1
|
Xi Y, Wang L, Qi J, Wei B, Han X, Lu Y, Hu S, He H, Han C, Zhu Y, Hu J, Liu H, Wang J, Li L. Comprehensive transcriptomic and metabolomic analysis of the effect of feed restriction on duck sternal development. Poult Sci 2023; 102:102961. [PMID: 37604023 PMCID: PMC10465956 DOI: 10.1016/j.psj.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Luyao Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yuanchun Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
2
|
Shangguan Y, Li X, Qin J, Wen Y, Wang H, Chen L. Positive programming of the GC-IGF1 axis mediates adult osteoporosis susceptibility in male offspring rats induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 206:115264. [PMID: 36174767 DOI: 10.1016/j.bcp.2022.115264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to offspring long bone dysplasia and continue to postnatal, and this is an important cause of fetal-derived osteoporosis. Studies have confirmed that intrauterine endogenous GC overexposure mediates multiple organ dysplasia and adult-related disease susceptibility in offspring through the glucocorticoid-insulin-like growth factor1 (GC-IGF1) axis. However, it remains unknown if exogenous dexamethasone can regulate bone development in offspring through the GC-IGF1 axis. We determined that the PDE fetal rats exhibited poor osteogenic differentiation, decreased bone mass that continued to adolescence, and increased susceptibility to osteoporosis in adulthood. Concurrently, PDE decreased the serum corticosterone concentration and IGF1 expression in offspring before and after birth, while the increased serum corticosterone concentration induced by chronic stress reversed the inhibition of IGF1 expression induced by PDE. Furthermore, PDE decreased the expression of GRα and miR-130a-5p, increased HDAC4, and decreased H3K27 acetylation in the IGF1 promoter region in bone tissue, and the above changes were negatively compensated after chronic stress. In vitro, a low concentration of corticosterone inhibited the expression of GRα and miR130a-5p, upregulated the expression of HDAC4, inhibited the promoter region H3K27 acetylation, and expression of IGF1 in bone marrow mesenchymal stem cell (BMSCs) osteoblast differentiated cells and inhibited osteogenic differentiation of BMSCs. GRα overexpression, miR-130a-5p mimic treatment, or HDAC4 siRNA exposure reversed the downstream molecular alterations caused by low corticosterone concentrations. In conclusion, PDE-induced intrauterine hypoglucocorticoid exposure could positively program IGF1 expression in bone tissue through the GRα/miR-130a-5p/HDAC4 pathways, thus mediating osteogenic dysdifferentiation and adult osteoporosis susceptibility in male offspring rats.
Collapse
Affiliation(s)
- Yangfan Shangguan
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xufeng Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jun Qin
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
3
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
4
|
Qiu J, Fan X, Ding H, Zhao M, Xu T, Lei J, Ji B, Zhuang Z, Gao Q. Antenatal dexamethasone retarded fetal long bones growth and development by down-regulating of insulin-like growth factor 1 signaling in fetal rats. Hum Exp Toxicol 2022; 41:9603271211072870. [PMID: 35148621 DOI: 10.1177/09603271211072870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Dexamethasone (DEX), a synthetic glucocorticoid, has been widely used as a medication for premature delivery. However, the side effects of antenatal DEX treatment on fetal bone development, as well as the underlying mechanisms still remain to be elucidated. Here, we aimed to explore the effects and the related mechanisms of antenatal DEX exposure during late pregnancy on fetal bone growth and development. METHODS Pregnant Sprague-Dawley rats were randomly divided into DEX group and vehicle group from gestational day 14 (GD14). Pregnant rats in DEX group were intraperitoneally injected once with DEX (200 µg/kg body weight) on GD14, 16, 18, and 20. The vehicle group rats were administered the same amount of normal saline at the same time. Pregnant rats were anesthetized at GD21 to harvest fetal femurs for analysis. RESULTS Antenatal DEX treatment delayed fetal skeletal growth via inhibiting extracellular matrix (ECM) synthesis and downregulating insulin-like growth factor 1 (IGF1) signaling. Several components of IGF1 signaling pathway, including IGF1 receptor, insulin receptor substrate, as well as serine-threonine protein kinase, were down-regulated in fetal growth plate chondrocytes following DEX treatment. CONCLUSION This study indicated that antenatal DEX treatment-retarded fetal skeletal growth was associated with the down-regulation of IGF1 signaling in growth plate chondrocytes, providing important information about the impact of antenatal DEX application four courses on premature infant.
Collapse
Affiliation(s)
- Junlan Qiu
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China.,Department of Oncology, 105860Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology and Hematology, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaorong Fan
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China.,Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Ding
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| | - Meng Zhao
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| | - Jiahui Lei
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| | - Bingyu Ji
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| | - Zhixiang Zhuang
- Department of Oncology, 105860Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, 74566First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Shangguan Y, Wu Z, Xie X, Zhou S, He H, Xiao H, Liu L, Zhu J, Chen H, Han H, Wang H, Chen L. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem Pharmacol 2021; 185:114414. [PMID: 33434537 DOI: 10.1016/j.bcp.2021.114414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Dexamethasone is a common synthetic glucocorticoid drug that can promote foetal lung maturity. An increasing number of studies have shown that prenatal dexamethasone exposure (PDE) can cause a variety of short-term and long-term hazards to offspring, including bone development toxicity. H-type vessels are a newly discovered subtype of blood vessels associated with promoted bone formation and maintenance of bone mass. In this study, we aimed to explore whether H-type blood vessels are involved in PDE-induced long bone development toxicity in offspring and its mechanism. In vivo, we injected dexamethasone (0.2 mg/kg.d) subcutaneously at gestational days 9-20 and observed the H-type vessel abundance and bone mass at different time points in the offspring rats. In vitro, we investigated the effect of dexamethasone (0, 20, 100, and 500 nM) on the tube formation function of rat bone marrow-derived endothelial progenitor cells (EPCs) and explored its mechanism. Our results showed that the adult PDE female offspring rats were susceptible to osteoporosis. In addition, PDE inhibited bone mass, H-type vessel formation and the expression of bone platelet-derived growth factor receptor β (PDGFRβ)/focal adhesion kinase (FAK) pathway-related genes in antenatal and postnatal female offspring. Moreover, PDE promoted the expression of bone glucocorticoid receptor (GR), CCAAT and enhancer binding protein α (C/EBPα) and miR-34c in female foetuses. Dexamethasone suppressed the tube formation of rat bone marrow-derived EPCs and the activity of the PDGFRβ/FAK pathway, which was mediated by GR/C/EBPα/miR-34c signalling activation. In summary, PDE can cause H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring, and its mechanism is related to the low-activity programming of the PDGFRβ/FAK pathway induced by GR/C/EBPα/miR-34c signalling activation. This study enhances the understanding of the molecular mechanism of dexamethasone-induced bone development toxicity and provides new insights for exploring the early intervention and therapeutic targets of foetal-derived osteoporosis.
Collapse
Affiliation(s)
- Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xingkui Xie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hangyuan He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jiayong Zhu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
6
|
Silva TACC, Quigley SP, Kidd LJ, Anderson ST, McLennan SR, Poppi DP. Effect of a high crude protein content diet during energy restriction and re-alimentation on animal performance, skeletal growth and metabolism of bone tissue in two genotypes of cattle. PLoS One 2021; 16:e0247718. [PMID: 33630953 PMCID: PMC7906379 DOI: 10.1371/journal.pone.0247718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to investigate the effect of diet crude protein (CP) content and metabolisable energy (ME) intake on skeletal growth and associated parameters of growing steers prior to and during compensatory growth in weight and catch-up growth in skeletal elongation. The experiment was a factorial design with two cattle genotypes [Brahman crossbred (BX, 178 ± 6 kg) and Holstein-Friesian (HF, 230 ± 34 kg)] and three nutritional treatments; high CP content and high ME intake (HCP-HME), high CP content and low ME intake (HCP-LME) and low CP content and low ME intake (LCP-LME) with the ME intake of HCP-LME matched to that of LCP-LME. Nutritional treatments were imposed over a 103 d period (Phase 1), and after this, all steers were offered ad libitum access to the HCP-HME nutritional treatment for 100 d (Phase 2). Steers fed the high CP content treatment with a low ME intake, showed higher hip height gain (P = 0.04), larger terminal hypertrophic chondrocytes (P = 0.02) and a higher concentration of total triiodothyronine in plasma (P = 0.01) than steers with the same ME intake of the low CP content treatment. In addition, the low CP treatment resulted in significant decreases in bone volume (P = 0.03), bone surface area (P = 0.03) and the concentration of bone-specific alkaline phosphatase in plasma (P < 0.001) compared to steers fed the HCP-HME treatment. A significant interaction between genotype and nutritional treatment existed for the concentration of thyroxine (T4) in plasma where HF steers fed LCP-LME had a lower T4 concentration in plasma (P = 0.05) than BX steers. All steers with a restricted ME intake during Phase 1 demonstrated compensatory growth during Phase 2. However, HF steers fed the LCP treatment during Phase 1 showed a tendency (P = 0.07) for a greater LWG during Phase 2 without any increase in dry matter intake. Results observed at the growth plate and hip height growth suggest that catch-up growth in cattle may also be explained by the growth plate senescence hypothesis. Contrary to our initial hypothesis, the results demonstrate that greater CP intake during ME restriction does not increase compensatory gain in cattle during re-alimentation.
Collapse
Affiliation(s)
- Tiago A. C. C. Silva
- School of Environmental and Rural Science, University of New England, Armidale, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
- * E-mail:
| | - Simon P. Quigley
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
| | - Lisa J. Kidd
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Stephen T. Anderson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Stuart R. McLennan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, Australia
| | - Dennis P. Poppi
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
| |
Collapse
|
7
|
Tomaszewska E, Burmańczuk N, Dobrowolski P, Świątkiewicz M, Donaldson J, Burmańczuk A, Mielnik-Błaszczak M, Kuc D, Milewski S, Muszyński S. The Protective Role of Alpha-Ketoglutaric Acid on the Growth and Bone Development of Experimentally Induced Perinatal Growth-Retarded Piglets. Animals (Basel) 2021; 11:E137. [PMID: 33435211 PMCID: PMC7826854 DOI: 10.3390/ani11010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
The effect of alpha-ketoglutaric acid (AKG) supplementation to experimentally-induced, perinatal growth-retarded piglets was examined. Sows were treated with a synthetic glucocorticoid (Gc) during the last 25 days of pregnancy, and after the birth, piglets were randomly divided into three groups depending on the treatment. The Gc/Gc + AKG and Gc/AKG groups born by Gc-treated sows after the birth were treated with Gc or Gc + AKG for 35 days. Significantly lower serum growth hormone, IGF-I, osteocalcin, leptin, and cortisol concentrations were observed in the Gc/Gc + AKG group, while the bone alkaline phosphatase activity was significantly higher. Serum insulin concentration was higher in the control group. Serum alanine, lysine, histidine, and tryptophan concentrations were higher in the Gc/Gc + AKG and Gc/AKG groups. The perinatal action of Gc significantly affects histomorphometry of articular cartilage and trabecular bone and bone mechanics. The results clearly showed that dietary AKG had positive effects with regards to the profile of free amino acids. Taking into account the function of AKG as an energy donor and stimulator of collagen synthesis, it can be concluded that the anabolic role of AKG may be the main mechanism responsible for its protective effect against the GC-induced perinatal intensified catabolic state.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Natalia Burmańczuk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland;
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Artur Burmańczuk
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Szymon Milewski
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| |
Collapse
|
8
|
Chai Y, Su J, Hong W, Zhu R, Cheng C, Wang L, Zhang X, Yu B. Antenatal Corticosteroid Therapy Attenuates Angiogenesis Through Inhibiting Osteoclastogenesis in Young Mice. Front Cell Dev Biol 2020; 8:601188. [PMID: 33384997 PMCID: PMC7769874 DOI: 10.3389/fcell.2020.601188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Antenatal corticosteroid therapy (ACT) has been shown to reduce morbidity and mortality rates in preterm delivery, but the fetus is more likely to face the risk of low bone mineralization and low fetal linear growth. However, the mechanism of ACT inducing low bone mineralization remains largely unknown. Pre-osteoclasts, which play an important role in angiogenesis and osteogenesis, are specifically regulating type H vessels (CD31hiEmcnhi) and vessel formation by secreting platelet-derived growth factor-BB (PDGF-BB). We find that the number of pre-osteoclasts and POC-secreted PDGF-BB is dramatically decreased in ACT mice, contributing to the reduction in type H vessels and bone mineralization during the mouse offspring. Quantitative analyses of micro-computed tomography show that the ACT mice have a significant reduction in the mass of trabecular bone relative to the control group. Mononuclear pre-osteoclasts in trabecular bone decreased in ACT mice, which leads to the amount of PDGF-BB reduced and attenuates type H vessel formation. After sorting the Rank+ osteoclast precursors using flow cytometry, we show that the enhancer of zeste homolog 2 (Ezh2) expression is decreased in Rank+ osteoclast precursors in ACT mice. Consistent with the flow data, by using small molecule Ezh2 inhibitor GSK126, we prove that Ezh2 is required for osteoclast differentiation. Downregulating the expression of Ezh2 in osteoclast precursors would reduce PDGF-BB production. Conditioned medium from osteoclast precursor cultures treated with GSK126 inhibited endothelial tube formation, whereas conditioned medium from vehicle group stimulated endothelial tube formation. These results indicate Ezh2 expression of osteoclast precursors is suppressed after ACT, which reduced the pre-osteoclast number and PDGF-BB secretion, thus inhibiting type H vessel formation and ACT-associated low bone mineralization.
Collapse
Affiliation(s)
- Yu Chai
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisheng Hong
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Xiao H, Wen Y, Wu Z, Chen H, Magdalou J, Wang H, Chen L. Lentivirus-delivered ACE siRNA rescues the impaired peak bone mass accumulation caused by prenatal dexamethasone exposure in male offspring rats. Bone 2020; 141:115578. [PMID: 32791331 DOI: 10.1016/j.bone.2020.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Angiotensin I converting enzyme (ACE) is a major component of the renin-angiotensin system (RAS). Our previous study demonstrated that activated bone RAS was associated with low peak bone mass induced by prenatal dexamethasone exposure (PDE) in male offspring rats. However, we did not determine whether the inhibition of ACE expression could rescue PDE-induced low peak bone mass. In the present study, we treated pregnant Wistar rats with dexamethasone (0.2 mg/kg.d) on gestational days 9-20 and obtained eight weeks old male offspring rats. Some of the offspring rats from the PDE group were injected lentivirus delivered-ACE siRNA (LV-ACE siRNA) through the intra-bone marrow for 4 weeks. We found that the intra-bone marrow injection of LV-ACE siRNA rescued the impaired peak bone mass accumulation caused by PDE in male offspring rats. Moreover, LV-ACE siRNA ameliorated PDE-induced inhibition of osteogenesis and alleviated PDE-induced RAS activation in the bone tissues in vivo. Our in vitro findings further confirmed that LV-ACE siRNA reversed the suppressed osteogenic differentiation caused by dexamethasone, which can be attributed to alleviated RAS activation. In conclusion, LV-ACE siRNA rescued impaired peak bone mass accumulation caused by PDE through alleviation of local bone RAS activation in male offspring rats.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
10
|
Su J, Chai Y, Ji Z, Xie Y, Yu B, Zhang X. Cellular senescence mediates the detrimental effect of prenatal dexamethasone exposure on postnatal long bone growth in mouse offspring. Stem Cell Res Ther 2020; 11:270. [PMID: 32631432 PMCID: PMC7336470 DOI: 10.1186/s13287-020-01790-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prenatal dexamethasone exposure (PDE) induces low birth weight and retardation of fetal bone development which are associated with lower peak bone mass in adult offspring. Here we evaluated whether and how PDE affects postnatal long bone growth in mouse offspring. Methods Pregnant mice were injected subcutaneously with dexamethasone (1.2 mg/kg/day) every morning from gestational days (GD) 12–14. Femurs and tibias of 2-, 4-, 6-, and 12-week-old female offspring were harvested for histological, immunofluorescence, flow cytometric analysis, or microcomputed tomography (μCT) measurement. Results PDE leads to impaired bone remodeling as well as decreased bone mass in the long bone of female mouse offspring. During postnatal bone growth, significant decrease of CD45−CD29+CD105+Sca-1+ bone marrow mesenchymal stem cells (BMSCs) and CD45−Nestin+ cells, loss of type H vessels, and increment of cellular senescence were found in metaphysis of long bone in mouse offspring after PDE. We further show that eliminating the excessive senescent cells with dasatinib (5 mg/kg/day) and quercetin (50 mg/kg/day) during GD 12–14 rescues the above toxic effect of PDE on the postnatal long bone growth in female mouse offspring. Conclusion Cellular senescence mediates the toxic effect of PDE on postnatal long bone growth in mouse offspring, and inhibition of cellular senescence may be proposed for treating the retardation of bone growth caused by PDE.
Collapse
Affiliation(s)
- Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiguo Ji
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongheng Xie
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Is Dietary 2-Oxoglutaric Acid Effective in Accelerating Bone Growth and Development in Experimentally-Induced Intrauterine Growth Retarded Gilts? Animals (Basel) 2020; 10:ani10040728. [PMID: 32331362 PMCID: PMC7222790 DOI: 10.3390/ani10040728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Intrauterine growth restriction (IUGR) is a significant health issue that not only affects infant mortality or term body weight, but may also predispose individuals to a reduced rate of weight gain and the development of numerous diseases later in life. In livestock production, growth restricted (IUGR) animals require more time to reach slaughter weight. In this study, we examined the effects of long-term administration of 2-oxoglutaric acid (2-Ox) to experimentally-induced intrauterine growth retarded gilts. Abstract In this study, the effect of long-term 2-oxoglutaric acid (2-Ox) supplementation to experimentally-induced intrauterine growth retarded gilts was examined. Sows were treated with synthetic glucocorticoid (dexamethasone) every second day, during the last 45 days of pregnancy, at a dose of 0.03 mg/kg b.w. At birth, the gilts were randomly divided into two groups: unsupplemented and supplemented with 2-Ox for nine months (0.4 g/kg body weight/day). Oral supplementation of 2-Ox to experimentally-induced intrauterine growth retarded gilts increased body weight at weaning as well as final body weight at the age of nine months, and showed a regenerative effect on bone mineralization and morphology of trabeculae and articular cartilage. The positive effects on bone structure were attributed to the 2-Ox-induced alterations in bone metabolism, as evidenced by the changes in the expression of proteins involved in bone formation and remodeling: osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), cartilage oligomeric matrix protein (COMP), and vascular endothelial growth factor (VEGF).
Collapse
|
12
|
Xiao H, Xie X, Wen Y, Tan Y, Shangguan Y, Li B, Magdalou J, Wang H, Chen L. Subchondral bone dysplasia partly participates in prenatal dexamethasone induced-osteoarthritis susceptibility in female offspring rats. Bone 2020; 133:115245. [PMID: 31962170 DOI: 10.1016/j.bone.2020.115245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
Abstract
Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multi-organs and susceptibility to multi-diseases in offspring. However, the effects of PDE on osteoarthritis susceptibility in adult offspring and its mechanism have not been reported. In the present study, we treated pregnant Wistar rats with dexamethasone (0.2 mg/kg) daily on gestational days (GD) 9-20. Some pregnant rats were sacrificed on GD20, and the rest were delivered to obtain the postnatal offspring. The adult female offspring rats were performed with ovariectomy or sham operation during postnatal weeks 22-28. We found that PDE led to osteoarthritis phenotypes in articular cartilage and an increase in modified Mankin's score, but reduced the cartilage thickness in female adult offspring rats, which were more evident after ovariectomy. Moreover, PDE reduced the bone mass of subchondral bone in female adult offspring, which was aggravated by ovariectomy. The correlation analysis results indicated that the osteoarthritic phenotype and cartilage thickness were closely associated with the decreased bone mass of subchondral bone induced by PDE. Further, PDE retarded the development of primary and secondary ossification centers, then led to subchondral bone dysplasia, which could be partly mediated by the inhibited osteogenic function before and after birth. Collectively, the subchondral bone dysplasia partly participated in osteoarthritis susceptibility induced by PDE in female offspring rats.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Xingkui Xie
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
13
|
Ward SA, Kirkwood RN, Plush KJ. Are Larger Litters a Concern for Piglet Survival or an Effectively Manageable Trait? Animals (Basel) 2020; 10:E309. [PMID: 32079160 PMCID: PMC7070372 DOI: 10.3390/ani10020309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
As sows continue to be selected for greater prolificacy, it is important to review problems that arise in larger litters, and whether these issues can be appropriately managed. Although a proportion of piglets in larger litters can be born underweight, proper supervision around farrowing and adequate colostrum intake has the potential to improve the survival of low-birth-weight piglets and their ongoing growth to weaning. As larger litters can impart greater stress and discomfort on sows, implementing a low-stress environment leading up to parturition may improve sow performance and subsequent survival of piglets. Additionally, treating sows with anti-inflammatory compounds, either dietary or pharmacologically, shows some promise for alleviating sow discomfort and improving piglet survival in larger litters. Understanding that selecting sows for larger litters not only affects piglet survival but the well-being of the sow, the decision to continue selecting for larger litters, regardless of management strategies, remains a topic of ethical concern.
Collapse
Affiliation(s)
- Sophia A. Ward
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | |
Collapse
|
14
|
Tomaszewska E, Muszyński S, Dobrowolski P, Kamiński D, Czech A, Grela E, Wiącek D, Tomczyk-Warunek A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Tomaszewska E, Muszyński S, Dobrowolski P, Wiącek D, Tomczyk-Warunek A, Świetlicka I, Pierzynowski SG. Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J Anim Physiol Anim Nutr (Berl) 2019; 103:626-643. [PMID: 30659706 DOI: 10.1111/jpn.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 01/14/2023]
Abstract
It has been demonstrated in animal studies that prenatal administration of β-hydroxy-β-methylbutyrate (HMB, metabolite of leucine) influences general growth and mechanical endurance of long bones in newborn offspring in sex-dependent manner. The present experiment was conducted to evaluate the effect of HMB treatment of pregnant sows on bone development in offspring at weaning. From 70th day until the 90th day of gestation, sows received either a basal diet (n = 12) or the same diet supplemented with HMB (n = 12) at the dose of 0.2 g/kg of body weight/day. Femora obtained from six males and females in each group weaned at the age of 35 days were examined. Maternal HMB treatment significantly enhanced body weight and changed bone morphology increasing femur mechanical strength in both sexes. Maternal HMB supplementation also elevated bone micro- and macroelement concentrations and enhanced content of proteoglycans in articular cartilage. Based on the obtained results, it can be concluded that maternal HMB supplementation in the mid-gestation period significantly accelerated bone development in both sexes by upregulation of a multifactorial system including leptin and osteoprotegerin. However, the sex (irrespective of the HMB treatment) was the factor which influenced the collagen structure in cartilages and trabecular bone, as demonstrated both by the Picrosirius red staining and performed analysis of thermal stability of collagenous tissues. The structural differences in collagen between males and females were presumably related to a different collagen maturity. No studies conducted so far provided a detailed morphological analysis of bone, articular cartilage, growth plate and the activities of the somatotropic and pituitary-gonadal axes, as well as leptin/osteoprotegerin system in weaned offspring prenatally treated with HMB. This study showed also the relationship between the maternal HMB treatment and bone osteometric and mechanical traits, hormones, and growth and bone turnover markers such as leptin, osteoprotegerin and insulin-like growth factor-1.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Agnieszka Tomczyk-Warunek
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Izabela Świetlicka
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
16
|
Csaba G. Bone Manifestation of Faulty Perinatal Hormonal Imprinting: A Review. Curr Pediatr Rev 2019; 15:4-9. [PMID: 30474530 DOI: 10.2174/1573396315666181126110110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 01/27/2023]
Abstract
Hormonal imprinting takes place at the first encounter between the developing receptor and its target hormone and the encounter determines the receptor's binding capacity for life. In the critical period of development, when the window for imprinting is open, the receptor can be misdirected by related hormones, synthetic hormones, and industrial or communal endocrine disruptors which cause faulty hormonal imprinting with life-long consequences. Considering these facts, the hormonal imprinting is a functional teratogen provoking alterations in the perinatal (early postnatal) period. One single encounter with a low dose of the imprinter in the critical developmental period is enough for the formation of faulty imprinting, which is manifested later, in adult age. This has been justified in the immune system, in sexuality, in animal behavior and brain neurotransmitters etc. by animal experiments and human observations. This review points to the faulty hormonal imprinting in the case of bones (skeleton), by single or repeated treatments. The imprinting is an epigenetic alteration which is inherited to the progeny generations. From clinical aspect, the faulty imprinting can have a role in the pathological development of the bones as well, as in the risk of osteoporotic fractures, etc.
Collapse
Affiliation(s)
- G Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Chen Z, Zhao X, Li Y, Zhang R, Nie Z, Cheng X, Zhang X, Wang H. Course-, dose-, and stage-dependent toxic effects of prenatal dexamethasone exposure on long bone development in fetal mice. Toxicol Appl Pharmacol 2018; 351:12-20. [PMID: 29753006 DOI: 10.1016/j.taap.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 01/19/2023]
Abstract
Dexamethasone is routinely used for treating those mothers at risk for preterm delivery. However, overexposure to exogenous glucocorticoids induces bone loss in offspring, and the "critical window" and safe dose of this treatment are largely unknown. In this study, we found that femoral length, and the length of the primary ossification center were significantly reduced in fetal mice after repeated prenatal dexamethasone exposure (PDE). Compared with single-course exposure on gestational day (GD)15, newborn mice with repeated PDE (3 times, from GD15 to 17) showed a significant decrease in femoral trabecular bone mass with decreased trabecular number and thickness. For those newborn mice treated after repeated PDE at different doses (0, 0.2, 0.8, and 1.2 mg/kg/d), the toxic effect of dexamethasone on bone development was observed at 0.8 and 1.2 mg/kg/d. More severe retardation in bone development was observed in the fetal mice after PDE at 0.8 mg/kg/d during GD12-14, compared with that during GD15-17. Interestingly, stronger toxic effects were observed in male newborn mice after PDE than were observed in female newborn mice. In conclusion, PDE with multiple course, higher dose, or exposure at an early stage of pregnancy have stronger toxic effects on bone development of fetal mice.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Xin Zhao
- Department of Physiology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Yunzepeng Li
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Rui Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Zaihui Nie
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Xiang Cheng
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Xianrong Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No.1838, North of Guangzhou Avenue, Guangzhou, Guangdong Province 510515, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, No.185 Donghu Road, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
18
|
Increased H3K27ac level of ACE mediates the intergenerational effect of low peak bone mass induced by prenatal dexamethasone exposure in male offspring rats. Cell Death Dis 2018; 9:638. [PMID: 29844424 PMCID: PMC5974192 DOI: 10.1038/s41419-018-0701-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multiple organs in offspring. Here, we verified the intergenerational effect of low peak bone mass induced by PDE and investigated its intrauterine programming mechanism. Pregnant rats were injected subcutaneously with 0.2 mg/kg/d dexamethasone from gestation day (GD) 9 to 20. Some pregnant rats were killed for the fetuses on GD20, and the rest went on to spontaneous labor to produce the first-generation (F1) offspring. The adult F1 male offspring were mated with normal females to produce the F2 offspring. In vivo, PDE leads to low peak bone mass in F1 male offspring rats at postnatal week (PW) 28. Furthermore, PDE reduced the bone mass in F1 male offspring from GD20 to PW12. Meanwhile, the osteogenic differentiation was suppressed and the local renin–angiotensin system (RAS) was activated continuously by PDE. Moreover, the histone 3 lysine 27 acetylation (H3K27ac) level in angiotensin-converting enzyme (ACE) promoter region was increased by PDE from GD20 to PW12. Likewise, PDE induced the low peak bone mass and the activated local RAS in F2 male offspring. Meaningfully, the H3K27ac level of ACE was increased by PDE in the F2 offspring. In vitro, dexamethasone inhibited bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation and promoted RAS activation. Furthermore, dexamethasone recruited CCAAT/enhancer-binding protein α and p300 into the BMSCs nucleus by activating glucocorticoid receptor, which cooperatively increased the H3K27ac level in the ACE promoter region. In conclusion, PDE induced the low peak bone mass and its intergenerational effect, which was mediated by sustained activation of RAS via increasing H3K27ac level of ACE.
Collapse
|
19
|
Gorissen BMC, Uilenreef JJ, Bergmann W, Meijer E, van Rietbergen B, van der Staay FJ, Weeren PRV, Wolschrijn CF. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs. Vet Rec 2017; 181:564. [PMID: 29066475 DOI: 10.1136/vr.104175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/03/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023]
Abstract
Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term meloxicam treatment on growing pigs were studied. Twelve piglets (n=6 receiving daily meloxicam 0.4 mg/kg orally from 48 until 110 days of age; n=6 receiving only applesauce (vehicle control)) were subjected to visual and objective gait analysis by pressure plate measurements at several time points. Following euthanasia a complete postmortem examination was performed and samples of the talus and distal tibia, including the distal physis, were collected. Trabecular bone microarchitecture was analysed by microCT scanning, bone stiffness by compression testing and growth plate morphology using light microscopy. Animals were not lame and gait patterns did not differ between the groups. Pathological examination revealed no lesions compatible with known side effects of NSAIDs. Trabecular bone microarchitecture and growth plate morphology did not differ between the two groups. The findings of this in vivo study reduce concerns regarding the long-term use of meloxicam in young, growing piglets.
Collapse
Affiliation(s)
- Ben M C Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joost J Uilenreef
- Department of Clinical Sciences of Companion Animals, Anaesthesiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wilhelmina Bergmann
- Department of Pathobiology, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ellen Meijer
- Department of Farm Animal Health, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Orthopaedic Biomechanics Division, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Franz Josef van der Staay
- Department of Farm Animal Health, Behaviour and Welfare Group, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia F Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Dobrowolski P, Tomaszewska E, Muszyński S, Blicharski T, Pierzynowski SG. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose. Exp Biol Med (Maywood) 2017; 242:671-682. [PMID: 28178857 DOI: 10.1177/1535370217693322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength ( P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13-45%) decreased compared to the control ( P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2-oxoglutarate (2-Ox) administered postnatally has a potential to improve/maintain bone structure of animals simultaneously treated with maximal therapeutic doses of dexamethasone (Dex). It may open the new direction in searching and developing combined treatment for children treated with glucocorticoids (GCs) since growing group of children is exposed to synthetic GCs and adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Currently proposed combined therapies have numerous side effects. Thus, this study proposed a new direction in combined therapies utilizing dietary supplementation with glutamine derivative. Impairment caused by Dex in presented long bones animal model was prevented by dietary supplementation with 2-Ox and vast majority of assessed bone parameters were restored almost to the control level. These results support previous thesis on the regulatory mechanism of nutrient utilization regulated by glutamine derivatives and enrich the nutritional science.
Collapse
Affiliation(s)
- Piotr Dobrowolski
- 1 Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Ewa Tomaszewska
- 2 Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, The University of Life Sciences in Lublin, Lublin 20-033, Poland
| | - Siemowit Muszyński
- 3 Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Tomasz Blicharski
- 4 Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Lublin 20-954, Poland.,5 Lublin Diagnostic Centre, Swidnik 21-040, Poland
| | - Stefan G Pierzynowski
- 6 Department of Biology, Lund University, Lund 22362, Sweden.,7 Innovation Centre-Edoradca, Tczew 83-110, Poland.,8 SGPlus, Trelleborg 23132, Sweden.,9 Department of Medical Biology, Institute of Rural Health, Lublin 20-950, Poland
| |
Collapse
|
21
|
Zhang X, Shang-Guan Y, Ma J, Hu H, Wang L, Magdalou J, Chen L, Wang H. Mitogen-inducible gene-6 partly mediates the inhibitory effects of prenatal dexamethasone exposure on endochondral ossification in long bones of fetal rats. Br J Pharmacol 2016; 173:2250-62. [PMID: 27128203 DOI: 10.1111/bph.13506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Prenatal exposure to dexamethasone slows down fetal linear growth and bone mineralization but the regulatory mechanism remains unknown. Here we assessed how dexamethasone regulates bone development in the fetus. EXPERIMENTAL APPROACH Dexamethasone (1 mg·kg(-1) ·day(-1) ) was injected subcutaneously every morning in pregnant rats from gestational day (GD)9 to GD20. Fetal femurs and tibias were harvested at GD20 for histological and gene expression analysis. Femurs of 12-week-old female offspring were harvested for microCT (μCT) measurement. Primary chondrocytes were treated with dexamethasone (10, 50, 250 and 1000 nM). KEY RESULTS Prenatal dexamethasone exposure resulted in accumulation of hypertrophic chondrocytes and delayed formation of the primary ossification centre in fetal long bone. The retardation was accompanied by reduced maturation of hypertrophic chondrocytes, decreased osteoclast number and down-regulated expression of osteocalcin and bone sialoprotein in long bone. In addition, the mitogen-inducible gene-6 (Mig6) and osteoprotegerin (OPG) expression were stimulated, and the receptor activator of NF-κB ligand (RANKL) expression was repressed. Moreover, dexamethasone activated OPG and repressed RANKL expression in both primary chondrocytes and primary osteoblasts, and the knockdown of Mig6 abolished the effect of dexamethasone on OPG expression. Further, μCT measurement showed loss of bone mass in femur of 12-week-old offspring with prenatal dexamethasone exposure. CONCLUSIONS AND IMPLICATIONS Prenatal dexamethasone exposure delays endochondral ossification by suppressing chondrocyte maturation and osteoclast differentiation, which may be partly mediated by Mig6 activation in bone. Bone development retardation in the fetus may be associated with reduced bone mass in later life.
Collapse
Affiliation(s)
- Xianrong Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yangfan Shang-Guan
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Ma
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hang Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlong Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jacques Magdalou
- Faculté de Médicine, UMR 7561 CNRS-NancyUniversité, Vandoeuvre-lès-Nancy, France
| | - Liaobin Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
22
|
Tomaszewska E, Dobrowolski P, Bieńko M, Prost Ł, Szymańczyk S, Zdybel A. Effects of 2-oxoglutaric acid on bone morphometry, densitometry, mechanics, and immunohistochemistry in 9-month-old boars with prenatal dexamethasone-induced osteopenia. Connect Tissue Res 2015; 56:483-92. [PMID: 26305209 DOI: 10.3109/03008207.2015.1069822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structural quality of the connective tissue is genetically determined and is influenced by hormonal and nutritional modification. An effect of a 2-Ox-rich diet on bone mineralization and structure and expression of non-collagenous protein in articular and growth cartilages of maternal dexamethasone-treated 9-month-old boars was considered in this study. Sows were treated i.m. with dexamethasone at the dose of 0.03 mg kg(-1) body weight every second day during the last 45 days of pregnancy. After the birth, the boars were divided into two groups: administered and not supplemented with 2-Ox for 9 months (0.4 g/kg body weight/day). Dexamethasone given during the prenatal time inhibited the growth and negatively influenced the mechanics, geometry and histomorphometrical parameters of long bones and cartilage irrespective of the diet. Moreover, maternal dexamethasone treatment resulted in expression of osteocalcin in the articular cartilage, and the diet rich in 2-Ox limited the OC expression. This study demonstrated that changes observed in adult boars initiated by dexamethasone treatment in the prenatal period were persistent and long-term use of alimentary 2-Ox supplementation can counteract only some of the destructive changes evoked by prenatal dexamethasone excess.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- a Department of Animal Physiology, Faculty of Veterinary Medicine , University of Life Sciences in Lublin , Lublin , Poland
| | - Piotr Dobrowolski
- b Department of Comparative Anatomy and Anthropology , Maria Curie-Skłodowska University , Lublin , Poland , and
| | - Marek Bieńko
- a Department of Animal Physiology, Faculty of Veterinary Medicine , University of Life Sciences in Lublin , Lublin , Poland
| | - Łukasz Prost
- a Department of Animal Physiology, Faculty of Veterinary Medicine , University of Life Sciences in Lublin , Lublin , Poland
| | - Sylwia Szymańczyk
- a Department of Animal Physiology, Faculty of Veterinary Medicine , University of Life Sciences in Lublin , Lublin , Poland
| | - Adam Zdybel
- c Department of Equipment Operation and Maintenance in the Food Industry , University of Life Sciences in Lublin , Lublin , Poland
| |
Collapse
|
23
|
Ferenc K, Pietrzak P, Godlewski MM, Piwowarski J, Kiliańczyk R, Guilloteau P, Zabielski R. Intrauterine growth retarded piglet as a model for humans--studies on the perinatal development of the gut structure and function. Reprod Biol 2014; 14:51-60. [PMID: 24607255 DOI: 10.1016/j.repbio.2014.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
The overall acceptance of pig models for human biomedical studies is steadily growing. Results of rodent studies are usually confirmed in pigs before extrapolating them to humans. This applies particularly to gastrointestinal and metabolism research due to similarities between pig and human physiology. In this context, intrauterine growth retarded (IUGR) pig neonate can be regarded as a good model for the better understanding of the IUGR syndrome in humans. In pigs, the induction of IUGR syndrome may include maternal diet intervention, dexamethasone treatment or temporary reduction of blood supply. However, in pigs, like in humans, circa 8% of neonates develop IUGR syndrome spontaneously. Studies on the pig model have shown changes in gut structure, namely a reduced thickness of mucosa and muscle layers, and delayed kinetic of disappearance of vacuolated enterocytes were found in IUGR individuals in comparison with healthy ones. Functional changes include reduced dynamic of gut mucosa rebuilding, decreased activities of main brush border enzymes, and changes in the expression of proteins important for carbohydrate, amino acids, lipid, mineral and vitamin metabolism. Moreover, profiles of intestinal hormones are different in IUGR and non-IUGR piglets. It is suggested that supplementation of the mothers during the gestation and/or the IUGR offspring after birth can help in restoring the development of the gastrointestinal tract. The pig provides presumably the optimal animal model for humans to study gastrointestinal tract structure and function development in IUGR syndrome.
Collapse
Affiliation(s)
- Karolina Ferenc
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-766 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Pietrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-766 Warsaw, Poland
| | - Michał M Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-766 Warsaw, Poland
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Kiliańczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-766 Warsaw, Poland
| | - Paul Guilloteau
- INRA, Unité 1341, Nutrition et Adaptations Digestives, Nerveuses et Comportementales (ADNC), Domaine de la Prise, 35590 Saint-Gilles, France
| | - Romuald Zabielski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-766 Warsaw, Poland.
| |
Collapse
|
24
|
The effect of dietary administration of 2-oxoglutaric acid on the cartilage and bone of growing rats. Br J Nutr 2013; 110:651-8. [PMID: 23308390 DOI: 10.1017/s0007114512005570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
2-Oxoglutaric acid (2-Ox), a precursor to hydroxyproline - the most abundant amino acid in bone collagen, exerts protective effects on bone development during different stages of organism development; however, little is known about the action of 2-Ox on cartilage. The aim of the present study was to elucidate the influence of dietary 2-Ox supplementation on the growth plate, articular cartilage and bone of growing rats. A total of twelve male Sprague-Dawley rats were used in the study. Half of the rats received 2-oxoglutarate at a dose of 0·75 g/kg body weight per d in their drinking-water. Body and organ weights were measured. Histomorphometric analyses of the cartilage and bone tissue of the femora and tibiae were conducted, as well as bone densitometry and peripheral quantitative computed tomography (pQCT). Rats receiving 2-Ox had an increased body mass (P<0·001) and absolute liver weight (P=0·031). Femoral length (P=0·045) and bone mineral density (P=0·014), overall thickness of growth plate (femur P=0·036 and tibia P=0·026) and the thickness of femoral articular cartilage (P<0·001) were also increased. 2-Ox administration had no effect on the mechanical properties or on any of the measured pQCT parameters for both bones analysed. There were also no significant differences in histomorphometric parameters of tibial articular cartilage and autofluorescence of femoral and tibial growth plate cartilage. Dietary supplementation with 2-Ox to growing rats exerts its effects mainly on cartilage tissue, having only a slight influence on bone. The effect of 2-Ox administration was selective, depending on the particular bone and type of cartilage analysed.
Collapse
|
25
|
Dobrowolski P, Tomaszewska E, Radzki RP, Bienko M, Wydrych J, Zdybel A, Pierzynowski SG. Can 2-oxoglutarate prevent changes in bone evoked by omeprazole? Nutrition 2012; 29:556-61. [PMID: 23218481 DOI: 10.1016/j.nut.2012.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/04/2012] [Accepted: 07/17/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Proton-pump inhibitors, such as omeprazole, are widely used in the prevention and treatment of gastroesophageal diseases. However, an association between proton-pump inhibitors and the increased risk of bone fractures has been observed, especially in patients treated for extended periods. Conversely, 2-oxoglutarate, a precursor of hydroxyproline, the most abundant amino acid in bone collagen, counteracts the bone loss. The aim of the present study was to elucidate the influence of omeprazole on bone and investigate whether dietary 2-oxoglutarate supplementation could prevent the effects of omeprazole. METHODS Eighteen male Sprague-Dawley rats were used. Rats received omeprazole in the diet and 2-oxoglutarate in the drinking water. Body and organ weights and serum concentrations of cholecystokinin and gastrin were measured. The femurs, tibias, and calvarias were collected. Histomorphometric analysis of bone and cartilage tissues was conducted. Bone densitometric and peripheral quantitative computed tomographic analyses of the femur and tibia were performed. RESULTS Omeprazole decreased the femur and tibia weights, the mechanical properties of the femur, the volumetric bone density and content, the trabecular and cortical bone mineral content, the total, trabecular, and cortical bone areas, the mean cortical thickness, and the periosteal circumference of the femur. Omeprazole had a minor effect on the examined bone morphology and exerted negligible effects on the cartilage. 2-Oxoglutarate lowered the gastrin concentration. CONCLUSIONS Omeprazole treatment exerts its effects mostly on bone mineralization and cancellous bone, adversely affecting bone properties. This adverse effect of omeprazole was not markedly abolished by 2-oxoglutaric acid, which acted as an anti-hypergastrinemic agent.
Collapse
Affiliation(s)
- Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Lublin, Poland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tomaszewska E, Dobrowolski P, Siwicki A. Maternal treatment with dexamethasone at minimal therapeutic doses inhibits neonatal bone development in a gender-dependent manner. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Tomaszewska E, Dobrowolski P, Puzio I. Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J Anim Physiol Anim Nutr (Berl) 2012; 97:785-96. [PMID: 22716040 DOI: 10.1111/j.1439-0396.2012.01319.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The study examined articular and growth plate cartilages as well as bone tissues in the offspring of sows treated with glucocorticoid during the last 45 days of pregnancy (dexamethasone at the dose of 0.03 mg/kg body weight intramuscularly, every second day). The offspring were tested at the birth and basal morphology for both articular and growth plate cartilages, and the histomorphometry of trabeculae of the epiphysis and metaphysis of femur and tibia were established. The concentration of selected cytokines and the activity of bone alkaline phosphatase were determined in blood serum. Maternal dexamethasone (DEX) administration reduced the thickness of proliferative, resting and hypertrophic zones of growth plate of femur and tibia of male piglets when compared with the control. DEX significantly reduced the thickness of the resting zone in both bones. It also elongated proliferative and hypertrophic zones of the growth plate in the femur as well as the hypertrophic zone in the tibia of female piglets when compared with the control group. Moreover, DEX decreased the articular cartilage thickness of the tibia in female piglets and enhanced the articular cartilage thickness of the femur in male piglets. Articular cartilage was highly cellular, and chondrocytes were separated by thin septa of matrix. An analysis of the trabecular bone architecture in male piglets showed a loss of the trabecular bone by thinning and DEX-related increase in trabecular porosity. Moreover, the cortical bone looked similar to the trabeculae because of trabecularization of the cortex. There was a DEX that reduced serum osteocalcin and BAP concentrations in both female and male newborn piglets, whereas the serum IL-1 and Il-6 was reduced only in male piglets. The obtained results demonstrated that DEX administration to sows during the last 45 days of pregnancy might cause the growth to slow and eventually to stop, especially in male piglets. It might lead to an alteration within the cartilage during its normal function, and with the time, arthritic changes can follow.
Collapse
Affiliation(s)
- E Tomaszewska
- Department of Animal Biochemistry and Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland.
| | | | | |
Collapse
|
28
|
Tomaszewska E, Dobrowolski P, Puzio I. Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition 2012; 28:190-6. [DOI: 10.1016/j.nut.2011.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/16/2022]
|