Biol Chem 2001; 276:29134-40. [PMID: 11384972 DOI: 10.1074/jbc.m102089200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syndecan-1, present on the surfaces of normal murine mammary gland epithelial cells, is a transmembrane hybrid proteoglycan, which bears glycosaminoglycan (GAG) side chains of heparan sulfate (HS) and chondroitin sulfate (CS). Purified syndecan-1 ectodomains were analyzed for disaccharide composition and the GAG-protein linkage region after digestion with bacterial lyases. The HS chains contained predominantly a nonsulfated unit with smaller proportions of two monosulfated, two disulfated, and a trisulfated unit, whereas CS chains were demonstrated for the first time to bear GlcUA-GalNAc(4-O-sulfate) as a major component as well as GlcUA-GalNAc, GlcUA-GalNAc(6-O-sulfate), and an E disaccharide unit GlcUA-GalNAc(4,6-O-disulfate) as minor yet appreciable components. Two kinds of linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl and GlcUA-Gal-Gal-Xyl(2-O-phosphate), were found for the HS chains in a molar ratio of 55:45. In marked contrast, an additional sulfated tetrasaccharide, GlcUA-Gal(4-O-sulfate)-Gal-Xyl, was demonstrated only for the CS chains, and the unmodified phosphorylated and sulfated components were present at a molar ratio of 55:26:19. The present study thus provided conclusive evidence for the hypothesis that 4-O-sulfation of Gal is peculiar to CS chains in contrast to the phosphorylation of Xyl, which is common to both HS and CS chains. These modifications may be required for biosynthetic maturation of the linkage region tetrasaccharide sequence, which is a prerequisite for creating the repeating disaccharide region of GAG chains and/or biosynthetic selective chain assembly of CS and HS chains.
Collapse
Affiliation(s)
- M Ueno
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | |
Collapse
|
12
|
Takahashi I, Sashima S, Nakazawa K. Comparative analysis of proteoglycans synthesized by chick corneal stromal cells in cell culture and organ culture. Biol Pharm Bull 2001; 24:27-33. [PMID: 11201241 DOI: 10.1248/bpb.24.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans (PGs) synthesized by chick corneal stromal cells in cell culture and organ culture were metabolically radiolabelled with [35S]sulfate (for glycosaminoglycans) and [3H]leucine (for core proteins). Media, cell extracts and organ extracts from cultures were chromatographed on DEAE-Sephacel columns and separated into three fractions: the pass-through fraction (Fraction 1: nonsulfated PGs, hardly sulfated PGs, or glycoproteins with some oligosaccharides), the fraction eluted with a low salt concentration (Fraction 2: undersulfated PGs), and the fraction eluted with a high salt concentration (Fraction 3: highly sulfated PGs). The PG compositions of each fraction of cell culture and organ culture were then compared. While the proportions of highly sulfated KSPG in Fractions 3 of medium and cell extract of cell culture were both very low compared with those of medium and organ extract of organ culture, respectively, the proportions of highly sulfated CS/DS PG in Fractions 3 of those of cell culture were higher than those of organ culture. On the other hand, the proportions in the 35S activities of nonsulfated or undersulfated KSPG in Fractions 1 and 2 of medium and cell extract of cell culture were comparable to those of organ culture. Furthermore, the proportions of core proteins of undersulfated KSPG in Fractions 2 were higher in cell culture than in organ culture. These results show that, when the cells are cell-cultured, the degree of sulfation of KS chains decreases markedly, but the syntheses of the glycosaminoglycan backbone and core protein are maintained.
Collapse
Affiliation(s)
- I Takahashi
- RI Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
13
|
Bengtsson E, Aspberg A, Heinegard D, Sommarin Y, Spillmann D. The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 2000; 275:40695-702. [PMID: 11007795 DOI: 10.1074/jbc.m007917200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRELP (proline, arginine-rich end leucine-rich repeat protein) is an extracellular matrix leucine-rich repeat protein. The amino-terminal region of PRELP differs from that of other leucine-rich repeat proteins in containing a high number of proline and arginine residues. The clustered proline and basic residues are conserved in rat, bovine, and human PRELP. Although the function of PRELP is not yet known, the clustered arginine residues suggest a heparan sulfate/heparin-binding capacity. We show here that PRELP indeed binds heparin and heparan sulfate. Truncated PRELP without the amino-terminal region does not bind heparin. The dissociation constant for the interaction of PRELP with heparin was determined by an in solution binding assay and by surface plasmon resonance analysis to be in the range of 10-30 nm. A 6-mer heparin oligosaccharide was the smallest size showing binding to PRELP. The binding increased with increasing length up to an 18-mer and depended on the degree of sulfation of heparin as well as heparan sulfate. Sulfate groups at all positions were shown to be of importance for the binding. Fibroblasts bind PRELP, and this interaction is inhibited with heparin, suggesting a function for PRELP as a linker between the matrix and cell surface proteoglycans.
Collapse
Affiliation(s)
- E Bengtsson
- Department of Cell and Molecular Biology, Section for Connective Tissue Biology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
14
|
Abstract
Decorin and glypican are two examples of exclusively chondroitin/dermatan sulfate and heparan sulfate-substituted proteoglycans, respectively. Decorin is a secretory product, whereas glypican is linked to membrane lipids via a glycosyl-phosphatidyl-inositol (GPI) anchor. The nascent decorin protein enters the lumen of the ER, whereas that of glypican is transferred to the preformed GPI-anchors. Both types of glycosaminoglycuronans are initiated on Ser residues located in special consensus sequences, and the first glycosylation steps constitute a common pathway: the generation of the linkage region GlcA-Gal-Gal-Xyl-Ser<. The nature of the enzymes involved will be reviewed with special emphasis on the recently discovered transient 2-phosphorylation of xylose. The initiation enzymes (betaGalNAc-T1 and alphaGlcNAc-T1) then use these tetrasaccharide primers for either chondroitin or heparan sulfate assembly. The selection mechanism is not yet fully understood. The transferases that form the linkage-region and add the first hexosamine, as well as the uronosyl C-5 epimerases, appear to be products of single genes, but many isoforms of the copolymerases and sulfotransferases forming the repetitive part of the glycan chains are currently being discovered. When these enzymes work together, the fine structure of the glycosaminoglycuronans appears to be generated through the selective expression of isoforms that only operate in certain structural contexts. During heparan sulfate assembly, generation of GlcNH(2) as a permanent feature is now well recognised. Studies on glypican-1 glycoforms that recycle suggest that heparan sulfate chains are degraded by endoheparanase at or near GlcNH(2) residues, followed by deaminative cleavage catalysed by NO-derived nitrite. Chain-truncated glypican-1 can serve as a precursor for the reformation of a proteoglycan with full-size chains. Regulation of biosynthesis can be exercised at several levels, such as expression of the core protein, selection for chondroitin or heparan sulfate assembly, expression of modifying enzymes, and degradation and remodelling. Cytokines, growth factors, NO and polyamines may have regulatory roles.
Collapse
Affiliation(s)
- L A Fransson
- Department of Cell and Molecular Biology 1, Lund University, POB 94, S-221 00, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Moses J, Oldberg A, Fransson LA. Initiation of galactosaminoglycan biosynthesis. Separate galactosylation and dephosphorylation pathways for phosphoxylosylated decorin protein and exogenous xyloside. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:879-84. [PMID: 10103019 DOI: 10.1046/j.1432-1327.1999.00228.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By using various radiolabelled precursors, glycosylation and phosphorylation of decorin in a rat fibroblast cell line was investigated in the presence of increasing concentrations of p-nitrophenyl-O-beta-d-xylopyranoside. Decorin core protein glycanation was suppressed to approximately 25% of the normal level in the presence of 2 mm and 3 mm xyloside. Glycans/saccharides were released from the core protein and size-separated by gel chromatography. The intracellular decorin obtained from cells treated with 2 mm xyloside was substituted with Xyl and also with Gal-Xyl and Gal-Gal-Xyl, but not with longer saccharides. Only the trisaccharide contained an almost fully phosphorylated Xyl. We conclude that galactosylation of endogenous, xylosylated decorin and exogenous xyloside probably follow separate pathways or that xylosides and early decorin glycoforms are kept separated. At the addition of the first glucuronic acid the two pathways seem to merge and dephosphorylation of decorin takes place. Xyloside-primed and secreted galactosaminoglycan chains produced simultanously retained phosphorylated Xyl. Inadequate dephosphorylation could be due to excess substrate or to a short transit.time. As shown previously [Moses, J., Oldberg, A., Eklund, E. & Fransson, L.-A. (1997) Eur. J. Biochem. 248, 767-774], brefeldin A-arrested decorin is substituted with the linkage-region extended with an undersulphated and incomplete galactosaminoglycan chain. In cells treated with this drug, xylosides were unable to prime galactosaminoglycan synthesis and unable to inhibit glycosylation and phosporylation of decorin.
Collapse
Affiliation(s)
- J Moses
- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Sweden. jonatan.moses @medkem.lu.se
| | | | | |
Collapse
|
16
|
Nakazawa K, Takahashi I, Yamamoto Y. Glycosyltransferase and sulfotransferase activities in chick corneal stromal cells before and after in vitro culture. Arch Biochem Biophys 1998; 359:269-82. [PMID: 9808769 DOI: 10.1006/abbi.1998.0897] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression type of proteoglycan in corneal stromal cells is known to change markedly when the cells are cultured in vitro. To determine which enzyme is primarily responsible for this change in chick corneal stromal cells, the activities of various glycosyltransferases and sulfotransferases were determined before and after in vitro culture of the cells. The activities of N-acetylglucosaminyltransferase, galactosyltransferase, and sulfotransferase, which are involved in keratan sulfate synthesis, were assayed using pyridylaminated N-acetyllactosamine-containing oligosaccharides as acceptor substrate; the activities of N-acetylgalactosaminyltransferase, glucuronyltransferase, and sulfotransferase, which are involved in chondroitin sulfate synthesis, were assayed using pyridylaminated chondrooligosaccharides as acceptor substrate. Of these enzymes, the sulfotransferase activity toward degalactosylated, pyridylaminated lacto-N-neotetraose and N-acetyllactosamine dimer (probably GlcNAc-6-sulfotransferase) decreased markedly after in vitro culture, whereas the galactosyltransferase activity increased. The chondroitin sulfate-sulfotransferase activities toward pyridylaminated chondrooligosaccharides hardly changed after in vitro culture. The marked decrease in the activity of the keratan sulfate-sulfotransferase corresponds to the marked decrease in keratan sulfate biosynthesis when the cells are cultured in vitro. These findings suggest that keratan sulfate-sulfotransferase (GlcNAc-6-sulfotransferase) is a key enzyme in keratan sulfate biosynthesis and that its decrease is primarily responsible for the marked decrease in keratan sulfate synthesis after in vitro culture.
Collapse
Affiliation(s)
- K Nakazawa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Nagoya, Tempaku-ku, 468-8503, Japan.
| | | | | |
Collapse
|