1
|
Zhang L, Yuan J, Yao S, Wen G, An J, Jin H, Tuo B. Role of m5C methylation in digestive system tumors (Review). Mol Med Rep 2025; 31:142. [PMID: 40183387 PMCID: PMC11979572 DOI: 10.3892/mmr.2025.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Currently, the incidence of digestive system tumors has been increasing annually, thus becoming a prevalent cause of cancer‑related mortalities. Although significant strides have been made in targeting the molecular mechanisms that underpin the development of these tumors, their treatment and prognosis still pose substantial challenges. This is primarily due to the ambiguity of early diagnostic indicators and the fact that most digestive system tumors are detected at an advanced stage. However, epigenetic modifications are capable of altering the expression of oncogenes and regulating biological processes in cancer. In recent years, the study of methylation in relation to tumor pathogenesis has become a focus of prominent research. Among the various types of methylation, 5‑methylcytosine (m5C) methylation plays a crucial role in the development of digestive system tumors and is anticipated to serve as a novel therapeutic target. However, to date, a comprehensive and systematic review concerning the role of m5C methylation in digestive system tumors is lacking. Consequently, the present study reviewed the role of m5C methylation in digestive system tumors such as esophageal cancer, gastric cancer and hepatocellular carcinoma, with the aim of providing a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianbo Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Shaposhnikov M, Thakar J, Berk BC. Value of Bioinformatics Models for Predicting Translational Control of Angiogenesis. Circ Res 2025; 136:1147-1165. [PMID: 40339045 DOI: 10.1161/circresaha.125.325438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Angiogenesis, the formation of new blood vessels, is a fundamental biological process with implications for both physiological functions and pathological conditions. While the transcriptional regulation of angiogenesis, mediated by factors such as HIF-1α (hypoxia-inducible factor 1-alpha) and VEGF (vascular endothelial growth factor), is well-characterized, the translational regulation of this process remains underexplored. Bioinformatics has emerged as an indispensable tool for advancing our understanding of translational regulation, offering predictive models that leverage large data sets to guide research and optimize experimental approaches. However, a significant gap persists between bioinformatics experts and other researchers, limiting the accessibility and utility of these tools in the broader scientific community. To address this divide, user-friendly bioinformatics platforms are being developed to democratize access to predictive analytics and empower researchers across disciplines. Translational control, compared with transcriptional control, offers a more energy-efficient mechanism that facilitates rapid cellular responses to environmental changes. Furthermore, transcriptional regulators themselves are often subject to translational control, emphasizing the interconnected nature of these regulatory layers. Investigating translational regulation requires advanced, accessible bioinformatics tools to analyze RNA structures, interacting micro-RNAs, long noncoding RNAs, and RBPs (RNA-binding proteins). Predictive platforms such as RNA structure, human internal ribosome entry site Atlas, and RBPSuite enable the study of RNA motifs and RNA-protein interactions, shedding light on these critical regulatory mechanisms. This review highlights the transformative role of bioinformatics using widely accessible user-friendly tools with a Web-browser interface to elucidate translational regulation in angiogenesis. The bioinformatics tools discussed extend beyond angiogenesis, with applications in diverse fields, including clinical care. By integrating predictive models and experimental insights, researchers can streamline hypothesis generation, reduce experimental costs, and find novel translational regulators. By bridging the bioinformatics knowledge gap, this review aims to empower researchers worldwide to adopt bioinformatics tools in their work, fostering innovation and accelerating scientific discovery.
Collapse
Affiliation(s)
- Michal Shaposhnikov
- Department of Cellular and Molecular Pharmacology and Physiology (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine, Aab Cardiovascular Research Institute (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Juilee Thakar
- Department of Microbiology and Immunology (J.T.), University of Rochester School of Medicine and Dentistry, NY
- Department of Biomedical Genetics, Biostatistics and Computational Biology (J.T.), University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- Department of Cellular and Molecular Pharmacology and Physiology (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine, Aab Cardiovascular Research Institute (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
3
|
Zhu X, Lu M, Li WX, Lin L, Liu Y, Zhou J, Shang J, Shi X, Lu J, Xing J, Zhang M, Zhao S, Zhao D. HuMSCs-derived exosomal YBX1 participates in oxidative damage repair in granulosa cells by stabilizing COX5B mRNA in an m5C-dependent manner. Int J Biol Macromol 2025; 310:143288. [PMID: 40253045 DOI: 10.1016/j.ijbiomac.2025.143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Mitochondrial dysfunction and cell senescence are triggered by reactive oxygen species (ROS) in granulosa cells (GCs), leading to premature ovarian insufficiency (POI). Human umbilical cord mesenchymal stem cell-derived exosome (HuMSCs-Ex, H-Ex)-based treatments have been shown to alleviate ROS-induced POI, but knowledge about the underlying therapeutic mechanisms is limited. Here, we observed that the 5-methylcytosine (m5C) RNA methyltransferase tRNA aspartic acid methyltransferase 1 (TRDMT1) promoted the translation of COX subunit 5B (COX5B) in a manner dependent on its catalytic activity and downstream m5C reader Y-box binding protein 1 (YBX1), which was decreased in prematurely senescent GCs but abundant in H-Ex. Mechanistically, YBX1 released by H-Ex recognizes the TRDMT1-mediated m5C modification of COX5B and directly binds to COX5BC-153 via LYS-92, thereby reducing ROS accumulation and improving mitochondrial function in GCs under oxidative stress, providing new insights into the theoretical basis for the great clinical potential of H-Ex in the treatment of POI.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China.
| | - Minjun Lu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Wen-Xin Li
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Li Lin
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Yueqin Liu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Jiamin Zhou
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Junyu Shang
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Xuyan Shi
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Jingjing Lu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Jie Xing
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Mengxue Zhang
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Shijie Zhao
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China; Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| | - Dan Zhao
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), Zhenjiang, China
| |
Collapse
|
4
|
Supe S, Dighe V, Upadhya A, Singh K. Analysis of RNA Interference Targeted Against Human Antigen R (HuR) to Reduce Vascular Endothelial Growth Factor (VEGF) Protein Expression in Human Retinal Pigment Epithelial Cells. Mol Biotechnol 2024; 66:2972-2984. [PMID: 37856012 DOI: 10.1007/s12033-023-00913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
VEGF-A or vascular endothelial growth factor-A is an important factor in enabling neovascularization and angiogenesis. VEGF-A is regulated transcriptionally as well as post transcriptionally. Human antigen R (HuR) belonging to the embryonic lethal abnormal vision (ELAV) family is a key regulator promoting stabilization of VEGF-A mRNA. In this research we investigate, whether HuR targeted RNA interference would enable the reduction of the VEGF-A protein in human retinal pigment epithelial cells (ARPE-19) in-vitro, in normoxic conditions. Three siRNA molecules with sequences complementary to three regions of the HuR mRNA were designed. The three designed siRNA molecules were individually transfected in ARPE-19 cells using Lipofectamine™2000 reagent. Post-transfection (24 h, 48 h, 72 h), downregulation of HuR mRNA was estimated by real-time polymerase reaction, while HuR protein and VEGF-A protein levels were semi-quantitatively determined by western blotting techniques. VEGF-A protein levels were additionally quantified using ELISA techniques. All experiments were done in triplicate. The designed siRNA could successfully downregulate HuR mRNA with concomitant decreases in HuR and VEGF-A protein. The study reveals that HuR downregulation can prominently downregulate VEGF-A, making the protein a target for therapy against pathological angiogenesis conditions such as diabetic retinopathy.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Archana Upadhya
- Maharashtra Educational Society's H. K. College of Pharmacy, H. K. College Campus, Oshiwara, Jogeshwari (W), Mumbai, Maharashtra, 400102, India.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
5
|
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac'h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis. Nat Commun 2024; 15:4405. [PMID: 38782923 PMCID: PMC11116412 DOI: 10.1038/s41467-024-48852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.
Collapse
Affiliation(s)
- Yassine El Bakkouri
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeanne Corriveau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Éric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada and Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Hulea
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dubrac
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Centre d'Innovation Biomédicale (CIB), Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Li YJ, Guo Q, Ye MS, Cai G, Xiao WF, Deng S, Xiao Y. YBX1 promotes type H vessel-dependent bone formation in an m5C-dependent manner. JCI Insight 2024; 9:e172345. [PMID: 38385749 PMCID: PMC11143935 DOI: 10.1172/jci.insight.172345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
RNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear. Here, we show that RBP-Y-box-binding protein 1 (YBX1) was strongly reduced in the bone vasculature of ovariectomy (OVX) mice. Endothelial cell-specific deletion of Ybx1 impaired CD31-high, endomucin-high (CD31hiEMCNhi) endothelium morphology and resulted in low bone mass whereas Ybx1 overexpression promoted angiogenesis-dependent osteogenesis and ameliorated bone loss. Mechanistically, YBX1 deletion disrupted CD31, EMCN, and bone morphogenetic protein 4 (BMP4) stability in an m5C-dependent manner and blocked endothelium-derived BMP4 release, thereby inhibiting osteogenic differentiation of bone mesenchymal stromal cells. Administration of recombinant BMP4 protein restored impaired bone formation in Ybx1 deletion mice. Tail vein injection of CD31-modified polyethylene glycol-poly (lactic-co-glycolic acid) carrying sciadopitysin, a natural YBX1 agonist, pharmacologically partially reversed CD31hiEMCNhi vessels' decline and improved bone mass in both OVX and aging animals. These findings demonstrated the role of RBP-YBX1 in angiogenesis-dependent bone formation and provided a therapeutic approach for ameliorating osteoporosis.
Collapse
Affiliation(s)
- Yu-Jue Li
- Department of Endocrinology, Endocrinology Research Center
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center
| | - Ming-Sheng Ye
- Department of Endocrinology, Endocrinology Research Center
| | - GuangPing Cai
- Department of Endocrinology, Endocrinology Research Center
| | | | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center
| |
Collapse
|
7
|
Lee J, Kang H. Nucleolin Regulates Pulmonary Artery Smooth Muscle Cell Proliferation under Hypoxia by Modulating miRNA Expression. Cells 2023; 12:cells12050817. [PMID: 36899956 PMCID: PMC10000680 DOI: 10.3390/cells12050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Hypoxia induces the abnormal proliferation of vascular smooth muscle cells (VSMCs), resulting in the pathogenesis of various vascular diseases. RNA-binding proteins (RBPs) are involved in a wide range of biological processes, including cell proliferation and responses to hypoxia. In this study, we observed that the RBP nucleolin (NCL) was downregulated by histone deacetylation in response to hypoxia. We evaluated its regulatory effects on miRNA expression under hypoxic conditions in pulmonary artery smooth muscle cells (PASMCs). miRNAs associated with NCL were assessed using RNA immunoprecipitation in PASMCs and small RNA sequencing. The expression of a set of miRNAs was increased by NCL but reduced by hypoxia-induced downregulation of NCL. The downregulation of miR-24-3p and miR-409-3p promoted PASMC proliferation under hypoxic conditions. These results clearly demonstrate the significance of NCL-miRNA interactions in the regulation of hypoxia-induced PASMC proliferation and provide insight into the therapeutic value of RBPs for vascular diseases.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-835-8238; Fax: +82-32-835-0763
| |
Collapse
|
8
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
9
|
Gao Q, Cheng B, Chen C, Lei C, Lin X, Nie D, Li J, Huang L, Li X, Wang K, Huang A, Tang N. Dysregulated glucuronic acid metabolism exacerbates hepatocellular carcinoma progression and metastasis through the TGFβ signalling pathway. Clin Transl Med 2022; 12:e995. [PMID: 35979621 PMCID: PMC9386326 DOI: 10.1002/ctm2.995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Glucuronic acid metabolism participates in cellular detoxification, extracellular matrix remodeling and cell adhesion and migration. Here, we aimed to explore the crosstalk between dysregulated glucuronic acid metabolism and crucial metastatic signalling in glutathione S-transferase zeta 1 (GSTZ1)-deficient hepatocellular carcinoma (HCC). METHODS Transwell, HCC xenograft and Gstz1-/- mouse models were used to examine the role of GSTZ1 in HCC metastasis. Non-targeted and targeted metabolomics and global transcriptomic analyses were performed to screen significantly altered metabolic and signalling pathways in GSTZ1 overexpressing hepatoma cells. Further, RNA-binding protein immunoprecipitation, Biotin-RNA pull-down, mRNA decay assays and luciferase reporter assays were used to explore the interaction between RNA and RNA-binding proteins. RESULTS GSTZ1 was universally silenced in both human and murine HCC cells, and its deficiency contributed to HCC metastasis in vitro and in vivo. UDP-glucose 6-dehydrogenase (UGDH)-mediated UDP-glucuronic acid (UDP-GlcUA) accumulation promoted hepatoma cell migration upon GSTZ1 loss. UDP-GlcUA stabilized TGFβR1 mRNA by enhancing its binding to polypyrimidine tract binding protein 3, contributing to the activation of TGFβ/Smad signalling. UGDH or TGFβR1 blockade impaired HCC metastasis. In addition, UGDH up-regulation and UDP-GlcUA accumulation correlated with increased metastatic potential and decreased patient survival in GSTZ1-deficient HCC. CONCLUSIONS GSTZ1 deficiency and subsequent up-regulation of the glucuronic acid metabolic pathway promotes HCC metastasis by increasing the stability of TGFβR1 mRNA and activating TGFβ/Smad signalling. UGDH and a key metabolite, UDP-GlcUA, may serve as prognostic markers. Targeting UGDH might be a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chong Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Nie
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jingjing Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
11
|
Zheng H, Zhu M, Li W, Zhou Z, Wan X. m 5 C and m 6 A modification of long noncoding NKILA accelerates cholangiocarcinoma progression via the miR-582-3p-YAP1 axis. Liver Int 2022; 42:1144-1157. [PMID: 35274813 DOI: 10.1111/liv.15240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is a severe malignancy originating from the bile duct and the second most common primary liver cancer. NF-kappa B interacting lncRNA (NKILA) is a functional lncRNA, which play important role in human cancers. However, the role and underlying mechanism of NKILA in CCA remains largely unknown. Here, our study demonstrated that NKILA was significantly upregulated in CCA tissues and cells. Overexpression of NKILA is associated with advanced TNM stage, lymph node and distant metastasis, and also indicated poor prognosis in CCA patients. Functionally, NKILA facilitated CCA growth and metastasis in vitro and in vivo. The 5-methylcytosine (m5 C) methyltransferase NSUN2 interacts with NKILA, increasing its m5 C level and promoting its interaction with YBX1. Moreover, NKILA physically interacted with and suppressed miR-582-3p, which was regulated by METTL3-mediated N6 -methyladenosine (m6 A) modification. Finally, we showed that YAP1 was a target of NKILA via miR-582-3p and NKILA functioned partially via YAP1 in CCA. Taken together, our findings indicate a novel regulatory mechanism of NKILA for promoting CCA progression and that NKILA may be a promising target for CCA treatment.
Collapse
Affiliation(s)
- Haiming Zheng
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meiying Zhu
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenhua Li
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zunqiang Zhou
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
13
|
Glaß M, Dorn A, Hüttelmaier S, Haemmerle M, Gutschner T. Comprehensive Analysis of LincRNAs in Classical and Basal-Like Subtypes of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082077. [PMID: 32727085 PMCID: PMC7464731 DOI: 10.3390/cancers12082077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: (M.H.); (T.G.)
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (M.H.); (T.G.)
| |
Collapse
|
14
|
Bates M, Boland A, McDermott N, Marignol L. YB-1: The key to personalised prostate cancer management? Cancer Lett 2020; 490:66-75. [PMID: 32681926 DOI: 10.1016/j.canlet.2020.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Y-box-binding protein 1 (YB-1) is a DNA/RNA binding protein increasingly implicated in the regulation of cancer cell biology. Normally located in the cytoplasm, nuclear localisation in prostate cancer is associated with more aggressive, potentially treatment-resistant disease. This is attributed to the ability of YB-1 to act as a transcription factor for various target genes associated with androgen receptor signalling, survival, DNA repair, proliferation, invasion, differentiation, angiogenesis and hypoxia. This review aims to examine the clinical potential of YB-1 in the detection and therapeutic management of prostate cancer.
Collapse
Affiliation(s)
- Mark Bates
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Anna Boland
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh McDermott
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Senoo M, Hozoji H, Ishikawa-Yamauchi Y, Takijiri T, Ohta S, Ukai T, Kabata M, Yamamoto T, Yamada Y, Ikawa M, Ozawa M. RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3. J Reprod Dev 2020; 66:459-467. [PMID: 32624547 PMCID: PMC7593632 DOI: 10.1262/jrd.2020-060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS)
or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the
molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in
Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next
generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly,
no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of
Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also
revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore,
Nanos3+/−;Ptbp1+/− mice exhibited abnormal spermatogenesis, which resembled the effects of germ
cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that
PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part,
in concert with NANOS3.
Collapse
Affiliation(s)
- Manami Senoo
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Hozoji
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu Ishikawa-Yamauchi
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.,AMED-CREST, Tokyo 100-0004, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Kloetgen A, Duggimpudi S, Schuschel K, Hezaveh K, Picard D, Schaal H, Remke M, Klusmann JH, Borkhardt A, McHardy AC, Hoell JI. YBX1 Indirectly Targets Heterochromatin-Repressed Inflammatory Response-Related Apoptosis Genes through Regulating CBX5 mRNA. Int J Mol Sci 2020; 21:ijms21124453. [PMID: 32585856 PMCID: PMC7352269 DOI: 10.3390/ijms21124453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Correspondence:
| | - Sujitha Duggimpudi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Konstantin Schuschel
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| | - Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Jan-Henning Klusmann
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
| | - Alice C. McHardy
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jessica I. Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.D.); (K.H.); (D.P.); (M.R.); (A.B.); (J.I.H.)
- Department of Pediatrics 1, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (K.S.); (J.-H.K.)
| |
Collapse
|
17
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
18
|
Qin Z, Qu X, Lei L, Xu L, Pan Z. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. J Gen Virol 2020; 101:385-398. [DOI: 10.1099/jgv.0.001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao Qu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
19
|
PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis. Sci Rep 2019; 9:16922. [PMID: 31729427 PMCID: PMC6858377 DOI: 10.1038/s41598-019-53097-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
AXL is expressed in many types of cancer and promotes cancer cell survival, metastasis and drug resistance. Here, we focus on identifying modulators that regulate AXL at the mRNA level. We have previously observed that the AXL promoter activity is inversely correlated with the AXL expression levels, suggesting that post-transcriptional mechanisms exist that down-regulate the expression of AXL mRNA. Here we show that the RNA binding protein PTBP1 (polypyrimidine tract-binding protein) directly targets the 5′-UTR of AXL mRNA in vitro and in vivo. Moreover, we also demonstrate that PTBP1, but not PTBP2, inhibits the expression of AXL mRNA and the RNA recognition motif 1 (RRM1) of PTBP1 is crucial for this interaction. To clarify how PTBP1 regulates AXL expression at the mRNA level, we found that, while the transcription rate of AXL was not significantly different, PTBP1 decreased the stability of AXL mRNA. In addition, over-expression of AXL may counteract the PTBP1-mediated apoptosis. Knock-down of PTBP1 expression could enhance tumor growth in animal models. Finally, PTBP1 was found to be negatively correlated with AXL expression in lung tumor tissues in Oncomine datasets and in tissue micro-array (TMA) analysis. In conclusion, we have identified a molecular mechanism of AXL expression regulation by PTBP1 through controlling the AXL mRNA stability. These findings may represent new thoughts alternative to current approaches that directly inhibit AXL signaling and may eventually help to develop novel therapeutics to avoid cancer metastasis and drug resistance.
Collapse
|
20
|
The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Rep 2019; 27:3097-3106.e5. [DOI: 10.1016/j.celrep.2019.05.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
|
21
|
Identification of 2,4-dihydroxy-5-pyrimidinyl imidothiocarbomate as a novel inhibitor to Y box binding protein-1 (YB-1) and its therapeutic actions against breast cancer. Eur J Pharm Sci 2018; 116:2-14. [DOI: 10.1016/j.ejps.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
22
|
Fuke M, Narita M, Wada Y, Seto T, Okada K, Nakayama J, Izumi H, Ito KI. Increased Expression of Y-Box-Binding Protein-1 in Hind-Limb Muscles During Regeneration from Ischemic Injury in Mice. TOHOKU J EXP MED 2018; 244:53-62. [DOI: 10.1620/tjem.244.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Megumi Fuke
- Department of Surgery (II), Shinshu University School of Medicine
| | - Makoto Narita
- Department of Surgery (II), Shinshu University School of Medicine
| | - Yuko Wada
- Department of Surgery (II), Shinshu University School of Medicine
| | - Tatsuichiro Seto
- Department of Surgery (II), Shinshu University School of Medicine
| | - Kenji Okada
- Department of Surgery (II), Shinshu University School of Medicine
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health
| | - Ken-ichi Ito
- Department of Surgery (II), Shinshu University School of Medicine
| |
Collapse
|
23
|
Maurya PK, Mishra A, Yadav BS, Singh S, Kumar P, Chaudhary A, Srivastava S, Murugesan SN, Mani A. Role of Y Box Protein-1 in cancer: As potential biomarker and novel therapeutic target. J Cancer 2017; 8:1900-1907. [PMID: 28819388 PMCID: PMC5556654 DOI: 10.7150/jca.17689] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Y-box binding protein (YB-1) is known to be a multifunctional transcription and translation factor during expression of several proteins. It is a vital oncoprotein that regulates cancer cell progression and proliferation. YB-1 is over-expressed in various human cancers such as breast cancer, colon cancer, lung cancer, gastric cancer, oesophageal cancer and glioblastoma. Nuclear expression of YB-1 is found to be associated with multidrug resistance and cancer cell progression. YB-1 is reported to regulate many cellular signalling pathways in different types of cancer proliferation. Knowledge about nuclear localization and nuclear level expression of YB-1 in different cancers has been correlated with prospective prognosis of cancer. This review discusses the prospects of YB-1 as a potential biomarker as well as therapeutic target in lieu of their role during cancer progression and multidrug resistance.
Collapse
Affiliation(s)
| | - Alok Mishra
- Department of Biotechnology, MNNIT Allahabad-211004
| | | | - Swati Singh
- Center of Bioinformatics, University of Allahabad, Allahabad-211002
| | | | | | | | | | | |
Collapse
|
24
|
Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, Futamura M, Uno B, Otsuki Y, Yoshida K, Uchiyama K, Akao Y. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 2017; 7:18940-52. [PMID: 26980745 PMCID: PMC4951342 DOI: 10.18632/oncotarget.8005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
It is known that pyruvate kinase in muscle (PKM), which is a rate-limiting glycolytic enzyme, has essential roles in the Warburg effect and that expression of cancer-dominant PKM2 is increased by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the PKM gene. In other words, PKM2 acts as a promoter of the Warburg effect. Previously, we demonstrated that the Warburg effect was partially established by down-regulation of several microRNAs (miRs) that bind to PTBP1 and that ectopic expression of these miRs suppressed the Warburg effect. In this study, we investigated the functions of miR-1 and -133b, which are well known as muscle-specific miRs, from the viewpoint of the Warburg effect in colorectal tumors. The expression levels of miR-1 and -133b were relatively high in colon tissue except muscle and very frequently down-regulated in 75 clinical colorectal tumors samples, even in adenomas, compared with those of the adjacent normal tissue samples. The ectopic expression of these miRs induced growth suppression and autophagic cell death through the switching of PKM isoform expression from PKM2 to PKM1 by silencing PTBP1 expression both in vitro and in vivo. Also, we showed that the resultant increase in the intracellular level of reactive oxygen species (ROS) was involved in this mechanism. Furthermore, PTBP1 was highly expressed in most of the 30 clinical colorectal tumor samples examined, even in adenomas. Our results suggested that PTBP1 and PTBP1-associated miR-1 and -133b are crucial molecules for the maintenance of the Warburg effect in colorectal tumors.
Collapse
Affiliation(s)
- Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.,Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Miku Sakai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nami Yamada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tatsushi Nakayama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University, School of Medicine, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Bunji Uno
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Fred RG, Mehrabi S, Adams CM, Welsh N. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability. Heliyon 2016; 2:e00159. [PMID: 27699280 PMCID: PMC5035359 DOI: 10.1016/j.heliyon.2016.e00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. METHODS AND RESULTS To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro. We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. CONCLUSIONS These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
Collapse
Affiliation(s)
- Rikard G Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Syrina Mehrabi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christopher M Adams
- Department of Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
27
|
Yi B, Ozerova M, Zhang GX, Yan G, Huang S, Sun J. Post-Transcriptional Regulation of Endothelial Nitric Oxide Synthase Expression by Polypyrimidine Tract-Binding Protein 1. Arterioscler Thromb Vasc Biol 2015; 35:2153-60. [PMID: 26293469 DOI: 10.1161/atvbaha.115.305750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular function and its expression is regulated at post-transcriptional levels through a yet unknown mechanism. The purpose of this study is to elucidate the post-transcriptional factors regulating eNOS expression and function in endothelium. APPROACHES AND RESULTS To elucidate the molecular basis of tumor necrosis factor (TNF)-α-mediated eNOS mRNA instability, biotinylated eNOS 3'-untranslational region (UTR) was used to purify its associated proteins by RNA affinity chromatography from cytosolic fractions of TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). We identified 2 cytosolic proteins, with molecular weight of 52 and 57 kDa, which specifically bind to eNOS 3'-UTR in response to TNF-α stimulation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis identified the 57-kDa protein as polypyrimidine tract-binding protein 1 (PTB1). RNA gel mobility shift and UV cross-linking assays demonstrated that PTB1 binds to a UCUU-rich sequence in eNOS 3'-UTR, and the C-terminal half of PTB1 is critical to this interaction. Importantly, PTB1 overexpression leads to decreased activity of luciferase gene fused with eNOS 3'-UTR as well as reduced eNOS expression and activity in human ECs. In HUVECs, we show that TNF-α markedly increased PTB1 expression, whereas adenovirus-mediated PTB1 overexpression decreased eNOS mRNA stability and reduced protein expression and endothelium-dependent relaxation. Furthermore, knockdown of PTB1 substantially attenuated TNF-α-induced destabilization of eNOS transcript and downregulation of eNOS expression. CONCLUSIONS These results indicate that PTB1 is essential for regulating eNOS expression at post-transcriptional levels and suggest a novel therapeutic target for treatment of vascular diseases associated with inflammatory endothelial dysfunction.
Collapse
Affiliation(s)
- Bing Yi
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.)
| | - Maria Ozerova
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.)
| | - Guan-Xin Zhang
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.)
| | - Guijun Yan
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.)
| | - Shengdong Huang
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.)
| | - Jianxin Sun
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (B.Y., M.O., J.S.); Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (G.Y.); and Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (G.Z., S.H., J.S.).
| |
Collapse
|
28
|
de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery DM, Bates DO, Ødum N, Persson JL, Mongan NP. Regulation of vascular endothelial growth factor in prostate cancer. Endocr Relat Cancer 2015; 22:R107-23. [PMID: 25870249 DOI: 10.1530/erc-15-0123] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy affecting men in the western world. Although radical prostatectomy and radiation therapy can successfully treat PCa in the majority of patients, up to ~30% will experience local recurrence or metastatic disease. Prostate carcinogenesis and progression is typically an androgen-dependent process. For this reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor function. Such androgen deprivation therapies (ADT) are effective initially, but the duration of response is typically ≤24 months. Although ADT and taxane-based chemotherapy have delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to establish the cellular and molecular mechanisms that enable localized PCas to invade and disseminate. It has long been accepted that metastases require angiogenesis. In the present review, we examine the essential role for angiogenesis in PCa metastases, and we focus in particular on the current understanding of the regulation of vascular endothelial growth factor (VEGF) in localized and metastatic PCa. We highlight recent advances in understanding the role of VEGF in regulating the interaction of cancer cells with tumor-associated immune cells during the metastatic process of PCa. We summarize the established mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and outline the molecular insights obtained from preclinical animal models of PCa. Finally, we summarize the current state of anti-angiogenesis therapies for PCa and consider how existing therapies impact VEGF signaling.
Collapse
Affiliation(s)
- Simone de Brot
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Atara Ntekim
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Ryan Cardenas
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Victoria James
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David M Heery
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David O Bates
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Niels Ødum
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Jenny L Persson
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Nigel P Mongan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
29
|
Bhullar D, Jalodia R, Kalia M, Vrati S. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication. PLoS One 2014; 9:e114931. [PMID: 25545659 PMCID: PMC4278868 DOI: 10.1371/journal.pone.0114931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022] Open
Abstract
Japanese encephalitis virus (JEV) has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5′- and 3′-non-coding regions (NCRs). The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB) interacts in vitro with both the 5′-NCR of the positive-sense genomic RNA - 5NCR(+), and its complementary sequence in the negative-sense replication intermediate RNA - 3NCR(-). The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(-) RNA with viral RNA-dependent RNA polymerase (NS5 protein), an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA)-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.
Collapse
Affiliation(s)
| | | | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre, Translational Health Science & Technology Institute, Gurgaon, India
| | - Sudhanshu Vrati
- National Institute of Immunology, New Delhi, India
- Vaccine and Infectious Disease Research Centre, Translational Health Science & Technology Institute, Gurgaon, India
- * E-mail:
| |
Collapse
|
30
|
Willis WL, Hariharan S, David JJ, Strauch AR. Transglutaminase-2 mediates calcium-regulated crosslinking of the Y-box 1 (YB-1) translation-regulatory protein in TGFβ1-activated myofibroblasts. J Cell Biochem 2014; 114:2753-69. [PMID: 23804301 DOI: 10.1002/jcb.24624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
Myofibroblast differentiation is required for wound healing and accompanied by activation of smooth muscle α-actin (SMαA) gene expression. The stress-response protein, Y-box binding protein-1 (YB-1) binds SMαA mRNA and regulates its translational activity. Activation of SMαA gene expression in human pulmonary myofibroblasts by TGFβ1 was associated with formation of denaturation-resistant YB-1 oligomers with selective affinity for a known translation-silencer sequence in SMαA mRNA. We have determined that YB-1 is a substrate for the protein-crosslinking enzyme transglutaminase 2 (TG2) that catalyzes calcium-dependent formation of covalent γ-glutamyl-isopeptide linkages in response to reactive oxygen signaling. TG2 transamidation reactions using intact cells, cell lysates, and recombinant YB-1 revealed covalent crosslinking of the 50 kDa YB-1 polypeptide into protein oligomers that were distributed during SDS-PAGE over a 75-250 kDa size range. In vitro YB-1 transamidation required nanomolar levels of calcium and was enhanced by the presence of SMαA mRNA. In human pulmonary fibroblasts, YB-1 crosslinking was inhibited by (a) anti-oxidant cystamine, (b) the reactive-oxygen antagonist, diphenyleneiodonium, (c) competitive inhibition of TG2 transamidation using the aminyl-surrogate substrate, monodansylcadaverine, and (d) transfection with small-interfering RNA specific for human TG2 mRNA. YB-1 crosslinking was partially reversible as a function of oligomer-substrate availability and TG2 enzyme concentration. Intracellular calcium accumulation and peroxidative stress in injury-activated myofibroblasts may govern SMαA mRNA translational activity during wound healing via TG2-mediated crosslinking of the YB-1 mRNA-binding protein.
Collapse
Affiliation(s)
- William L Willis
- Department of Physiology and Cell Biology, The Integrated Biomedical Sciences Graduate Program, and the Ohio State Biochemistry Program, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | | | | | | |
Collapse
|
31
|
He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 2014; 3:e84. [PMID: 24418892 PMCID: PMC3940912 DOI: 10.1038/oncsis.2013.47] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
We have investigated some roles of splicing factor polypyrimidine tract-binding protein (PTBP1) in human breast cancer. We found that PTBP1 was upregulated in progressively transformed human mammary epithelial cells (HMECs), as well as in breast tumor cell lines compared with HMECs with finite growth potential and found that the level of PTBP1 correlated with the transformation state of HMECs. Knockdown of PTBP1 expression substantially inhibited tumor cell growth, colony formation in soft agar and in vitro invasiveness of breast cancer cell lines, a result similar to what we have reported in ovarian cancer. However, ectopic expression of PTBP1 (as a PTBP1-EGFP fusion protein) did not enhance the proliferation of immortalized HMEC. Rather, PTBP1 expression promoted anchorage-independent growth of an immortalized HMEC as assessed by increased colony formation in soft agar. In addition, we found that knockdown of PTBP1 expression led to upregulation of the expression of the M1 isoform of pyruvate kinase (PKM1) and increase of the ratio of PKM1 vs PKM2. PKM1 has been reported to promote oxidative phosphorylation and reduce tumorigenesis. Correspondingly, we observed increased oxygen consumption in PTBP1-knockdown breast cancer cells. Together, these results suggest that PTBP1 is associated with breast tumorigenesis and appears to be required for tumor cell growth and maintenance of transformed properties. PTBP1 exerts these effects, in part, by regulating the splicing of pyruvate kinase, and consequently alters glucose metabolism and contributes to the Warburg effect.
Collapse
Affiliation(s)
- X He
- 1] Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, University of Illinois at Chicago, Rockford, IL, USA [2] Cancer Center, University of Illinois, Chicago, IL, USA
| | - A D Arslan
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - T-T Ho
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - C Yuan
- Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, University of Illinois at Chicago, Rockford, IL, USA
| | - M R Stampfer
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - W T Beck
- 1] Cancer Center, University of Illinois, Chicago, IL, USA [2] Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14:22906-32. [PMID: 24264039 PMCID: PMC3856098 DOI: 10.3390/ijms141122906] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Polypyrimidine Tract Binding Protein (PTB) is an intensely studied RNA binding protein involved in several post-transcriptional regulatory events of gene expression. Initially described as a pre-mRNA splicing regulator, PTB is now widely accepted as a multifunctional protein shuttling between nucleus and cytoplasm. Accordingly, PTB can interact with selected RNA targets, structural elements and proteins. There is increasing evidence that PTB and its paralog PTBP2 play a major role as repressors of alternatively spliced exons, whose transcription is tissue-regulated. In addition to alternative splicing, PTB is involved in almost all steps of mRNA metabolism, including polyadenylation, mRNA stability and initiation of protein translation. Furthermore, it is well established that PTB recruitment in internal ribosome entry site (IRES) activates the translation of picornaviral and cellular proteins. Detailed studies of the structural properties of PTB have contributed to our understanding of the mechanism of RNA binding by RNA Recognition Motif (RRM) domains. In the present review, we will describe the structural properties of PTB, its paralogs and co-factors, the role in post-transcriptional regulation and actions in cell differentiation and pathogenesis. Defining the multifunctional roles of PTB will contribute to the understanding of key regulatory events in gene expression.
Collapse
|
33
|
Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:95-110. [PMID: 24217978 DOI: 10.1002/wrna.1200] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 12/15/2022]
Abstract
The Y-box binding protein 1 (YB-1, YBX1) is a member of the family of DNA- and RNA-binding proteins with an evolutionarily ancient and conserved cold shock domain. It falls into a group of intrinsically disordered proteins that do not follow the classical rule 'one protein-one function' but introduce a novel principle stating that a disordered structure suggests many functions. YB-1 participates in a wide variety of DNA/RNA-dependent events, including DNA reparation, pre-mRNA transcription and splicing, mRNA packaging, and regulation of mRNA stability and translation. At the cell level, the multiple activities of YB-1 are manifested as its involvement in cell proliferation and differentiation, stress response, and malignant cell transformation. WIREs RNA 2014, 5:95-110. doi: 10.1002/wrna.1200 CONFLICT OF INTEREST: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
34
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 2013; 41:7997-8010. [PMID: 23851566 PMCID: PMC3783158 DOI: 10.1093/nar/gkt539] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular Endothelial Growth Factor A (VEGF-A) is a potent secreted mitogen crucial for physiological and pathological angiogenesis. Post-transcriptional regulation of VEGF-A occurs at multiple levels. Firstly, alternative splicing gives rise to different transcript variants encoding diverse isoforms that exhibit distinct biological properties with regard to receptor binding and extra-cellular localization. Secondly, VEGF-A mRNA stability is regulated by effectors such as hypoxia or growth factors through the binding of stabilizing and destabilizing proteins at AU-rich elements located in the 3′-untranslated region. Thirdly, translation of VEGF-A mRNA is a controlled process involving alternative initiation codons, internal ribosome entry sites (IRESs), an upstream open reading frame (uORF), miRNA targeting and a riboswitch in the 3′ untranslated region. These different levels of regulation cooperate for the crucial fine-tuning of the expression of VEGF-A variants. This review will be focused on our current knowledge of the complex post-transcriptional regulatory switches that modulate the cellular VEGF-A level, a paradigmatic model of post-transcriptional regulation.
Collapse
Affiliation(s)
- Tania Arcondéguy
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse Cedex 4, France and Université Toulouse III Paul-Sabatier, 118 Route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Shi JH, Zheng B, Li YH, Sun Y, Han AL, Zhang XH, Lv XR, Chen S, Wen JK. Novel insight into Y-box binding protein 1 in the regulation of vascular smooth muscle cell proliferation through targeting GC box-dependent genes. FEBS Lett 2013; 587:1326-32. [PMID: 23499936 DOI: 10.1016/j.febslet.2013.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 01/28/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key event in atherosclerosis and restenosis. In this paper, we report that Y-box binding protein 1 (YB1) functions as a phenotypic regulator in VSMC proliferation-differentiation switching through targeting GC box-dependent genes. Oligo pull-down assays demonstrated that YB1 binds directly to GC boxes via amino acids 125-220. YB1 C-terminal tail domain (CTD, amino acids 125-324) regulates GC box-dependent target gene transcription and suppresses VSMC proliferation. These findings provide a novel insight into the regulation of GC box-related genes by YB1, and provide a new understanding of VSMC proliferation regulation.
Collapse
Affiliation(s)
- Jian-hong Shi
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li W, Wang X, Gao G. Expression of YB-1 enhances production of murine leukemia virus vectors by stabilizing genomic viral RNA. Protein Cell 2012; 3:943-9. [PMID: 23225179 DOI: 10.1007/s13238-012-2090-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/04/2012] [Indexed: 12/25/2022] Open
Abstract
Murine leukemia virus (MLV)-based retroviral vectors is widely used for gene transfer and basic research, and production of high-titer retroviral vectors is very important. Here we report that expression of the Y-box binding protein 1 (YB-1) enhanced the production of infectious MLV vectors. YB-1 specifically increased the stability of viral genomic RNA in virus-producing cells, and thus increasing viral RNA levels in both producer cells and virion particles. The viral element responsive to YB-1 was mapped to the repeat sequence (R region) in MLV genomic RNA. These results identified YB-1 as a MLV mRNA stabilizer, which can be used for improving production of MLV vectors.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
38
|
Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GFL, Gerber AP, Detmar M. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One 2012; 7:e49568. [PMID: 23166713 PMCID: PMC3498195 DOI: 10.1371/journal.pone.0049568] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 10/12/2012] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) plays a key role in the angiogenesis of human skin. Elevated levels of VEGFA are associated with several pathological conditions, including chronic inflammatory skin diseases and several types of skin cancer. In particular, squamous cell carcinoma (SCC) of the skin, the second most common skin cancer in the general population, is characterized by invasive growth, pronounced angiogenesis and elevated levels of VEGFA. The processing, turnover and production of VEGFA are extensively regulated at the post-transcriptional level, both by RNA-binding proteins and microRNAs (miRNAs). In the present study, we identified a new miRNA recognition element in a downstream conserved region of the VEGFA 3'-UTR. We confirmed the repressive effect of miR-361-5p on this element in vitro, identifying the first target for this miRNA. Importantly, we found that miR-361-5p levels are inversely correlated with VEGFA expression in SCC and in healthy skin, indicating that miR-361-5p could play a role in cancers.
Collapse
Affiliation(s)
- Alexander Kanitz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jochen Imig
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Piotr J. Dziunycz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Adriana Primorac
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alessia Galgano
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - André P. Gerber
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail: (APG); (MD)
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail: (APG); (MD)
| |
Collapse
|
39
|
Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. BIOCHEMISTRY (MOSCOW) 2012; 76:1402-33. [PMID: 22339596 DOI: 10.1134/s0006297911130049] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the structure and functions of Y-box binding protein 1 (YB-1) and its homologs. Interactions of YB-1 with DNA, mRNAs, and proteins are considered. Data on the participation of YB-1 in DNA reparation and transcription, mRNA splicing and translation are systematized. Results on interactions of YB-1 with cytoskeleton components and its possible role in mRNA localization are discussed. Data on intracellular distribution of YB-1, its redistribution between the nucleus and the cytoplasm, and its secretion and extracellular functions are summarized. The effect of YB-1 on cell differentiation, its involvement in extra- and intracellular signaling pathways, and its role in early embryogenesis are described. The mechanisms of regulation of YB-1 expression in the cell are presented. Special attention is paid to the involvement of YB-1 in oncogenic cell transformation, multiple drug resistance, and dissemination of tumors. Both the oncogenic and antioncogenic activities of YB-1 are reviewed. The potential use of YB-1 in diagnostics and therapy as an early cancer marker and a molecular target is discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
40
|
David JJ, Subramanian SV, Zhang A, Willis WL, Kelm RJ, Leier CV, Strauch AR. Y-box binding protein-1 implicated in translational control of fetal myocardial gene expression after cardiac transplant. Exp Biol Med (Maywood) 2012; 237:593-607. [PMID: 22619371 DOI: 10.1258/ebm.2012.011137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peri-transplant surgical trauma and ischemia/reperfusion injury in accepted murine heterotopic heart grafts has been associated with myofibroblast differentiation, cardiac fibrosis and biomechanical-stress activation of the fetal myocardial smooth muscle α-actin (SMαA) gene. The wound-healing agonists, transforming growth factor β1 and thrombin, are known to coordinate SMαA mRNA transcription and translation in activated myofibroblasts by altering the subcellular localization and mRNA-binding affinity of the Y-box binding protein-1 (YB-1) cold-shock domain (CSD) protein that governs a variety of cellular responses to metabolic stress. YB-1 accumulated in polyribosome-enriched regions of the sarcoplasm proximal to cardiac intercalated discs in accepted heart grafts. YB-1 binding to a purine-rich motif in exon 3 of SMαA mRNA that regulates translational efficiency increased substantially in perfusion-isolated, rod-shaped adult rat cardiomyocytes during phenotypic de-differentiation in the presence of serum-derived growth factors. Cardiomyocyte de-differentiation was accompanied by the loss of a 60 kDa YB-1 variant that was highly expressed in both adult myocardium and freshly isolated myocytes and replacement with the 50 kDa form of YB-1 (p50) typically expressed in myofibroblasts that demonstrated sequence-specific interaction with SMαA mRNA. Accumulation of p50 YB-1 in reprogrammed, de-differentiated myocytes was associated with a 10-fold increase in SMαA protein expression. Endomyocardial biopsies collected from patients up to 14 years after heart transplant showed variable yet coordinately elevated expression of SMαA and p50 YB-1 protein and demonstrable p50 YB-1:SMαA mRNA interaction. The p60 YB-1 variant in human heart graft samples, but neither mouse p60 nor mouse or human p50, reacted with an antibody specific for the phosphoserine 102 modification in the YB-1 CSD. Modulation of YB-1 subcellular compartmentalization and mRNA-binding activity may be linked with reprogramming of contractile protein gene expression in ventricular cardiomyocytes that could contribute to maladaptive remodeling in accepted, long-term heart grafts.
Collapse
Affiliation(s)
- Jason J David
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Miller BW, Hay JM, Prigent SA, Dickens M. Post-transcriptional regulation of VEGF-A mRNA levels by mitogen-activated protein kinases (MAPKs) during metabolic stress associated with ischaemia/reperfusion. Mol Cell Biochem 2012; 367:31-42. [PMID: 22562302 DOI: 10.1007/s11010-012-1316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/18/2012] [Indexed: 01/11/2023]
Abstract
Angiogenesis is a well-characterised response to the metabolic stresses that occur during ischaemia/reperfusion, but the signalling pathways that regulate it are poorly understood. We tested whether activation of mitogen-activated protein kinases (MAPKs) was involved in regulating the expression of pro-angiogenic growth factors by the metabolic stresses associated with ischaemia/reperfusion in H9c2 rat cardiomyoblasts. Metabolic stress had no effect on vascular endothelial growth factor (VEGF) mRNA levels, but recovery after metabolic inhibition led to a strong induction of VEGF-A mRNA (3.8 ± 0.5-fold at 4 h), a modest rise in VEGF-C mRNA levels (1.7 ± 0.3-fold at 4 h), with no effect on VEGF-B or -D. A VEGF-A promoter reporter construct was unresponsive to metabolic inhibition/recovery and increases in VEGF-A mRNA were not blocked by the transcription inhibitor actinomycin D suggesting that increases in VEGF mRNA were due to enhanced VEGF-A mRNA stability. In addition, studies using reporter constructs demonstrated that regions within the 5' untranslated region (UTR) contributed to enhanced mRNA stability following recovery from metabolic stress. Increases in VEGF-A mRNA were abolished by inhibition of extracellular signal-regulated kinase or c-jun N-terminal kinase MAPKs, suggesting that these kinases may promote angiogenesis in response to metabolic stress during ischaemia/reperfusion by increasing VEGF-A message stability.
Collapse
Affiliation(s)
- Bryan W Miller
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
42
|
Culver BP, Savas JN, Park SK, Choi JH, Zheng S, Zeitlin SO, Yates JR, Tanese N. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 2012; 287:21599-614. [PMID: 22556411 DOI: 10.1074/jbc.m112.359307] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.
Collapse
Affiliation(s)
- Brady P Culver
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Engels B, Jannot G, Remenyi J, Simard MJ, Hutvagner G. Polypyrimidine tract binding protein (hnRNP I) is possibly a conserved modulator of miRNA-mediated gene regulation. PLoS One 2012; 7:e33144. [PMID: 22427970 PMCID: PMC3302860 DOI: 10.1371/journal.pone.0033144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
MiRNAs can regulate gene expression through versatile mechanisms that result in increased or decreased expression of the targeted mRNA and it could effect the expression of thousands of protein in a particular cell. An increasing body of evidence suggest that miRNAs action can be modulated by proteins that bind to the same 3′UTRs that are targeted by miRNAs, suggesting that other factors apart from miRNAs and their target sites determine miRNA-modulation of gene expression. We applied an affinity purification protocol using biotinylated let-7 miRNA inhibitor to isolate proteins that are involved in let-7 mediated gene regulation that resulted in an affinity purification of Polypyrimidine Tract Binding protein (PTB). Here we show that PTB interacts with miRNAs and human Argonaute 2 (hAgo2) through RNA as well as identified potential mammalian cellular targets that are co-regulated by PTB and hAgo2. In addition, using genetic approach, we have demonstrated that PTB genetically interacts with Caenorhabditis elegans let-7 indicating a conserved role for PTB in miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Bart Engels
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Guillaume Jannot
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Québec City, Québec, Canada
| | - Judit Remenyi
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin J. Simard
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Québec City, Québec, Canada
| | - György Hutvagner
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Centre for Health Technologies, University of Technology, Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
44
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
45
|
Chauvin TR, Herndon MK, Nilson JH. Cold-shock-domain protein A (CSDA) contributes posttranscriptionally to gonadotropin-releasing hormone-regulated expression of Egr1 and indirectly to Lhb. Biol Reprod 2012; 86:53. [PMID: 22053098 DOI: 10.1095/biolreprod.111.093658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH), a hypothalamic neurohormone, regulates transcription of Lhb in gonadotrophs indirectly through transient induction and accumulation of EGR1, a zinc finger transcription factor. AlphaT3 and LbetaT2 cell lines model gonadotrophs at two distinct stages of development, prenatal and postnatal expression of Lhb. Although GnRH induces EGR1 in both cell lines, the levels of the DNA-binding protein are lower and disappear more quickly in alphaT3 than in LbetaT2 cells. Herein we show that overexpression of Egr1 in alphaT3 cells rescues activity of a transfected LHB promoter-reporter, suggesting that its transcription is dependent on EGR1 crossing a critical concentration threshold. We also show that Csda, a gene that encodes an RNA-binding protein and is a member of the cold-shock-domain (CSD) family, is expressed at higher levels in LbetaT2 compared to alphaT3 cells. Transient expression studies indicate that at least one Csd element, residing in the 3' untranslated region of Egr1 mRNA, increases activity of a chimeric pGL3 luciferase reporter vector in LbetaT2 cells. Additional experiments indicate that CSDA physically interacts with Egr1 mRNA. Furthermore, siRNA-mediated reduction of endogenous Csda mRNA attenuates GnRH regulation of a transiently transfected LHB reporter vector. Taken together, these studies suggest that CSDA contributes posttranscriptionally to GnRH-regulated expression of Egr1, thereby enabling the transcription factor to cross a critical concentration threshold necessary for maximal accumulation of Lhb mRNA in response to the neurohormone.
Collapse
Affiliation(s)
- Theodore R Chauvin
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | |
Collapse
|
46
|
Brandt S, Raffetseder U, Djudjaj S, Schreiter A, Kadereit B, Michele M, Pabst M, Zhu C, Mertens PR. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur J Cell Biol 2011; 91:464-71. [PMID: 21962637 DOI: 10.1016/j.ejcb.2011.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
The cold shock protein Y-box (YB) binding-1 is an example of a highly regulated protein with pleiotropic functions. Besides activities as a transcription factor in the nucleus or regulator of translation in the cytoplasm, recent findings indicate extracellular effects and secretion via a non-classical secretion pathway. This review summarizes regulatory pathways in which YB-1 participates, all iterating auto-regulatory loops. Schematics are developed that elucidate the cold shock protein activities in (i) fine-tuning its own expression level following platelet-derived growth factor-B-, thrombin- or interferon-γ-dependent signaling, (ii) as a component of the messenger ribonucleoprotein (mRNP) complex for interleukin-2 synthesis in T-cell commitment/activation, (iii) pro-fibrogenic cell phenotypic changes mediated by transforming growth factor-β, and (iv) receptor Notch-3 cleavage and signal transduction. Emphasis is put forward on subcellular protein translocation mechanisms and underlying signaling pathways. These have mostly been analysed in cell culture systems and rarely in experimental models. In sum, YB-1 seems to fulfill a pacemaker role in diverse diseases, both inflammatory/pro-fibrogenic as well as tumorigenic. A clue towards potential intervention strategies may reside in the understanding of the outlined auto-regulatory loops and means to interfere with cycling pathways.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gorospe M, Tominaga K, Wu X, Fähling M, Ivan M. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. Front Mol Neurosci 2011; 4:7. [PMID: 21747757 PMCID: PMC3130151 DOI: 10.3389/fnmol.2011.00007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response.
Collapse
Affiliation(s)
- Myriam Gorospe
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Kumiko Tominaga
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Xue Wu
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| | - Michael Fähling
- Institut für Vegetative Physiologie, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlin, Germany
| | - Mircea Ivan
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
48
|
Suckale J, Wendling O, Masjkur J, Jäger M, Münster C, Anastassiadis K, Stewart AF, Solimena M. PTBP1 is required for embryonic development before gastrulation. PLoS One 2011; 6:e16992. [PMID: 21423341 PMCID: PMC3040740 DOI: 10.1371/journal.pone.0016992] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/18/2011] [Indexed: 12/27/2022] Open
Abstract
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Olivia Wendling
- Department of Functional Genomics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) & ICS (Institut Clinique de la Souris), Illkirch, France
| | - Jimmy Masjkur
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Melanie Jäger
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum Dresden University of Technology, Dresden, Germany
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Dresden University of Technology, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
49
|
Petruzzelli R, Gaudino S, Amendola G, Sessa R, Puzone S, Di Concilio R, d'Urzo G, Amendolara M, Izzo P, Grosso M. Role of the cold shock domain protein A in the transcriptional regulation of HBG expression. Br J Haematol 2010; 150:689-99. [PMID: 20636440 DOI: 10.1111/j.1365-2141.2010.08303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impaired switching from fetal haemoglobin (HbF) to adult globin gene expression leads to hereditary persistence of fetal haemoglobin (HPFH) in adult life. This is of prime interest because elevated HbF levels ameliorate β-thalassaemia and sickle cell anaemia. Fetal haemoglobin levels are regulated by complex mechanisms involving factors linked or not to the β-globin gene (HBB) locus. To search for factors putatively involved in the expression of the γ-globin genes (HBG1, HBG2), we examined the reticulocyte transcriptome of three siblings who had different HbF levels and different degrees of β-thalassaemia severity although they had the same ΗBA- and ΗΒB cluster genotypes. By mRNA differential display we isolated the cDNA coding for the cold shock domain protein A (CSDA), also known as dbpA, previously reported to interact in vitro with the HBG2 promoter. Expression studies performed in K562 and in primary erythroid cells showed an inverse relationship between HBG and CSDA expression levels. Functional studies performed by Chromatin Immunoprecipitation and reporter gene assays in K562 cells demonstrated that CSDA is able to bind the HBG2 promoter and suppress its expression. Therefore, our study demonstrated that CSDA is a trans-acting repressor factor of HBG expression and modulates the HPFH phenotype.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stumpo DJ, Lai WS, Blackshear PJ. Inflammation: cytokines and RNA-based regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:60-80. [PMID: 21956907 DOI: 10.1002/wrna.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outcome of an inflammatory response depends upon the coordinated regulation of a variety of both pro-inflammatory and anti-inflammatory cytokines and other proteins. Regulation of these inflammation mediators can occur at multiple levels, including transcription, mRNA translation, post-translational modifications, and mRNA degradation. Post-transcriptional regulation has been shown to play an important role in controlling the expression of these mediators, allowing for normal initiation and resolution of the inflammatory response. Many inflammatory mediators have unstable mRNAs due, in part, to the presence of AU-rich elements in their 3'-untranslated regions. Increasing numbers of RNA-binding proteins have been identified that can bind to these AU-rich elements and then regulate the stability and/or translation of the mRNA. This review summarizes current knowledge about the role of several RNA-binding proteins that act through AU-rich elements to post-transcriptionally regulate the biosynthesis of proteins involved in inflammation.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|