1
|
Li J, Gui Q, Liang FX, Sall J, Zhang Q, Duan Y, Dhabaria A, Askenazi M, Ueberheide B, Stapleford KA, Pagano M. The REEP5/TRAM1 complex binds SARS-CoV-2 NSP3 and promotes virus replication. J Virol 2023; 97:e0050723. [PMID: 37768083 PMCID: PMC10617467 DOI: 10.1128/jvi.00507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Feng-Xia Liang
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Joseph Sall
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Yatong Duan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- William A. Shine Great Neck South High School, Lake Success, New York, USA
| | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Biomedical Hosting LLC, Arlington, Massachusetts, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Klein MC, Lerner M, Nguyen D, Pfeffer S, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Channels (Austin) 2021; 14:28-44. [PMID: 32013668 PMCID: PMC7039644 DOI: 10.1080/19336950.2020.1724759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In mammalian cells, one-third of all polypeptides is transported into or through the ER-membrane via the Sec61-channel. While the Sec61-complex facilitates the transport of all polypeptides with amino-terminal signal peptides (SP) or SP-equivalent transmembrane helices (TMH), the translocating chain-associated membrane protein (now termed TRAM1) was proposed to support transport of a subset of precursors. To identify possible determinants of TRAM1 substrate specificity, we systematically identified TRAM1-dependent precursors by analyzing cellular protein abundance changes upon TRAM1 depletion in HeLa cells using quantitative label-free proteomics. In contrast to previous analysis after TRAP depletion, SP and TMH analysis of TRAM1 clients did not reveal any distinguishing features that could explain its putative substrate specificity. To further address the TRAM1 mechanism, live-cell calcium imaging was carried out after TRAM1 depletion in HeLa cells. In additional contrast to previous analysis after TRAP depletion, TRAM1 depletion did not affect calcium leakage from the ER. Thus, TRAM1 does not appear to act as SP- or TMH-receptor on the ER-membrane’s cytosolic face and does not appear to affect the open probability of the Sec61-channel. It may rather play a supportive role in protein transport, such as making the phospholipid bilayer conducive for accepting SP and TMH in the vicinity of the lateral gate of the Sec61-channel. Abbreviations: ER, endoplasmic reticulum; OST, oligosaccharyltransferase; RAMP, ribosome-associated membrane protein; SP, signal peptide; SR, SRP-receptor; SRP, signal recognition particle; TMH, signal peptide-equivalent transmembrane helix; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein.
Collapse
Affiliation(s)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
SRPassing Co-translational Targeting: The Role of the Signal Recognition Particle in Protein Targeting and mRNA Protection. Int J Mol Sci 2021; 22:ijms22126284. [PMID: 34208095 PMCID: PMC8230904 DOI: 10.3390/ijms22126284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.
Collapse
|
4
|
Haßdenteufel S, Sicking M, Schorr S, Aviram N, Fecher-Trost C, Schuldiner M, Jung M, Zimmermann R, Lang S. hSnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett 2017; 591:3211-3224. [PMID: 28862756 DOI: 10.1002/1873-3468.12831] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
Recently, understanding of protein targeting to the endoplasmic reticulum (ER) was expanded by the discovery of multiple pathways that function in parallel to the signal recognition particle (SRP). Guided entry of tail-anchored proteins and SRP independent (SND) are two such targeting pathways described in yeast. So far, no human SND component is functionally characterized. Here, we report hSnd2 as the first constituent of the human SND pathway able to support substrate-specific protein targeting to the ER. Similar to its yeast counterpart, hSnd2 is assumed to function as a membrane-bound receptor preferentially targeting precursors carrying C-terminal transmembrane domains. Our genetic and physical interaction studies show that hSnd2 is part of a complex network of targeting and translocation that is dynamically regulated.
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Stefan Schorr
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 2017; 70:64-75. [PMID: 28619231 DOI: 10.1016/j.ceca.2017.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
The folding of secretory proteins is a well-understood mechanism, based on decades of research on endoplasmic reticulum (ER) chaperones. These chaperones interact with newly imported polypeptides close to the ER translocon. Classic examples for these proteins include the immunoglobulin binding protein (BiP/GRP78), and the lectins calnexin and calreticulin. Although not considered chaperones per se, the ER oxidoreductases of the protein disulfide isomerase (PDI) family complete the folding job by catalyzing the formation of disulfide bonds through cysteine oxidation. Research from the past decade has demonstrated that ER chaperones are multifunctional proteins. The regulation of ER-mitochondria Ca2+ crosstalk is one of their additional functions, as shown for calnexin, BiP/GRP78 or the oxidoreductases Ero1α and TMX1. This function depends on interactions of this group of proteins with the ER Ca2+ handling machinery. This novel function makes perfect sense for two reasons: i. It allows ER chaperones to control mitochondrial apoptosis instantly without a lengthy bypass involving the upregulation of pro-apoptotic transcription factors via the unfolded protein response (UPR); and ii. It allows the ER protein folding machinery to fine-tune ATP import via controlling the speed of mitochondrial oxidative phosphorylation. Therefore, the role of ER chaperones in regulating ER-mitochondria Ca2+ flux identifies the progression of secretory protein folding as a central regulator of cell survival and death, at least in cell types that secrete large amount of proteins. In other cell types, ER protein folding might serve as a sentinel mechanism that monitors cellular well-being to control cell metabolism and apoptosis. The selenoprotein SEPN1 is a classic example for such a role. Through the control of ER-mitochondria Ca2+-flux, ER chaperones and folding assistants guide cellular apoptosis and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tomas Gutiérrez
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada,.
| |
Collapse
|
6
|
Chapados NA, Boucher MP. Liver metabolic disruption induced after a single exposure to PCB126 in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1854-1861. [PMID: 27796995 DOI: 10.1007/s11356-016-7939-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been recognized as metabolic disruptors. The liver plays a pivotal role in detoxification of an organism. Fatty liver results from altered intra-, and extra-hepatic mediators and is associated with increased glucose-related protein 78 (GRP78), commonly used as a marker for endoplasmic reticulum (ER) stress signaling. This pilot study aimed to study the effects of a single exposure on fatty liver metabolic parameters. The objective of the study is to characterize the effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126) on ER stress protein chaperon GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP) and intra-hepatic mediators such as microsomal triglyceride transfer protein (MTP), sterol regulatory element-binding protein 1c (SREBP1c), and peroxisome proliferator-activated receptor alpha (PPARα), as well as extra-hepatic factors such as non-esterified fatty acid (NEFA) and tumor necrosis factor alpha (TNFα). Hepatic GRP78 mRNA and protein levels, indicating the presence of ER stress, were significantly increased following a single PCB126 exposure in rats. Intra-hepatic mechanisms such as lipoprotein secretion pathway (i.e., MTP), lipogenesis de novo (i.e., SREBP1c), and oxidation (i.e., PPARα) were altered in PCB126-treated rats. In addition, a state of inflammation measured by higher TNFα plasma levels was present in contaminated rats. These data indicate that a single injection of PCB126-modulated expression of GRP78 associated with hepatic ER stress and systemic inflammation in rats.
Collapse
Affiliation(s)
- Natalie A Chapados
- Institut de recherche de l'Hôpital Montfort, Institut du savoir Montfort, 713 Montreal Road, Pavillon E, Ottawa, Ontario, K1K 0T2, Canada.
- Shcool of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
7
|
Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P, Crespi A, Bram RF, Benfante R, Borgese N. Tail-anchored Protein Insertion in Mammals: FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR. J Biol Chem 2016; 291:15292-306. [PMID: 27226539 DOI: 10.1074/jbc.m115.707752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER.
Collapse
Affiliation(s)
- Sara Francesca Colombo
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Silvia Cardani
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Annalisa Maroli
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Adriana Vitiello
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Paolo Soffientini
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy 20100 and
| | - Arianna Crespi
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | | | - Roberta Benfante
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Nica Borgese
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| |
Collapse
|
8
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jagannathan S, Hsu JCC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem 2014; 289:25907-24. [PMID: 25063809 DOI: 10.1074/jbc.m114.580688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.
Collapse
Affiliation(s)
| | | | | | - Qiang Chen
- From the Departments of Cell Biology and
| | - Will J Thompson
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | - Arthur M Moseley
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
10
|
Shrimal S, Gilmore R. Glycosylation of closely spaced acceptor sites in human glycoproteins. J Cell Sci 2013; 126:5513-23. [PMID: 24105266 DOI: 10.1242/jcs.139584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Asparagine-linked glycosylation of proteins by the oligosaccharyltransferase (OST) occurs when acceptor sites or sequons (N-x≠P-T/S) on nascent polypeptides enter the lumen of the rough endoplasmic reticulum. Metazoan organisms assemble two isoforms of the OST that have different catalytic subunits (STT3A or STT3B) and partially non-overlapping cellular roles. Potential glycosylation sites move past the STT3A complex, which is associated with the translocation channel, at the protein synthesis elongation rate. Here, we investigated whether close spacing between acceptor sites in a nascent protein promotes site skipping by the STT3A complex. Biosynthetic analysis of four human glycoproteins revealed that closely spaced sites are efficiently glycosylated by an STT3B-independent process unless the sequons contain non-optimal sequence features, including extreme close spacing between sequons (e.g. NxTNxT) or the presence of paired NxS sequons (e.g. NxSANxS). Many, but not all, glycosylation sites that are skipped by the STT3A complex can be glycosylated by the STT3B complex. Analysis of a murine glycoprotein database revealed that closely spaced sequons are surprisingly common, and are enriched for paired NxT sites when the gap between sequons is less than three residues.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
11
|
Abstract
Co-chaperones regulate chaperone activities and are likely to impact a protein-folding environment as much as the chaperone itself. As co-chaperones are expressed substoichiometrically, the ability of co-chaperones to encounter a chaperone is crucial for chaperone activity. ERdj3, an abundant soluble endoplasmic reticulum (ER) co-chaperone of the Hsp70 BiP, stimulates the ATPase activity of BiP to increase BiP's affinity for client (or substrate) proteins. We investigated ERdj3 availability, how ERdj3 levels impact BiP availability, and the significance of J proteins for regulating BiP binding of clients in living cells. FRAP analysis revealed that overexpressed ERdj3-sfGFP dramatically decreases BiP-GFP mobility in a client-dependent manner. By contrast, ERdj3-GFP mobility remains low regardless of client protein levels. Native gels and co-immunoprecipitations established that ERdj3 associates with a large complex including Sec61α. Translocon binding probably ensures rapid encounters between emerging nascent peptides and stimulates BiP activity in the crucial early stages of secretory protein folding. Importantly, mutant BiP exhibited significantly increased mobility when it could not interact with any ERdjs. Thus, ERdjs appear to play the dual roles of increasing BiP affinity for clients and regulating delivery of clients to BiP. Our data suggest that BiP engagement of clients is enhanced in ER subdomains enriched in ERdj proteins.
Collapse
Affiliation(s)
- Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
12
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
13
|
Unfolded protein responses with or without unfolded proteins? Cells 2012; 1:926-50. [PMID: 24710536 PMCID: PMC3901143 DOI: 10.3390/cells1040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site of secretory protein biogenesis. The ER quality control (QC) machinery, including chaperones, ensures the correct folding of secretory proteins. Mutant proteins and environmental stresses can overwhelm the available QC machinery. To prevent and resolve accumulation of misfolded secretory proteins in the ER, cells have evolved integral membrane sensors that orchestrate the Unfolded Protein Response (UPR). The sensors, Ire1p in yeast and IRE1, ATF6, and PERK in metazoans, bind the luminal ER chaperone BiP during homeostasis. As unfolded secretory proteins accumulate in the ER lumen, BiP releases, and the sensors activate. The mechanisms of activation and attenuation of the UPR sensors have exhibited unexpected complexity. A growing body of data supports a model in which Ire1p, and potentially IRE1, directly bind unfolded proteins as part of the activation process. However, evidence for an unfolded protein-independent mechanism has recently emerged, suggesting that UPR can be activated by multiple modes. Importantly, dysregulation of the UPR has been linked to human diseases including Type II diabetes, heart disease, and cancer. The existence of alternative regulatory pathways for UPR sensors raises the exciting possibility for the development of new classes of therapeutics for these medically important proteins.
Collapse
|
14
|
Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S. Synthesis of membrane proteins in eukaryotic cell‐free systems. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100235] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| | | | - Mária Šamalíková
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| | | | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
- University of Potsdam Institute for Biochemistry and Biology Potsdam Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| |
Collapse
|
15
|
Lai CW, Aronson DE, Snapp EL. BiP availability distinguishes states of homeostasis and stress in the endoplasmic reticulum of living cells. Mol Biol Cell 2010; 21:1909-21. [PMID: 20410136 PMCID: PMC2883936 DOI: 10.1091/mbc.e09-12-1066] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BiP availability represents a powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers. Accumulation of misfolded secretory proteins causes cellular stress and induces the endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). Although the UPR has been extensively studied, little is known about the molecular changes that distinguish the homeostatic and stressed ER. The increase in levels of misfolded proteins and formation of complexes with chaperones during ER stress are predicted to further crowd the already crowded ER lumen. Surprisingly, using live cell fluorescence microscopy and an inert ER reporter, we find the crowdedness of stressed ER, treated acutely with tunicamycin or DTT, either is comparable to homeostasis or significantly decreases in multiple cell types. In contrast, photobleaching experiments revealed a GFP-tagged variant of the ER chaperone BiP rapidly undergoes a reversible quantitative decrease in diffusion as misfolded proteins accumulate. BiP mobility is sensitive to exceptionally low levels of misfolded protein stressors and can detect intermediate states of BiP availability. Decreased BiP availability temporally correlates with UPR markers, but restoration of BiP availability correlates less well. Thus, BiP availability represents a novel and powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers.
Collapse
Affiliation(s)
- Chun Wei Lai
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
16
|
Zahedi RP, Völzing C, Schmitt A, Frien M, Jung M, Dudek J, Wortelkamp S, Sickmann A, Zimmermann R. Analysis of the membrane proteome of canine pancreatic rough microsomes identifies a novel Hsp40, termed ERj7. Proteomics 2009; 9:3463-73. [PMID: 19579229 DOI: 10.1002/pmic.200800722] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rough ER (rER) plays a central role in the biogenesis of most extracellular and many organellar proteins in eukaryotic cells. Cells that are specialized in protein secretion, such as pancreatic cells, are particularly rich in rER. In the process of cell homogenization, the rER is converted into ribosome-studded vesicles, the so-called rough microsomes. Here we report on a membrane proteomic analysis of canine pancreatic rough microsomes. Special emphasis was placed on components involved in the various aspects of protein biogenesis, such as protein transport, protein folding, protein modification, and protein degradation. Our results indicate that the Hsp70-chaperone network that is present in the pancreatic ER is even more complex than previously thought, and suggest that the pancreatic rER has a significant capacity for protein degradation.
Collapse
Affiliation(s)
- René P Zahedi
- Department of Bioanalytics, Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Canada C, Kelleher DJ, Gilmore R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 2009; 136:272-83. [PMID: 19167329 DOI: 10.1016/j.cell.2008.11.047] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/17/2008] [Accepted: 11/25/2008] [Indexed: 02/01/2023]
Abstract
Asparagine-linked glycosylation of polypeptides in the lumen of the endoplasmic reticulum is catalyzed by the hetero-oligomeric oligosaccharyltransferase (OST). OST isoforms with different catalytic subunits (STT3A versus STT3B) and distinct enzymatic properties are coexpressed in mammalian cells. Using siRNA to achieve isoform-specific knockdowns, we show that the OST isoforms cooperate and act sequentially to mediate protein N-glycosylation. The STT3A OST isoform is primarily responsible for cotranslational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The STT3B isoform is required for efficient cotranslational glycosylation of an acceptor site adjacent to the N-terminal signal sequence of a secreted protein. Unlike STT3A, STT3B efficiently mediates posttranslational glycosylation of a carboxyl-terminal glycosylation site in an unfolded protein. These distinct and complementary roles for the OST isoforms allow sequential scanning of polypeptides for acceptor sites to insure the maximal efficiency of N-glycosylation.
Collapse
Affiliation(s)
- Catalina Ruiz-Canada
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
18
|
Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008; 133:440-51. [PMID: 18455985 PMCID: PMC2430734 DOI: 10.1016/j.cell.2008.02.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/08/2008] [Accepted: 02/14/2008] [Indexed: 11/18/2022]
Abstract
SRP is essential for targeting nascent chains to the endoplasmic reticulum, and it delays nascent chain elongation in cell-free translation systems. However, the significance of this function has remained unclear. We show that efficient protein translocation into the ER is incompatible with normal cellular translation rates due to rate-limiting concentrations of SRP receptor (SR). We complemented mammalian cells depleted of SRP14 by expressing mutant versions of the protein lacking the elongation arrest function. The absence of a delay caused inefficient targeting of preproteins leading to defects in secretion, depletion of proteins in the endogenous membranes, and reduced cell growth. The detrimental effects were reversed by either reducing the cellular protein synthesis rate or increasing SR expression. SRP therefore ensures that nascent chains remain translocation competent during the targeting time window dictated by SR. Since SRP-signal sequence affinities vary, the delay may also regulate which proteins are preferentially targeted.
Collapse
Affiliation(s)
- Asvin K.K. Lakkaraju
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Camille Mary
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Anne Scherrer
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Arthur E. Johnson
- Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Katharina Strub
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
MacKinnon AL, Garrison JL, Hegde RS, Taunton J. Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc 2007; 129:14560-1. [PMID: 17983236 PMCID: PMC2574519 DOI: 10.1021/ja076250y] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoaffinity labeling is a powerful tool to identify protein targets of biologically active small molecules, yet is often limited by the size, chemical properties, and availability of photoreactive groups. We report an improved synthesis of photo-leucine, a diazirine-based photoreactive analogue of leucine, and demonstrate its incorporation into a cyclodepsipeptide inhibitor of cotranslational translocation. Photoaffinity labeling in a crude membrane fraction, followed by "click chemistry" with a rhodamine-azide reporter, enabled the identification of Sec61alpha, the structural core of the Sec61 translocation channel, as the inhibitor's target.
Collapse
Affiliation(s)
- Andrew L. MacKinnon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Jennifer L. Garrison
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Ramanujan S. Hegde
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
20
|
Weitzmann A, Baldes C, Dudek J, Zimmermann R. The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum - a quantitative approach. FEBS J 2007; 274:5175-87. [PMID: 17850331 DOI: 10.1111/j.1742-4658.2007.06039.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditionally, the canine pancreatic endoplasmic reticulum (ER) has been the workhorse for cell-free studies on protein transport into the mammalian ER. These studies have revealed multiple roles for the major ER-luminal heat shock protein (Hsp) 70, IgG heavy chain-binding protein (BiP), at least one of which also involves the second ER-luminal Hsp70, glucose-regulated protein (Grp) 170. In addition, at least one of these BiP activities depends on Hsp40. Up to now, five Hsp40s and two nucleotide exchange factors, Sil1 and Grp170, have been identified in the ER of different mammalian cell types. Here we quantified the various proteins of this chaperone network in canine pancreatic rough microsomes. We also characterized the various purified proteins with respect to their affinities for BiP and their effect on the ATPase activity of BiP. The results identify Grp170 as the major nucleotide exchange factor for BiP, and the resident ER-membrane proteins ER-resident J-domain protein 1 plus ER-resident J-domain protein 2/Sec63 as prime candidates for cochaperones of BiP in protein transport in the pancreatic ER. Thus, these data represent a comprehensive analysis of the BiP chaperone network that was recently linked to two human inherited diseases, polycystic liver disease and Marinesco-Sjögren syndrome.
Collapse
Affiliation(s)
- Andreas Weitzmann
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | |
Collapse
|
21
|
Snapp EL, Sharma A, Lippincott-Schwartz J, Hegde RS. Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. Proc Natl Acad Sci U S A 2006; 103:6536-41. [PMID: 16617114 PMCID: PMC1458919 DOI: 10.1073/pnas.0510657103] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Indexed: 11/18/2022] Open
Abstract
The folding environment in the endoplasmic reticulum (ER) depends on multiple abundant chaperones that function together to accommodate a range of substrates. The ways in which substrate engagement shapes either specific chaperone dynamics or general ER attributes in vivo remain unknown. In this study, we have evaluated how changes in substrate flux through the ER influence the diffusion of both the lectin chaperone calreticulin and an inert reporter of ER crowdedness. During acute changes in substrate load, the inert probe revealed no changes in ER organization, despite significant changes in calreticulin dynamics. By contrast, inhibition of the lectin chaperone system caused rapid changes in the ER environment that could be reversed over time by easing new substrate burden. Our findings provide insight into the normal organization and dynamics of an ER chaperone and characterize the capacity of the ER to maintain homeostasis during acute changes in chaperone activity and availability.
Collapse
Affiliation(s)
- Erik L Snapp
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Building 18, Room 101, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|