1
|
Proteomic profiling of developing wheat heads under water-stress. Funct Integr Genomics 2020; 20:695-710. [PMID: 32681185 DOI: 10.1007/s10142-020-00746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
A replicated iTRAQ (isobaric tags for relative and absolute quantification) study on developing wheat heads from two doubled haploid (DH) lines identified from a cross between cv Westonia x cv Kauz characterized the proteome changes influenced by reproductive stage water-stress. All lines were exposed to 10 days of water-stress from early booting (Zadok 40), with sample sets taken from five head developmental stages. Two sample groups (water-stressed and control) account for 120 samples that required 18 eight-plex iTRAQ runs. Based on the IWGSC RefSeq v1 wheat assembly, among the 4592 identified proteins, a total of 132 proteins showed a significant response to water-stress, including the down-regulation of a mitochondrial Rho GTPase, a regulator of intercellular fundamental biological processes (7.5 fold) and cell division protein FtsZ at anthesis (6.0 fold). Up-regulated proteins included inosine-5'-monophosphate dehydrogenase (3.83 fold) and glycerophosphodiester phosphodiesterase (4.05 fold). The Pre-FHE and FHE stages (full head emerged) of head development were differentiated by 391 proteins and 270 proteins differentiated the FHE and Post-FHE stages. Water-stress during meiosis affected seed setting with 27% and 6% reduction in the progeny DH105 and DH299 respectively. Among the 77 proteins that differentiated between the two DH lines, 7 proteins were significantly influenced by water-stress and correlated with the seed set phenotype response of the DH lines to water-stress (e.g. the up-regulation of a subtilisin-like protease in DH 299 relative to DH 105). This study provided unique insights into the biological changes in developing wheat head that occur during water-stress.
Collapse
|
2
|
Chandra P, Enespa, Singh R. Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Arun Dev Sharma, Kaur P, Mamik S. PCR Amplification and In-Silico Analysis of Putative Boiling Stable Protein Encoding Genes from Invasive Alien Plant Lantana camara. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2019. [DOI: 10.1134/s207511171903010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Rakhra G, Kaur T, Vyas D, Sharma AD, Singh J, Ram G. Molecular cloning, characterization, heterologous expression and in-silico analysis of disordered boiling soluble stress-responsive wBsSRP protein from drought tolerant wheat cv.PBW 175. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:29-44. [PMID: 28033539 DOI: 10.1016/j.plaphy.2016.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 05/06/2023]
Abstract
The structural and physico-chemical properties that account for the multi-functionality of dehydrins remain largely unknown. In this study, we identified, sequenced and cloned a stress regulated cDNA encoding a dehydrin-like boiling stable protein (designated as wBsSRP; wheat boiling stable stress responsive protein) from drought stressed seedlings of drought tolerant cultivar of wheat (PBW 175). qRT-PCR analysis documented high transcripts levels of wBsSRP during drought and cold conditions in the tolerant cv. PBW 175 as a part of adaptive response to stress while the levels were significantly lower in the sensitive cv. PBW 343. We also describe in-silico characterization and molecular modeling of wBsSRP through homology search, motif analysis, secondary structure prediction, active site prediction and 3D structure analysis. The physico-chemical properties and theoretical data of wBsSRP depicts that it is a canonical group 2 LEA protein. The recombinant wBsSRP protein when expressed in E. coli detected a specific differential band (∼11 kDa) on SDS- PAGE after IPTG induction. The functional analysis of wBsSRP in E. coli revealed that wBsSRP is essential for the survival of E. coli as well as for maintaining bacterial growth under various stress conditions. In vitro peroxidase protection assay during heat stress (50 and 100 °C) showed that in the presence of wBsSRP, peroxidase activity was significantly retained and/or increased. Based upon the findings, it is suggested that wBsSRP accentuated the effects of stress by acting as a protectant and by the stabilization of membranes, thereby contributing to the improved stress tolerance of the recombinant E. coli under various abiotic stress conditions. We suggest that these findings might provide the rationale for the mechanism of how these proteins obviate the adverse effects of dehydration stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Algorithms
- Amino Acid Sequence
- Catalytic Domain
- Cloning, Molecular
- Computer Simulation
- Droughts
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Gene Expression
- Gene Expression Regulation, Plant
- Genes, Plant
- Hot Temperature
- Models, Molecular
- Peroxidase/metabolism
- Plant Proteins/chemistry
- Plant Proteins/metabolism
- Protein Interaction Mapping
- Real-Time Polymerase Chain Reaction
- Recombination, Genetic/genetics
- Reproducibility of Results
- Sequence Analysis, Protein
- Solubility
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Stress, Physiological
- Triticum/physiology
Collapse
Affiliation(s)
- Gurmeen Rakhra
- PG Department of Biotechnology, Lyallpur Khalsa College, G.T. Road, Jalandhar 144001, Punjab, India
| | - Tarandeep Kaur
- Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Arun Dev Sharma
- PG Department of Biotechnology, Lyallpur Khalsa College, G.T. Road, Jalandhar 144001, Punjab, India.
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Gobind Ram
- PG Department of Biotechnology, Lyallpur Khalsa College, G.T. Road, Jalandhar 144001, Punjab, India
| |
Collapse
|
5
|
Chen J, Fan L, Du Y, Zhu W, Tang Z, Li N, Zhang D, Zhang L. Temporal and spatial expression and function of TaDlea3 in Triticum aestivum during developmental stages under drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:290-299. [PMID: 27717465 DOI: 10.1016/j.plantsci.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 05/27/2023]
Abstract
Drought stress is a major factor limiting wheat growth and productivity. Late embryogenesis abundant (LEA) proteins are tolerant to water-related stress. To reveal the regulatory mechanisms of LEA proteins under drought stress, we cloned a novel group 3 LEA gene, namely, TaDlea3, from wheat (Triticum aestivum L.) Shaanhe 6. Subcellular localization assay showed that TaDlea3 protein accumulated in the cytoplasm. Quantitative real-time polymerase chain reaction results revealed that TaDlea3 expression was induced by drought stress. Western blot results indicated that TaDlea3 protein expression gradually increased with drought stress during four different developmental stages. Under normal conditions, no obvious phenotype difference was observed between the transgenic and wild-type seedlings. Meanwhile, the overexpression of TaDlea3 in Arabidopsis resulted in enhanced tolerance to drought stress, as determined by the assessment of antioxidant enzyme activities. Our results provide a basis for highly detailed functional analyses of LEA proteins and offer a promising approach for improving the tolerances of wheat cultivars to drought stress through genetic engineering.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Lei Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Ya Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Weining Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi' an 710069, PR China
| | - Ziqin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Dapeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China
| | - Linsheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
6
|
Xue LJ, Frost CJ, Tsai CJ, Harding SA. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression. Sci Rep 2016; 6:33655. [PMID: 27641356 PMCID: PMC5027551 DOI: 10.1038/srep33655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022] Open
Abstract
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.
Collapse
Affiliation(s)
- Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Christopher J. Frost
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Scott A. Harding
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Liu F, Si H, Wang C, Sun G, Zhou E, Chen C, Ma C. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum. Sci Rep 2016; 6:31706. [PMID: 27526862 PMCID: PMC4985644 DOI: 10.1038/srep31706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat.
Collapse
Affiliation(s)
- Fangfang Liu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Chengcheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Genlou Sun
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3 Canada
| | - Erting Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Can Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China.,Anhui Key Laboratory of Crop Biology, Hefei 230036, China
| |
Collapse
|
8
|
Nachappa P, Culkin CT, Saya PM, Han J, Nalam VJ. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean. FRONTIERS IN PLANT SCIENCE 2016; 7:552. [PMID: 27200027 PMCID: PMC4847208 DOI: 10.3389/fpls.2016.00552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Biology, Indiana University-Purdue University Fort WayneFort Wayne, IN, USA
| | | | | | | | | |
Collapse
|
9
|
Davis TS, Bosque-Pérez NA, Popova I, Eigenbrode SD. Evidence for additive effects of virus infection and water availability on phytohormone induction in a staple crop. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Komatsu S, Kamal AHM, Hossain Z. Wheat proteomics: proteome modulation and abiotic stress acclimation. FRONTIERS IN PLANT SCIENCE 2014; 5:684. [PMID: 25538718 PMCID: PMC4259124 DOI: 10.3389/fpls.2014.00684] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/18/2014] [Indexed: 05/21/2023]
Abstract
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput "Omics" techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Abu H. M. Kamal
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State UniversityKolkata, India
| |
Collapse
|
11
|
Farooq M, Hussain M, Siddique KHM. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRITICAL REVIEWS IN PLANT SCIENCES 2014. [PMID: 0 DOI: 10.1080/07352689.2014.875291] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
12
|
Vaseva II, Anders I, Feller U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:213-24. [PMID: 24054754 DOI: 10.1016/j.jplph.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/08/2023]
Abstract
Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
13
|
Alvarez S, Roy Choudhury S, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 2014; 13:1688-701. [PMID: 24475748 DOI: 10.1021/pr401165b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center , 975 North Warson Road, St. Louis, Missouri 63132, United States
| | | | | |
Collapse
|
14
|
Drought tolerance in modern and wild wheat. ScientificWorldJournal 2013; 2013:548246. [PMID: 23766697 PMCID: PMC3671283 DOI: 10.1155/2013/548246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by "omics" studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.
Collapse
|
15
|
Vaseva II, Feller U. Natural antisense transcripts of Trifolium repens dehydrins. PLANT SIGNALING & BEHAVIOR 2013; 8:e27674. [PMID: 24390012 PMCID: PMC4091226 DOI: 10.4161/psb.27674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT ) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.
Collapse
Affiliation(s)
- Irina I Vaseva
- Plant Stress Molecular Biology Department; Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Sofia, Bulgaria
- Correspondence to: Irina I Vaseva, and Urs Feller,
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR); University of Bern; Bern, Switzerland
- Correspondence to: Irina I Vaseva, and Urs Feller,
| |
Collapse
|
16
|
WANG YX, SUO B, ZHAO PF, QU XF, YUAN LG, ZHAO XJ, ZHAO HJ. Effect of Abscisic Acid Treatment on <I>psbA</I> Gene Expression in Two Wheat Cultivars during Grain Filling Stage under Drought Stress. ACTA AGRONOMICA SINICA 2011. [DOI: 10.3724/sp.j.1006.2011.01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M, Udvardi M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:871-89. [PMID: 21838776 DOI: 10.1111/j.1365-313x.2011.04738.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Systems analysis of two alfalfa varieties, Wisfal (Medicago sativa ssp. falcata var. Wisfal) and Chilean (M. sativa ssp. sativa var. Chilean), with contrasting tolerance/sensitivity to drought revealed common and divergent responses to drought stress. At a qualitative level, molecular, biochemical, and physiological responses to drought stress were similar in the two varieties, indicating that they employ the same strategies to cope with drought. However, quantitative differences in responses at all levels were revealed that may contribute to greater drought tolerance in Wisfal. These included lower stomatal density and conductance in Wisfal; delayed leaf senescence compared with Chilean; greater root growth following a drought episode, and greater accumulation of osmolytes, including raffinose and galactinol, and flavonoid antioxidants in roots and/or shoots of Wisfal. Genes encoding transcription factors and other regulatory proteins, and genes involved in the biosynthesis of osmolytes and (iso)flavonoids were differentially regulated between the two varieties and represent potential targets for improving drought tolerance in alfalfa in the future.
Collapse
Affiliation(s)
- Yun Kang
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | |
Collapse
|