1
|
Mizobuchi M, Ishidoh K, Kamemura N. A comparison of cell death mechanisms of antioxidants, butylated hydroxyanisole and butylated hydroxytoluene. Drug Chem Toxicol 2021; 45:1899-1906. [PMID: 34013795 DOI: 10.1080/01480545.2021.1894701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Butylated hydroxyanisole (BHA) and the chemically similar butylated hydroxytoluene (BHT) are widely used as antioxidants. Toxicity of BHA and BHT has been reported under in vitro and in vivo experimental conditions. However, the mechanism of BHA-induced toxic effects in cells is unclear. In this study, the cytotoxic effects of BHA and differences in cell death mechanism for BHA and BHT were investigated in rat thymocytes by flow cytometric analysis using a fluorescent probe. We observed a significant increase in propidium iodide fluorescence in the population of cells treated with 100 μM and 300 μM BHA (dead cells). Thymocytes treated with 100 µM BHA showed increased intracellular Ca2+ and Zn2+ levels and depolarized cell membranes. BHA (30-100 µM) decreased non-protein thiol content of cells, indicating decreased glutathione content. Co-stimulation with 100 µM BHA and 300 µM H2O2 acted synergistically to increase cell lethality. Moreover, BHA significantly increased caspase-3 activity and the number of annexin-V-positive cells in a concentration-dependent manner, indicating apoptosis. However, BHT reduced caspase-3 activity and increased the number of annexin-V-negative dead cells, indicating non-apoptotic cell death. Our results reveal the toxicity of BHA could be attributed to increased levels of intracellular Ca2+ and Zn2+, resulting in an increased vulnerability of rat thymocytes to oxidative stress. In addition, we demonstrate that whereas BHA induced apoptosis, BHT induced non-apoptotic cell death in rat thymocytes. Therefore, these results may support the safety of BHA, but also demonstrate the importance of performing toxicity evaluation at the cellular level besides the tissue level.
Collapse
Affiliation(s)
- Mizuki Mizobuchi
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Kazumi Ishidoh
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Norio Kamemura
- Department of Food-Nutrition Sciences, Faculty of Life Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
2
|
Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun 2019; 10:4402. [PMID: 31562306 PMCID: PMC6765001 DOI: 10.1038/s41467-019-11879-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
T lymphocytes must be produced throughout life, yet the thymus, where T lymphocytes are made, exhibits accelerated atrophy with age. Even in advanced atrophy, however, the thymus remains plastic, and can be regenerated by appropriate stimuli. Logically, thymic atrophy is thought to reflect senescent cell death, while regeneration requires proliferation of stem or progenitor cells, although evidence is scarce. Here we use conditional reporters to show that accelerated thymic atrophy reflects contraction of complex cell projections unique to cortical epithelial cells, while regeneration requires their regrowth. Both atrophy and regeneration are independent of changes in epithelial cell number, suggesting that the size of the thymus is regulated primarily by rate-limiting morphological changes in cortical stroma, rather than by their cell death or proliferation. Our data also suggest that cortical epithelial morphology is under the control of medullary stromal signals, revealing a previously unrecognized endocrine-paracrine signaling axis in the thymus.
Collapse
|
3
|
Abass MA, Selim SA, Selim AO, El-Shal AS, Gouda ZA. Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life 2017; 69:528-539. [PMID: 28589695 DOI: 10.1002/iub.1638] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/22/2017] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the toxicological effects of oral intake of Zinc oxide nanoparticles (ZnO NPs) on the structure of thymus and spleen. Twenty-four young male Wistar albino rats were assigned into two groups: group I (control) and group II (ZnO NPs treated group).The thymus and spleen were analyzed biochemically, histopathologically and immunohistochemically. After ZnO NPs intake, hematologically, the total leucocytic count was significantly increased while the RBCs and platelets counts and Hb % were significantly decreased. Biochemically, a significant decrease in serum total antioxidant capacity and anti-inflammatory cytokines including interleukin 4 and 10 (IL-4 and IL-10) levels was noted. While a significant increase in splenic and thymic malondialdehyde (MDA) and DNA shearing, as well as the studied proinflammatory cytokines; IL-1β, tumor necrotic factor (TNF-α) and interferon (INF-γ) levels was detected. Notably, we noted upregulation of the immunomodulatory [CD3, CD11b, heme oxygenase (HO-1)] and the inflammatory [toll-like receptor 4 and 6 (TLR4 and TLR6)] genes. Histopathologically, degenerative changes were detected in thymus and spleen of ZnO NPs treated group. While the immunohistochemical analysis of the ZnO NPs treated group revealed a decrease in the number of cells expressed positive reactions of anti-PCNA and an increase in the number of cells expressed positive reaction of anti-p53 in the thymus and spleen. In conclusion, ZnO NPs induced obvious immunotoxicity in the thymus and spleen, where oxidative/inflammatory pathway may be the potential mechanism underlying this immunotoxicity. © 2017 IUBMB Life, 69(7):528-539, 2017.
Collapse
Affiliation(s)
- Marwa A Abass
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sally A Selim
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Assmaa O Selim
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S El-Shal
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Zienab A Gouda
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Zhang Q, Yang K, Huang Y, He J, Yu S, Cui Y. Distribution of T-cell markers CD4 and CD8α in lymphoid organs of healthy newborn, juvenile, and adult highland-plateau yaks. Am J Vet Res 2017; 78:609-617. [DOI: 10.2460/ajvr.78.5.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Zhang Q, Yang K, Yangyang P, He J, Yu S, Cui Y. Age-related changes in the morphology and protein expression of the thymus of healthy yaks (Bos grunniens). Am J Vet Res 2016; 77:567-74. [DOI: 10.2460/ajvr.77.6.567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Quinn CJ, Burns PD, Gibson NM, Bashore A, Hayward R, Hydock DS. Effects of Chronic Endurance Exercise on Doxorubicin-Induced Thymic Damage. Integr Cancer Ther 2015; 15:535-541. [PMID: 26590123 DOI: 10.1177/1534735415617014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of prior exercise training has shown promise in minimizing doxorubicin (DOX)-induced physical impairments. The purpose of this study was to compare changes in thymus mass, thymocyte (T-cell) number, and tissue peroxidation following chronic endurance exercise and DOX treatment in the rat. The thymus mass, number of viable T-cells, and levels of malondialdehyde and 4-hydroxyalkenals (MDA+4-HAE) were compared 3 days post-injection between rats assigned to the following treatment conditions: (a) 10 weeks of endurance training, followed by a saline injection 24 hours after the last training session (TM+SAL); (b) treadmill training as above, followed by a single, bolus 10-mg/kg injection of DOX (TM+10); (c) treadmill training with 12.5 mg/kg of DOX (TM+12.5); (d) sedentary (without exercise) and a saline injection (SED+SAL); (e) sedentary with 10 mg/kg of DOX (SED+10); and (f) sedentary with 12.5 mg/kg (SED+12.5). Thymic mass and T-cell numbers significantly decreased following DOX injections. TM rats exhibited significantly less lipid peroxidation compared with paired-dose SED groups. TM+10 did not significantly differ from SED+SAL in thymic levels of lipid peroxidation. We conclude that chronic endurance exercise decreases levels of lipid peroxidation in the thymus seen with acute DOX treatment.
Collapse
Affiliation(s)
| | | | | | - Alex Bashore
- University of Northern Colorado, Greeley, CO, USA
| | - Reid Hayward
- University of Northern Colorado, Greeley, CO, USA
| | | |
Collapse
|
7
|
|
8
|
Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T. Interpreting Stress Responses during Routine Toxicity Studies. Toxicol Pathol 2013; 41:560-614. [DOI: 10.1177/0192623312466452] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress often occurs during toxicity studies. The perception of sensory stimuli as stressful primarily results in catecholamine release and activation of the hypothalamic–pituitary–adrenal (HPA) axis to increase serum glucocorticoid concentrations. Downstream effects of these neuroendocrine signals may include decreased total body weights or body weight gain; food consumption and activity; altered organ weights (e.g., thymus, spleen, adrenal); lymphocyte depletion in thymus and spleen; altered circulating leukocyte counts (e.g., increased neutrophils with decreased lymphocytes and eosinophils); and altered reproductive functions. Typically, only some of these findings occur in a given study. Stress responses should be interpreted as secondary (indirect) rather than primary (direct) test article–related findings. Determining whether effects are the result of stress requires a weight-of-evidence approach. The evaluation and interpretation of routinely collected data (standard in-life, clinical pathology, and anatomic pathology endpoints) are appropriate and generally sufficient to assess whether or not changes are secondary to stress. The impact of possible stress-induced effects on data interpretation can partially be mitigated by toxicity study designs that use appropriate control groups (e.g., cohorts treated with vehicle and subjected to the same procedures as those dosed with test article), housing that minimizes isolation and offers environmental enrichment, and experimental procedures that minimize stress and sampling and analytical bias. This article is a comprehensive overview of the biological aspects of the stress response, beginning with a Summary (Section 1) and an Introduction (Section 2) that describes the historical and conventional methods used to characterize acute and chronic stress responses. These sections are followed by reviews of the primary systems and parameters that regulate and/or are influenced by stress, with an emphasis on parameters evaluated in toxicity studies: In-life Procedures (Section 3), Nervous System (Section 4), Endocrine System (Section 5), Reproductive System (Section 6), Clinical Pathology (Section 7), and Immune System (Section 8). The paper concludes (Section 9) with a brief discussion on Minimizing Stress-Related Effects (9.1.), and a final section explaining why Parameters routinely measured are appropriate for assessing the role of stress in toxicology studies (9.2.).
Collapse
Affiliation(s)
| | | | - Keith L. Bailey
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brad Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
9
|
Fang J, Cui H, Peng X, Chen Z, He M, Tang L. Developmental changes in cell proliferation and apoptosis in the normal duck thymus. Anat Histol Embryol 2011; 40:457-65. [PMID: 21671996 DOI: 10.1111/j.1439-0264.2011.01094.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell proliferation and apoptosis in the normal duck thymus during embryonic and post-embryonic development were studied. The flow cytometry assay shows that the level of G(0)/G(1) thymic cell population and the proportion of apoptotic cells increased with age, while the levels of S phase, G(2) + M phase and the proliferating index decreased with age. Proliferation cell nuclear antigen (PCNA) was mainly detected in the nuclei of lymphocytes. The number of PCNA-positive cells in the cortex and medulla significantly decreased with age. Transferase-mediated dUTP nick-end labelling (TUNEL) reaction stained apoptotic bodies in the cytoplasm of macrophages and free apoptotic bodies or nuclei with condensed chromatin in lymphocytes. The number of TUNEL-positive cells in the cortex and medulla markedly increased with age. The amount of proliferation and apoptotic cells in the thymic cortex was higher than that in the medulla. The balance between proliferation and apoptosis in the duck thymus may account for the process of thymic development and involution.
Collapse
Affiliation(s)
- J Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China.
| | | | | | | | | | | |
Collapse
|
10
|
Diagnosis | Thymoma. Lab Anim (NY) 2009. [DOI: 10.1038/laban0409-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Histological characteristics and stereological volume assessment of the ovine tonsils. Vet Immunol Immunopathol 2007; 120:124-35. [DOI: 10.1016/j.vetimm.2007.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 06/29/2007] [Accepted: 07/11/2007] [Indexed: 11/21/2022]
|
12
|
Thangasamy T, Subathra M, Sittadjody S, Jeyakumar P, Joyee AG, Mendoza E, Chinnakkanu P. Role of L-carnitine in the modulation of immune response in aged rats. Clin Chim Acta 2007; 389:19-24. [PMID: 18083121 DOI: 10.1016/j.cca.2007.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND The immune system undergoes alterations in functions with aging which results in progressive deterioration in the ability to respond to infection. The importance of nutrients in regulating immune responses has widened attempts on interventions that improve immune functions with aging. L-carnitine serves as a vital factor in the mitochondrial transport of fatty acids, a process essential for fatty acid oxidation and energy release. L-carnitine is categorized as a conditionally essential nutrient factor and its concentrations are reported to be decreased with aging. METHODS The immunomodulatory role of L-carnitine was assessed in aged rats after administration of L-carnitine (300 mg/kg body weight/day) for 7, 14 and 21 days by evaluating neutrophil functions, delayed-type hypersensitivity (DTH) responses and immunoglobulin concentrations. RESULTS Aged animals exhibited decreased non-specific immune functions, delayed-type hypersensitivity responses and immunoglobulin concentrations compared to younger controls. Treatment with L-carnitine improved neutrophil functions, delayed-type hypersensitivity responses and the concentrations of immunoglobulins A and G in aged animals in a significant manner. However L-carnitine treatment did not have any impact on IgM concentration and type responses. CONCLUSIONS This study demonstrated that aging is associated with a decline in immune functions and supplementing L-carnitine had a positive effect in improving immune responses in aged animals.
Collapse
|
13
|
Characteristics of age-related changes in rat thymus: morphometric analysis and epithelial cell network in various thymic compartments. Biogerontology 2007; 9:93-108. [PMID: 18030593 DOI: 10.1007/s10522-007-9117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 11/04/2007] [Indexed: 01/21/2023]
Abstract
Structural alterations in thymuses of female rats during the first 2 years of life were evaluated by morphometric analysis and, then, correlated with organization of epithelial cells in various thymic compartments, examined for their cytokeratin immunoreactivity. With an advancing age, the thymuses demonstrated morphological modifications related to maturation and senescence, the dynamics of which varied between particular thymic compartments, and involved subpopulations of thymic epithelial cells. In the entire period of life the most dynamic changes were found in the cortex while the medulla was demonstrated to be a rather "stable" region. Morphometric studies revealed a negative correlation between the volume of thymic cortex and medulla and age of rats and a linear, positive relationship between the volume of connective tissue compartment and age. Changes in organization of epithelial network in the medulla preceded those observed in the cortex. Decreased proliferative activity of subset of medullary cells, which probably represented a self-renewable population, was accompanied by alterations in the immunocytochemically characterized (cytokeratines) differentiation process. At the same period of life, hypertrophy and hyperplasia of superficial epithelial cells seems to functionally replace medullary cells. This process begins around 3rd month of life and expands on all thymic compartments. The first changes in the cortex appeared around 8th month and were connected with reduced cytokeratin immunoreactivity. The involution observed in older animals was preceded by age-related alterations in epithelial network pattern which, in the course of stable morphometric parameters (between 5th and 12th month), showed character of a structural and functional adaptation.
Collapse
|