1
|
Yang Y, You J, Hu X. Genome-Wide Screening of the MYB Genes in Coptis chinensis and Their Roles in Growth, Development, and Heavy Metal Resistance. Genes (Basel) 2025; 16:476. [PMID: 40428298 PMCID: PMC12111318 DOI: 10.3390/genes16050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background:Coptis chinensis is a traditional medicinal plant rich in bioactive compounds like berberine, known for its antibacterial, anti-inflammatory, and antioxidant properties. This study aims to analyze the MYB transcription factor family in C. chinensis to better understand their roles in plant growth, development, metabolism, and stress responses. Methods: We employed bioinformatics to conduct a genome-wide identification of MYB genes in C. chinensis, followed by analyses of physicochemical properties, phylogenetic relationships, gene structures, chromosomal localization, conserved motifs, cis-acting elements, and expression patterns. Results were validated using qRT-PCR. Results: A total of 129 CcMYB genes were identified across nine chromosomes. Phylogenetic analysis categorized these genes into 19 subgroups, notably highlighting the S6 subgroup, which lacks counterparts in Arabidopsis. Comparative genomics revealed segmental duplication among gene pairs. Transcriptomic analysis indicated that CcMYB21, CcMYB40, CcMYB105, and CcMYB116 had high expression levels in stems. Importantly, CcMYB94 expression significantly increased under cadmium stress, suggesting its role in stress regulation. Conclusions: This study offers a comprehensive analysis of the MYB gene family in C. chinensis, underscoring the significance of MYB transcription factors in enhancing the plant's medicinal value and stress tolerance, particularly against cadmium exposure. These insights pave the way for further exploration of specific MYB genes to improve stress resilience in C. chinensis.
Collapse
Affiliation(s)
- Yang Yang
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingmao You
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| | - Xuebo Hu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Cervello M, Augello G, Cocco L, Ratti S, Follo MY, Martelli AM, Cusimano A, Montalto G, McCubrey JA. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv Biol Regul 2024; 92:101032. [PMID: 38693042 DOI: 10.1016/j.jbior.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo School of Medicine, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
3
|
Och A, Lemieszek MK, Cieśla M, Jedrejek D, Kozłowska A, Pawelec S, Nowak R. Berberis vulgaris L. Root Extract as a Multi-Target Chemopreventive Agent against Colon Cancer Causing Apoptosis in Human Colon Adenocarcinoma Cell Lines. Int J Mol Sci 2024; 25:4786. [PMID: 38732003 PMCID: PMC11084310 DOI: 10.3390/ijms25094786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.
Collapse
Affiliation(s)
- Anna Och
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| | | | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Aleksandra Kozłowska
- Department of Radiotherapy, Medical University of Lublin, 13 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Liu YM, Li XQ, Zhang XR, Chen YY, Liu YP, Zhang HQ, Chen Y. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of extract of Epimedium against liver cancer through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116765. [PMID: 37328080 DOI: 10.1016/j.jep.2023.116765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver cancer is a worldwide malignant tumor, and currently lacks effective treatments. Clinical studies have shown that epimedium (YYH) has therapeutic effects on liver cancer, and some of its prenylflavonoids have demonstrated anti-liver cancer activity through multiple mechanisms. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of YYH. AIM OF THE STUDY This study aimed to screen the anti-cancer material basis of YYH via integrating spectrum-effect analysis with serum pharmacochemistry, and explore the multi-target mechanisms of YYH against liver cancer by combining network pharmacology with metabolomics. MATERIALS AND METHODS The anti-cancer effect of the extract of YYH (E-YYH) was first evaluated in mice with xenotransplantation H22 tumor cells burden and cultured hepatic cells. Then, the interaction between E-YYH compounds and the cytotoxic effects was revealed through spectrum-effect relationship analysis. And the cytotoxic effects of screened compounds were verified in hepatic cells. Next, UHPLC-Q-TOF-MS/MS was employed to identify the absorbed components of E-YYH in rat plasma to distinguish anti-cancer components. Subsequently, network pharmacology based on anti-cancer materials and metabolomics were used to discover the potential anti-tumor mechanisms of YYH. Key targets and biomarkers were identified and pathway enrichment analysis was performed. RESULTS The anti-cancer effect of E-YYH was verified through in vitro and in vivo experiments. Six anti-cancer compounds in plasma (icariin, baohuoside Ⅰ, epimedin C, 2″-O-rhamnosyl icariside Ⅱ, epimedin B and sagittatoside B) were screened out by spectrum-effect analysis. Forty-five liver-cancer-related targets were connected with these compounds. Among these targets, PTGS2, TNF, NOS3 and PPARG were considered to be the potential key targets preliminarily verified by molecular docking. Meanwhile, PI3K/AKT signaling pathway and arachidonic acid metabolism were found to be associated with E-YYH's efficacy in network pharmacology and metabolomics analysis. CONCLUSIONS Our research revealed the characteristics of multi-component, multi-target and multi-pathway mechanism of E-YYH. This study also provided an experimental basis and scientific evidence for the clinical application and rational development of YYH.
Collapse
Affiliation(s)
- Yi-Min Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xiao-Qi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xiao-Ran Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yuan-Yuan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yu-Ping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Huang-Qin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
5
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
6
|
Och A, Olech M, Bąk K, Kanak S, Cwener A, Cieśla M, Nowak R. Evaluation of the Antioxidant and Anti-Lipoxygenase Activity of Berberis vulgaris L. Leaves, Fruits, and Stem and Their LC MS/MS Polyphenolic Profile. Antioxidants (Basel) 2023; 12:1467. [PMID: 37508005 PMCID: PMC10376855 DOI: 10.3390/antiox12071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Berberis vulgaris L. is currently widely studied for its antioxidant and chemopreventive properties, especially with regard to the beneficial properties of its fruits. Although the bark and roots have been well known and used in traditional medicine since ancient times, little is known about the other parts of this plant. The aim of the research was to determine the antioxidant and LOX inhibitory activity effects of extracts obtained from the leaves, fruits, and stems. Another aim of the work was to carry out the quantitative and qualitative analysis of phenolic acids, flavonoid aglycones, and flavonoid glycosides. The extracts were obtained with the use of ASE (accelerated solvent extraction). The total content of polyphenols was determined and was found to vary depending on the organ, with the highest amount of polyphenols found in the leaf extracts. The free radical scavenging activity of the extracts was determined spectrophotometrically in relation to the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, with results ranging from 63.9 mgTE/g for the leaves to 65.2 mgTE/g for the stem. Antioxidant activity was also assessed using the ABTS test. The lowest value was recorded for the barberry fruit (117.9 mg TE/g), and the highest level was found for the barberry leaves (140.5 mgTE/g). The oxygen radical absorbance capacity test (ORAC) showed the lowest value for the stem (167.7 mgTE/g) and the highest level for the leaves (267.8 mgTE/g). The range of the percentage inhibition of LOX was determined as well. The percentage inhibition of the enzyme was positively correlated with the sum of the flavonoids, TPC, TFC, and the content of selected flavonoids. Phenolic acids, flavonoid aglycones, and flavonoid glycosides were determined qualitatively and quantitatively in individual parts of Berberis vulgaris L. The content of phenolic acids, flavonoid aglycones, and flavonoid glycosides was determined with the LC-MS/MS method. The following phenolic acids were quantitatively and qualitatively identified in individual parts of Berberis vulgaris L.: gallic acid, 3-caffeoylquinic acid, protocatechuic acid, 5-caffeoylquinic acid, 4-caffeoylquinic acid, and caffeic acid. The flavonoid glycosides determined were: eleutheroside E, Eriodictyol-7-glucopyranoside, rutin, hyperoside, isoquercitin, luteoloside, narcissoside, naringenin-7-glucoside, isorhamnetin-3-glucoside, afzeline, and quercitrin. Flavonoid aglycones such as catechin, luteolin, quercetin, and eriodictyol were also determined qualitatively and quantitatively.
Collapse
Affiliation(s)
- Anna Och
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Kamil Bąk
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Sebastian Kanak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Anna Cwener
- Botanical Garden, Maria Curie-Skłodowska University in Lublin, 3 Sławinkowska St., 20-810 Lublin, Poland
| | - Marek Cieśla
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-025 Rzeszow, Poland
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
7
|
Liu FY, Ding DN, Wang YR, Liu SX, Peng C, Shen F, Zhu XY, Li C, Tang LP, Han FJ. Icariin as a potential anticancer agent: a review of its biological effects on various cancers. Front Pharmacol 2023; 14:1216363. [PMID: 37456751 PMCID: PMC10347417 DOI: 10.3389/fphar.2023.1216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Numerous chemical compounds used in cancer treatment have been isolated from natural herbs to address the ever-increasing cancer incidence worldwide. Therein is icariin, which has been extensively studied for its therapeutic potential due to its anti-inflammatory, antioxidant, antidepressant, and aphrodisiac properties. However, there is a lack of comprehensive and detailed review of studies on icariin in cancer treatment. Given this, this study reviews and examines the relevant literature on the chemopreventive and therapeutic potentials of icariin in cancer treatment and describes its mechanism of action. The review shows that icariin has the property of inhibiting cancer progression and reversing drug resistance. Therefore, icariin may be a valuable potential agent for the prevention and treatment of various cancers due to its natural origin, safety, and low cost compared to conventional anticancer drugs, while further research on this natural agent is needed.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun-Rui Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Xuan Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Peng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Shen
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ya Zhu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li-Ping Tang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Isoquinoline Alkaloids from Coptis chinensis Franch: Focus on Coptisine as a Potential Therapeutic Candidate against Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms231810330. [PMID: 36142236 PMCID: PMC9499618 DOI: 10.3390/ijms231810330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)—methanol (MeOH)—water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.
Collapse
|
9
|
Mazandaranian MR, Dana PM, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Effects of berberine on leukemia with a focus on its molecular targets. Anticancer Agents Med Chem 2022; 22:2766-2774. [PMID: 35331097 DOI: 10.2174/1871520622666220324092302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Leukemia is a common cancer among both women and men worldwide. Besides the fact that finding new treatment methods may enhance the life quality of patients, there are several problems that we face today in treating leukemia patients, such as drugs side effects and acquired resistance to chemotherapeutic drugs. Berberine is a bioactive alkaloid found in herbal plants (e.g. Rhizoma coptidis and Cortex phellodendri) and exerts several beneficial functions, including anti-tumor activities. Furthermore, berberine exerts antiproliferative and anti-inflammatory effects. Up to now, some studies have investigated the roles of berberine in different types of leukemia, including acute myeloid leukemia and chronic lymphocytic leukemia. In this review, a detailed description of berberine roles in leukemia is provided. We discuss how berberine involves different molecular targets (e.g. interleukins and cyclins) and signaling pathways (e.g. mTOR and PI3K) to exert its anti-tumor functions and how berberine is effective in leukemia treatment when combined with other therapeutic drugs.
Collapse
Affiliation(s)
- Mohammad Reza Mazandaranian
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Aljehani AA, Albadr NA, Nasrullah MZ, Neamatallah T, Eid BG, Abdel-Naim AB. Icariin ameliorates metabolic syndrome-induced benign prostatic hyperplasia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20370-20378. [PMID: 34734339 DOI: 10.1007/s11356-021-17245-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Metabolic syndrome (MetS) is an immense health issue that causes serious complications in aging males including BPH. Icariin (ICA) is a flavonol glycoside that exerts a plethora of pharmacological effects. The present investigation tested the potential of ICA to ameliorate benign prostatic hyperplasia (BPH) induced by MetS in rats. Animals were allocated to 5 groups in which the first and second groups were kept on water and regular food pellets. MetS was induced in the third, fourth, and fifth groups by keeping the animals on high fructose and salt diets for twelve consecutive weeks. These groups were given vehicle, ICA (25 mg/kg), and ICA (50 mg/kg), respectively. MetS was confirmed by an increase in rats' weight, accumulation of visceral fat, insulin resistance, and dyslipidemia. This was accompanied by manifestation of BPH including increased prostate weight, prostate index, and histopathological alterations. Treating the animals with both doses of ICA significantly ameliorated the increase in weight and index of the prostate as well as altered prostate histopathology. In addition, ICA significantly decreased cyclin D1 expression, upregulated Bax, and downregulated Bcl2 mRNA expression. ICA prevented lipid peroxidation, reduced glutathione depletion, and catalase exhaustion, which further lowered markers of prostate inflammation such as interleukin-6 and tumor necrosis factor-α. Moreover, ICA prevented the decrease in prostate content of phosphorylated 5'-adenosine monophosphate (AMP)-activated protein kinase (pAMPK). In conclusion, ICA protects against MetS-induced BPH. This is due to its antiproliferative, proapoptotic, antioxidant, and anti-inflammatory activities as well as the activation of AMPK.
Collapse
Affiliation(s)
- Abeer A Aljehani
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawal A Albadr
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
12
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
14
|
Chen DX, Pan Y, Wang Y, Cui YZ, Zhang YJ, Mo RY, Wu XL, Tan J, Zhang J, Guo LA, Zhao X, Jiang W, Sun TL, Hu XD, Li LY. The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. HORTICULTURE RESEARCH 2021; 8:121. [PMID: 34059652 PMCID: PMC8166882 DOI: 10.1038/s41438-021-00559-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
Coptis chinensis Franch, a perennial herb, is mainly distributed in southeastern China. The rhizome of C. chinensis has been used as a traditional medicine for more than 2000 years in China and many other Asian countries. The pharmacological activities of C. chinensis have been validated by research. Here, we present a de novo high-quality genome of C. chinensis with a chromosome-level genome of ~958.20 Mb, a contig N50 of 1.58 Mb, and a scaffold N50 of 4.53 Mb. We found that the relatively large genome size of C. chinensis was caused by the amplification of long terminal repeat (LTR) retrotransposons. In addition, a whole-genome duplication event in ancestral Ranunculales was discovered. Comparative genomic analysis revealed that the tyrosine decarboxylase (TYDC) and (S)-norcoclaurine synthase (NCS) genes were expanded and that the aspartate aminotransferase gene (ASP5) was positively selected in the berberine metabolic pathway. Expression level and HPLC analyses showed that the berberine content was highest in the roots of C. chinensis in the third and fourth years. The chromosome-level reference genome of C. chinensis provides important genomic data for molecular-assisted breeding and active ingredient biosynthesis.
Collapse
Affiliation(s)
- Da-Xia Chen
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Ying-Jun Zhang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Rang-Yu Mo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao-Li Wu
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jian Zhang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Lian-An Guo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Tian-Lin Sun
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China.
| | - Long-Yun Li
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China.
| |
Collapse
|
15
|
Inoue N, Terabayashi T, Takiguchi-Kawashima Y, Fujinami D, Matsuoka S, Kawano M, Tanaka K, Tsumura H, Ishizaki T, Narahara H, Kohda D, Nishida Y, Hanada K. The benzylisoquinoline alkaloids, berberine and coptisine, act against camptothecin-resistant topoisomerase I mutants. Sci Rep 2021; 11:7718. [PMID: 33833336 PMCID: PMC8032691 DOI: 10.1038/s41598-021-87344-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/24/2021] [Indexed: 01/24/2023] Open
Abstract
DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.
Collapse
Affiliation(s)
- Naomi Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuri Takiguchi-Kawashima
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeru Matsuoka
- Department of Clinical Biology Ant Therapeutics, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
16
|
Coptisine, a protoberberine alkaloid, relaxes mouse airway smooth muscle via blockade of VDLCCs and NSCCs. Biosci Rep 2021; 40:222118. [PMID: 32095824 PMCID: PMC7042126 DOI: 10.1042/bsr20190534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background/Aims: Recently, effective and purified ingredients of traditional Chinese medicine (TCM) were extracted to play crucial roles in the treatment of pulmonary diseases. Our previous research focused on TCM drug screening aimed at abnormal airway muscle contraction during respiratory diseases. Coptisine, an effective ingredient extracted from bitter herbs has shown a series of antioxidant, antibacterial, cardioprotective and neuroprotective pharmacological properties. In the current study, we questioned whether coptisine could also participate in asthma treatment through relaxing abnormal contracted mouse airway smooth muscle (ASM). The present study aimed to characterize the relaxant effects of coptisine on mouse ASM and uncover the underlying molecular mechanisms. Methods: To investigate the role of coptisine on pre-contracted mouse ASM, a series of biological techniques, including force measurement and patch-clamp experiments were employed. Results: Coptisine was found to inhibit high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a dose-dependent manner. Further research demonstrated that the coptisine-induced mouse ASM relaxation was mediated by alteration of calcium mobilization via voltage-dependent L-type Ca2+ channels (VDLCCs) and non-selective cation channels (NSCCs). Conclusion: Our data showed that mouse ASM could be relaxed by coptisine via altering the intracellular Ca2+ concentration through blocking VDLCCs and NSCCs, which suggested that this pharmacological active constituent might be classified as a potential new drug for the treatment of abnormal airway muscle contraction.
Collapse
|
17
|
Ali F, Alom S, Zaman MK. Berberine: A Comprehensive Review on its Isolation,
Biosynthesis, Chemistry and Pharmacology. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2548-2560. [DOI: 10.14233/ajchem.2021.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The isoquinoline compounds from alkaloidal class have been excellent source of important
phytoconstituents having wide range of pharmacological activities. Berberine is a protoberberine
alkaloidal compound obtained from Berberis genus plants which belongs to family Barberidaceae.
Due to its unique structural properties, berberine and its derivatives has been exploited extensively for
its potential uses in various pharmacological targets such as cancer, inflammation, diabetes,
gastrointestinal disorder, viral and microbial infections, neurological disorder like Alzheimer, anxiety,
schizophrenia, depression, etc. This review illustrates the updated information on berberine with respect
to its isolation, biosynthesis, chemical synthesis, structural modification and pharmacological activities.
An extensive literature search were carried out in various search engine like PubMed, Google Scholars,
Research Gate and SCOPUS by using keywords like Berberine, protoberberine alkaloids, isoquinoline
derivatives, pharmacological effects, etc. Prephenic acid is the starting material for biosynthesis of
berberine. Structural modifications lead to generation of various potential derivatives, which earn
patents by researchers. Besides toxicities, the complications of low solubility and bioavailability should
be eliminated. To improve its safety, efficacy and selectivity the berberine should be carefully derivatized.
Collapse
Affiliation(s)
- Farak Ali
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Shahnaz Alom
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Md Kamaruz Zaman
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| |
Collapse
|
18
|
Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2020; 58:265-275. [PMID: 32223481 PMCID: PMC7170387 DOI: 10.1080/13880209.2020.1741651] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
ABSRACTContext: Rhizoma Corydalis (RC) is the dried tubers of Corydalis yanhusuo (Y. H. Chou and Chun C. Hsu) W. T. Wang ex Z. Y. Su and C. Y. Wu (Papaveraceae). Traditionally, RC is used to alleviate pain such as headache, abdominal pain, and epigastric pain. Modern medicine shows that it has analgesic, anti-arrhythmia, and other effects.Objective: We provided an overview of the phytochemical and pharmacological properties of RC as a foundation for its clinical application and further research and development of new drugs.Methods: We collected data of various phytochemical and pharmacological effects of RC from 1982 to 2019. To correlate with existing scientific evidence, we used Google Scholar and the journal databases Scopus, PubMed, and CNKI. 'Rhizoma Corydalis', 'phytochemistry', and 'pharmacological effects' were used as key words.Results: Currently, more than 100 chemical components have been isolated and identified from RC, among which alkaloid is the pimary active component of RC. Based on prior research, RC has antinociceptive, sedative, anti-epileptic, antidepressive and anti-anxiety, acetylcholinesterase inhibitory effect, drug abstinence, anti-arrhythmic, antimyocardial infarction, dilated coronary artery, cerebral ischaemia reperfusion (I/R) injury protection, antihypertensive, antithrombotic, antigastrointestinal ulcer, liver protection, antimicrobial, anti-inflammation, antiviral, and anticancer effects.Conclusions: RC is reported to be effective in treating a variety of diseases. Current pharmacological studies on RC mainly focus on the nervous, circulatory, digestive, and endocrine systems, as well as drug withdrawal. Although experimental data support the beneficial effects of this drug, its physiological activity remains a concern. Nonetheless, this review provides a foundation for future research.
Collapse
Affiliation(s)
- Bing Tian
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- Ming Tian Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin150040, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- CONTACT Shu-Ming Huang Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
19
|
Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, Haleem S, Rooman M, Norin S, Khan SN. A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One 2020; 15:e0240456. [PMID: 33048959 PMCID: PMC7553295 DOI: 10.1371/journal.pone.0240456] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic helminthiasis caused by different species of the genus Echinococcus, and is a major economic and public health concern worldwide. Synthetic anthelmintics are most commonly used to control CE, however, prolonged use of these drugs may result in many adverse effects. This study aims to discuss the in vitro/in vivo scolicidal efficacy of different medicinal plants and their components used against Echinococcus granulosus. Google Scholar, ScienceDirect, PubMed and Scopus were used to retrieve the published literature from 2000-2020. A total of 62 published articles met the eligibility criteria and were reviewed. A total of 52 plant species belonging to 22 families have been reported to be evaluated as scolicidal agents against E. granulosus worldwide. Most extensively used medicinal plants against E. granulosus belong to the family Lamiaceae (25.0%) followed by Apiaceae (11.3%). Among various plant parts, leaves (36.0%) were most commonly used. Essential oils of Zataria multiflora and Ferula asafetida at a concentration of 0.02, and 0.06 mg/ml showed 100% in vitro scolicidal activity after 10 min post application, respectively. Z. multiflora also depicted high in vivo efficacy by decreasing weight and size while also causing extensive damage to the germinal layer of the cysts. Plant-based compounds like berberine, thymol, and thymoquinone have shown high efficacy against E. granulosus. These plant species and compounds could be potentially used for the development of an effective drug against E. granulosus, if further investigated for in vivo efficacy, toxicity, and mechanism of drug action in future research.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Marina Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Taj Ali Khan
- Department of Biotechnology and Genetics Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sumbal Haleem
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Norin
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
20
|
da Silva Mesquita R, Kyrylchuk A, Costa de Oliveira R, Costa Sá IS, Coutinho Borges Camargo G, Soares Pontes G, Moura Araújo da Silva F, Saraiva Nunomura RDC, Grafov A. Alkaloids of Abuta panurensis Eichler: In silico and in vitro study of acetylcholinesterase inhibition, cytotoxic and immunomodulatory activities. PLoS One 2020; 15:e0239364. [PMID: 32991579 PMCID: PMC7523975 DOI: 10.1371/journal.pone.0239364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Natural products obtained from species of the genus Abuta (Menispermaceae) are known as ethnobotanicals that are attracting increasing attention due to a wide range of their pharmacological properties. In this study, the alkaloids stepharine and 5-N-methylmaytenine were first isolated from branches of Abuta panurensis Eichler, an endemic species from the Amazonian rainforest. Structure of the compounds was elucidated by a combination of 1D and 2D NMR spectroscopic and MS and HRMS spectrometric techniques. Interaction of the above-mentioned alkaloids with acetylcholinesterase enzyme and interleukins IL-6 and IL-8 was investigated in silico by molecular docking. The molecules under investigation were able to bind effectively with the active sites of the AChE enzyme, IL-6, and IL-8 showing affinity towards the proteins. Along with the theoretical study, acetylcholinesterase enzyme inhibition, cytotoxic, and immunomodulatory activity of the compounds were assessed by in vitro assays. The data obtained in silico corroborate the results of AChE enzyme inhibition, the IC50 values of 61.24μM for stepharine and 19.55μM for 5-N-methylmaytenine were found. The compounds showed cytotoxic activity against two tumor cell lines (K562 and U937) with IC50 values ranging from 11.77 μM to 28.48 μM. The in vitro assays revealed that both alkaloids were non-toxic to Vero and human PBMC cells. As for the immunomodulatory activity, both compounds inhibited the production of IL-6 at similar levels. Stepharine inhibited considerably the production of IL-8 in comparison to 5-N-methylmaytenine, which showed a dose dependent action (inhibitory at the IC50 dose, and stimulatory at the twofold IC50 one). Such a behavior may possibly be explained by different binding modes of the alkaloids to the interleukin structural fragments. Occurrence of the polyamine alkaloid 5-N-methylmaytenine was reported for the first time for the Menispermaceae family, as well as the presence of stepharine in A. panurensis.
Collapse
Affiliation(s)
| | - Andrii Kyrylchuk
- Institute of Organic Chemistry, National Academy of Sciences (NAS), Kyiv, Ukraine
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Hematology, University of the State of Amazonas (UEA), Manaus, Amazonas, Brazil
| | | | | | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, University of the State of Amazonas (UEA), Manaus, Amazonas, Brazil
- Laboratory of Virology, National Institute of Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Felipe Moura Araújo da Silva
- Analytical Center –Multidisciplinary Support Center (CAM), Federal University of Amazonas (UFAM), Manaus, Amazonas, Brazil
| | | | - Andriy Grafov
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Huang CH, Wang FT, Chan WH. Dose-dependent beneficial and harmful effects of berberine on mouse oocyte maturation and fertilization and fetal development. Toxicol Res (Camb) 2020; 9:431-443. [PMID: 32905254 DOI: 10.1093/toxres/tfaa043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, suppresses growth and induces apoptosis in some tumor cell lines. It has also been shown that berberine possesses anti-atherosclerosis and antioxidant activities in hyperlipidemic model rats. Our previous study in mice found that berberine causes harmful effects on preimplantation and postimplantation embryonic development, both in vitro and in vivo, by triggering reactive oxygen species (ROS)-mediated apoptotic cascades in mouse blastocysts. In the current investigation, we further showed that berberine treatment has distinct dose-dependent effects on oocyte maturation and subsequent development. Preincubation of oocytes with 2.5 μM berberine significantly enhanced maturation and in vitro fertilization (IVF) rates, with subsequent beneficial effects on embryonic development. In contrast, preincubation with 10 μM berberine negatively impacted mouse oocyte maturation, decreased IVF rates and impaired subsequent embryonic development. Similar dose-dependent effects were also demonstrated in vivo. Specifically, intravenous injection of berberine significantly enhanced mouse oocyte maturation, IVF rate and early-stage embryo development after fertilization at a dose of 1 mg/kg body weight but significantly impaired oocyte maturation and IVF rates and caused harmful effects on early embryonic development at a dose of 5 mg/kg. Mechanistically, we found that berberine enhanced intracellular ROS production and apoptosis of oocytes at a concentration of 10 μM but actually significantly decreased total intracellular ROS content and had no apoptotic effect at a concentration of 2.5 μM. Moreover, pretreatment of oocytes with Ac-DEVD-cho, a caspase-3-specific inhibitor, effectively blocked berberine-induced negative impacts on oocyte maturation, fertilization and subsequent development. Collectively, these findings establish the dose-dependent beneficial versus deleterious effects of berberine and suggest that the mechanism underlying the deleterious effects of berberine involves a caspase-3-dependent apoptotic process acting downstream of an increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, hongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
22
|
Kumar R, Sharma N, Rolta R, Lal UR, Sourirajan A, Dev K, Kumar V. Thalictrum foliolosum DC: An unexplored medicinal herb from north western Himalayas with potential against fungal pathogens and scavenger of reactive oxygen species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Li J, Zhang HJ, Deng AJ, Li ZH, Xing YL, Wu LQ, Qin HL. Syntheses and Structure-Activity Relationships in Antibacterial Activity against Clostridium difficile and XBP1 Activation Property of 13-[(N-Alkylamino)methyl]-8-oxodihydrocoptisines. Chem Biodivers 2020; 17:e2000265. [PMID: 32364669 DOI: 10.1002/cbdv.202000265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022]
Abstract
13-[(N-Alkylamino)methyl]-8-oxodihydrocoptisines were synthesized to evaluate antibacterial activity against Clostridium difficile and activating x-box-binding protein 1 (XBP1) activity, biological properties both associated with ulcerative colitis. Improving structural stability and ameliorating biological activity were major concerns. Different substituents on the structural modification site were involved to explore the influence of diverse structures on the bioactivities. The target compounds exhibited the desired activities with definite structure-activity relationship. In the series of 13-[(N-n-alkylamino)methyl]-8-oxodihydrocoptisines, the length of n-alkyl groups has a definite effect on the bioactivity, elongation of the length increasing the antibacterial activity. The synthesized compounds were determined to display strong or weak XBP1-activating activity in vitro. The preliminary results of this study warrant further medicinal chemistry studies on these synthesized compounds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hai-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - An-Jun Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Zhi-Hong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Ya-Ling Xing
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Lian-Qiu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hai-Lin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
24
|
Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Tan CW, Li S, Wang N, Feng Y. Uncovering the Anticancer Mechanisms of Chinese Herbal Medicine Formulas: Therapeutic Alternatives for Liver Cancer. Front Pharmacol 2020; 11:293. [PMID: 32256363 PMCID: PMC7093640 DOI: 10.3389/fphar.2020.00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
The potential values of Chinese herbal formulas in treating various diseases are well known. In addition to more than 2,000 years of history, herbal medicine is appreciated for its remarkable efficacy in a lot of cases, which warrants a role in public health care worldwide, especially in East Asian countries. Liver cancer is the second most fatal cancer across the world. Recent studies have extensively investigated the chemical profiles and pharmacological effects of Chinese herbal medicine formulas on liver cancer. Either through observational follow-up or experimental studies, multiple herbal formulas have benefits implicated in the management of liver cancer. However, complex composition of each formula imposes restrictions on promoting clinical practice and global recognition. Therefore, understanding the mode of action of Chinese herbal medicine formulas in depth may offer sufficient evidence for their clinical use. This review highlighted the chemical characteristics and molecular mechanisms of actions of prominent Chinese herbal medicine formulas and summarized the correlated findings on the potential use in liver cancer treatment. At last, the present progresses of Chinese herbal medicine formulas in the perspective of clinical trials are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
25
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Lu M, Chu Z, Wang L, Liang C, Sun P, Xiong S, Mu Y. Pharmacokinetics and tissue distribution of four major bioactive components in rats after oral administration of Xianglian pill. Biomed Chromatogr 2020; 34:e4770. [DOI: 10.1002/bmc.4770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Min Lu
- School of Medicine and Life SciencesUniversity of Jinan–Shandong Academy of Medical Sciences Jinan P. R. China
| | - Zixuan Chu
- School of Medicine and Life SciencesUniversity of Jinan–Shandong Academy of Medical Sciences Jinan P. R. China
| | - Liying Wang
- Shandong Electric Power Central Hospital Jinan P. R. China
| | - Chen Liang
- Shandong Medical College Jinan P. R. China
| | - Peilu Sun
- Institute of Materia MedicaShandong First Medical University and Shandong Academy of Medical Sciences Jinan P. R. China
- Key Laboratory for Biotech‐Drugs, Ministry of Health Jinan P. R. China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province Jinan P. R. China
| | - Shan Xiong
- Institute of Materia MedicaShandong First Medical University and Shandong Academy of Medical Sciences Jinan P. R. China
- Key Laboratory for Biotech‐Drugs, Ministry of Health Jinan P. R. China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province Jinan P. R. China
| | - Yanling Mu
- Institute of Materia MedicaShandong First Medical University and Shandong Academy of Medical Sciences Jinan P. R. China
- Key Laboratory for Biotech‐Drugs, Ministry of Health Jinan P. R. China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province Jinan P. R. China
| |
Collapse
|
27
|
Yellow light promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111550. [DOI: 10.1016/j.jphotobiol.2019.111550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
28
|
Hu H, Dong Z, Wang X, Bai L, Lei Q, Yang J, Li L, Li Q, Liu L, Zhang Y, Ji Y, Guo L, Liu Y, Cui H. Dehydrocorydaline inhibits cell proliferation, migration and invasion via suppressing MEK1/2-ERK1/2 cascade in melanoma. Onco Targets Ther 2019; 12:5163-5175. [PMID: 31456643 PMCID: PMC6620435 DOI: 10.2147/ott.s183558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Alkaloids are naturally occurring chemical compounds that are widely distributed in plants, and have pharmaceutical values and low toxicity. In recent years, some of them have been demonstrated to be promising therapeutic drug candidates for cancer treatment. Herein, we tried to explore the antitumor effect of dehydrocorydaline (DHC), a natural alkaloid isolated from Corydalis, on malignant melanoma. Methods: We treated two malignant metastatic melanoma cell lines, A375 and MV3, and a normal melanocyte cell line, PIG1, with various concentrations of DHC for set amounts of time, and detected cell proliferation, migration, and invasion by using MTT, BrdU, transwell, Western blot and soft agar assay in vitro and tumorigenicity in the xenografts in vivo. Results: Our results showed that DHC dramatically blocked cell proliferation and led to cell cycle arrest at G0/G1 phase and downregulated the expressions of cell cycle regulators CDK6 and Cyclin D1 in melanoma cells. However, DHC had little inhibitory effect on normal melanocyte cell line PIG-1. Meanwhile, DHC suppressed cell invasion and migration through modulating the epithelial–mesenchymal transition (EMT) markers including E-cadherin, vimentin, as well as β-catenin. In addition, DHC also significantly attenuated tumor growth in vivo. The expressions of cell cycle-related and metastasis-related proteins were further confirmed by immunohistochemical staining in the xenografts. Importantly, MEK1/2-ERK1/2 cascade was inactivated after DHC treatment and ERK activator t-butylhydroquinone (tBHQ) treatment rescued DHC-induced cell proliferation inhibition. Conclusions: Our results indicated that DHC inhibited cell proliferation and migration/invasion via inactivating MAPK signaling, and showed that DHC might be a potential novel drug to treat malignant melanoma.
Collapse
Affiliation(s)
- Huanrong Hu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Qian Li
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Lichao Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Yanli Zhang
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yacong Ji
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Leiyang Guo
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yaling Liu
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
29
|
Bai J, Wu J, Tang R, Sun C, Ji J, Yin Z, Ma G, Yang W. Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR 2 and miR-34a. Invest New Drugs 2019; 38:229-245. [PMID: 30976957 DOI: 10.1007/s10637-019-00777-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
The pharmacokinetic (PK) and potential effects of Emodin on liver cancer were systematically evaluated in this study. Both the intragastric administration (i.g.) and hypodermic injection (i.h.) of Emodin exhibited a strong absorption (absorption rate < 1 h) and elimination capacity (t1/2 ≈ 2 h). The tissue distribution of Emodin after i.h. was rapid and wide. The stability of Emodin in three species of liver microsomes wasrat >human> beagle dog. These PK data provided the basis for the subsequent animal experiments. In liver cancer patient tissues, the expression of vascular endothelial growth factor (VEGF)-induced signaling pathways, including phosphorylated VEGF receptor 2 (VEGFR2), AKT, and ERK1/2,were simultaneously elevated, but miR-34a expression was reduced and negatively correlated with SMAD2 and SMAD4. Emodin inhibited the expression of SMAD2/4 in HepG2 cells by inducing the miR-34a level. Subsequently, BALB/c nude mice received a daily subcutaneous injection of HepG2 cells with or without Emodin treatment (1 mg/kg or 10 mg/kg), and Emodin inhibited tumorigenesis and reduced the mortality rate in a dose-dependent manner. In vivo experiments showed that cell proliferation, migration, and invasion were promoted by VEGF or miR-34a signal treatment but were inhibited when combined with Emodin treatment. All these results demonstrated that Emodin inhibited tumorigenesis in liver cancer by simultaneously inhibiting the VEGFR2-AKT-ERK1/2signaling pathway and promoting a miR-34a-mediated signaling pathway.
Collapse
Affiliation(s)
- Jianguo Bai
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, NO.12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Jianfei Wu
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ruifeng Tang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, NO.12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| | - Chao Sun
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, NO.12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junwei Ji
- Department of Emergency, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zhaolin Yin
- Department of ultrasound, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Guangjun Ma
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, NO.12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, NO.12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| |
Collapse
|
30
|
Wang Y, Zhu T, Wang M, Zhang F, Zhang G, Zhao J, Zhang Y, Wu E, Li X. Icariin Attenuates M1 Activation of Microglia and Aβ Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARγ in Restraint/Isolation-Stressed APP/PS1 Mice. Front Neurosci 2019; 13:291. [PMID: 31001073 PMCID: PMC6455051 DOI: 10.3389/fnins.2019.00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Studies have shown that psychosocial stress is involved in Alzheimer's disease (AD) pathogenesis; it induces M1 microglia polarization and production of pro-inflammatory cytokines, leading to neurotoxic outcomes and decreased β-amyloid (Aβ) clearance. Icariin has been proven to be an effective anti-inflammatory agent and to activate peroxisome proliferator-activated receptors gamma (PPARγ) which induces the M2 phenotype in the microglia. However, whether restraint/isolation stress reduces the clearance ability of microglia by priming and polarizing microglia to the M1 phenotype, and the effects of icariin in attenuating the inflammatory response and relieving the pathological changes of AD are still unclear. Methods APP/PS1 mice (male, aged 3 months) were randomly divided into a control group, a restraint/isolation stress group, and a restraint/isolation stress + icariin group. The restraint/isolation stress group was subjected to a paradigm to build a depressive animal model. Sucrose preference, open field, elevated plus maze, and Y maze test were used to assess the stress paradigm. The Morris water maze test was performed to evaluate spatial reference learning and memory. Enzyme-linked immunosorbent assay and immunohistochemistry were used to identify the microglia phenotype and Aβ accumulation. Western blotting was used to detect the expression of PPARγ in the hippocampus and prefrontal cortex (PFC). Results Restraint/isolation stress induced significant depressive-like behaviors in APP/PS1 mice at 4 months of age and memory impairment at 10 months of age, while 6 months of icariin administration relieved the memory damage. Restraint/isolation stressed mice had elevated pro-inflammatory cytokines, decreased anti-inflammatory cytokines, increased Aβ plaque accumulation and more M1 phenotype microglia in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration relieved these changes. Moreover, restraint/isolation stressed mice had down-regulated PPARγ expression in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration reversed the alteration, especially in the hippocampus. Conclusion Restraint/isolation stress induced depressive-like behaviors and spatial memory damage, over-expression of M1 microglia markers and more severe Aβ accumulation by suppressing PPARγ in APP/PS1 mice. Icariin can be considered a new treatment option as it induces the switch of the microglia phenotype by activating PPARγ.
Collapse
Affiliation(s)
- Yihe Wang
- School of Medicine, Shandong University, Jinan, China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanyuan Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery and Department of Pharmaceutical Sciences, Texas A&M University Health Science Center, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Kang JA, Rho JK, Park SH. Evaluation of inhibitory effect of coptisine on protein kinase C activity using a RI detection-assisted biochip. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-018-06410-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. Int J Mol Sci 2018; 19:ijms19113698. [PMID: 30469456 PMCID: PMC6275021 DOI: 10.3390/ijms19113698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Wear particle-induced aseptic prosthetic loosening is a major complication associated with total joint arthroplasty (TJA). A growing body of evidence suggests that receptor activator of nuclear factor κ-B ligand (RANKL)-stimulated osteoclastogenesis and bone resorption are responsible for peri-implant loosening. Thus, agents which attenuate excessive osteoclast differentiation and function have been considered to offer therapeutic potential for prolonging the life of TJA implants. Jatrorrhizine hydrochloride (JH), a major protoberberine alkaloid isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, and antihypercholesterolemic and neuroprotective activities. However, its effects on osteoclast biology remain unknown. Here, we found that JH inhibited RANKL-induced osteoclast formation and bone resorption in vitro and exerted protection against titanium (Ti) particle-induced osteolysis in vivo. Biochemical analysis demonstrated that JH suppressed RANKL-induced activation of MAPKs (p38 and ERK) which down-regulated the production of NFATc1 and NFATc1-regulated osteoclastic marker genes, such as TRAP, CTR and CTSK. Collectively, our findings suggest that JH may be a promising anti-osteoclastogenesis agent for treating periprosthetic osteolysis or other osteoclast-related osteolytic diseases.
Collapse
|
33
|
Patel SS, Raghuwanshi R, Masood M, Acharya A, Jain SK. Medicinal plants with acetylcholinesterase inhibitory activity. Rev Neurosci 2018; 29:491-529. [PMID: 29303784 DOI: 10.1515/revneuro-2017-0054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer's disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer's disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Misha Masood
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ashish Acharya
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Surendra Kumar Jain
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| |
Collapse
|
34
|
Han B, Jiang P, Li Z, Yu Y, Huang T, Ye X, Li X. Coptisine-induced apoptosis in human colon cancer cells (HCT-116) is mediated by PI3K/Akt and mitochondrial-associated apoptotic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:152-160. [PMID: 30195873 DOI: 10.1016/j.phymed.2017.12.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Colorectal cancer is the third leading cause of cancer-related deaths in the word. Coptisine (COP), an isoquinoline alkaloid derived from Coptis chinensis Franch, possesses a wide variety of pharmacological effects. However, its anti-proliferative effect on colon cancer is not fully elucidated. In the present study, we aimed to ascertain whether COP inhibits HCT-116 cell growth and to further explore the molecular mechanism in vitro and in vivo. METHODS Cell viability was determined by MTT assay. Cell migration was detected using wound healing assay. Apoptosis, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) was analysis via flow cytometry. Hoechst 33342 was used for morphology observation. The expression levels of proteins related to mitochondrial-mediated apoptotic pathway were detected by western blotting. In addition, the antitumor ability of COP was further measured in athymic nude mice. RESULTS COP significantly decreased cell viability and migration in HCT-116 cells. Flow cytometry and Hoechst 33342 analysis confirmed that COP suppressed cell proliferation by inducing apoptosis. COP decreased Δψm dose-dependently and induced intracellular ROS production time-dependently. Western blotting showed that COP activated mitochondrial-associated apoptosis by down-regulating Bcl-2, Bcl-XL, pro-caspase 3, XIAP level and up-regulating Bax, Bad, cytochrome c, Apaf-1, AIF and cleaved caspase-3 expression. In addition, COP also attenuated PI3K/Akt signaling pathway. In vivo study showed that 150 mg/kg COP significantly delayed the tumor development in BALB/c nude mice. Immunohistochemical analysis also confirmed the activated apoptosis in tumor tissue. CONCLUSION The results demonstrated that COP induces apoptosis in HCT-116 cells through PI3K/Akt and mitochondrial-associated apoptotic pathway. Our findings suggest that COP has potential to be a therapeutic candidate for colon cancer patients.
Collapse
Affiliation(s)
- Bing Han
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Pu Jiang
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Zhaoxing Li
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Yang Yu
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Tao Huang
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing, 400716, China
| | - Xuegang Li
- Chongqing productivity promotion center for the modernization of Chinese traditional medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
35
|
Oliveira AA, Perdigão GMC, Rodrigues LE, da Silva JG, Souza-Fagundes EM, Takahashi JA, Rocha WR, Beraldo H. Cytotoxic and antimicrobial effects of indium(iii) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans 2018; 46:918-932. [PMID: 28009892 DOI: 10.1039/c6dt03657k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Complexes [In(2Ac4oClPh)Cl2(MeOH)] (1), [In(2Ac4pFPh)Cl2(MeOH)] (2), [In(2Ac4pClPh)Cl2(MeOH)] (3) and [In(2Ac4pIPh)Cl2(MeOH)] (4) were obtained with N(4)-ortho-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4oClPh), N(4)-para-fluorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pFPh), N(4)-para-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pClPh) and N(4)-para-iodophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pIPh). Theoretical studies suggested that the coordinated methanol molecule can be easily replaced by DMSO used in the preparation of stock solutions, with the formation of [In(L)Cl2(DMSO)] (HL = thiosemicarbazonate ligand), and that the replacement of DMSO by water is unfavorable. However, for all complexes the displacement of one or two chloride ligands by water in aqueous solution is extremely favorable. The cytotoxic activity of the compounds was evaluated against HL-60, Jurkat and THP-1 leukemia and against MDA-MB-231 and HCT-116 solid tumor cell lines, as well as against Vero non-malignant cells. The cytotoxicity and selectivity indexes (SI) increased in several cases for the indium(iii) complexes in comparison with the free thiosemicarbazones. The antimicrobial activity of the compounds was investigated against Candida albicans, Candida dubliniensis, Candida lusitaniae and Candida parapsilosis. In many cases complexation resulted in a substantial increase of the antifungal activity. Complexes (1-4) were revealed to be very active against C. lusitaniae and C. dubliniensis. Structure-activity relationship (SAR) studies were carried out to identify the physico-chemical properties that might be involved in the antifungal action, as well as in the cytotoxic effect of the compounds against HL-60 cells. In both cases, correlations between the bioactivity and physico-chemical properties did not appreciably change when the chloride ligands in [In(L)Cl2(DMSO)] were replaced by water molecules, suggesting [In(L)Cl(H2O)(DMSO)]+ or [In(L)(H2O)2(DMSO)]2+ to be the species that interact with the biological media.
Collapse
Affiliation(s)
- Alexandre A Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Gabriele M C Perdigão
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Luana E Rodrigues
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Jeferson G da Silva
- Departamento de Farmácia, Universidade Federal de Juiz de Fora, Campus Governador Valadares, 35010-177 Governador Valadares, MG, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jacqueline A Takahashi
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Willian R Rocha
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
36
|
Jung YY, Lee JH, Nam D, Narula AS, Namjoshi OA, Blough BE, Um JY, Sethi G, Ahn KS. Anti-myeloma Effects of Icariin Are Mediated Through the Attenuation of JAK/STAT3-Dependent Signaling Cascade. Front Pharmacol 2018; 9:531. [PMID: 29899697 PMCID: PMC5989039 DOI: 10.3389/fphar.2018.00531] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/02/2018] [Indexed: 01/07/2023] Open
Abstract
Because of the essential role of signal transducer and activator of transcription 3 (STAT3) in proliferation, anti-apoptosis, and chemoresistance of multiple myeloma (MM), we investigated whether icariin, a prenylated flavonol glycoside, inhibits both constitutive and inducible STAT3 activation in human myeloma cell lines. We noted that icariin could block constitutive STAT3 phosphorylation as well as its nuclear translocation and DNA binding ability in U266 cells. Icariin also suppressed IL-6-induced STAT3 activation through the inhibition of upstream kinases (Janus activated kinase-1 and -2, and c-Src). We found that icariin downregulated the protein expression of STAT3 downstream target gene products such as Bcl-2, Bcl-xl, survivin, IAP-1/2, COX-2, VEGF, and matrix metallopeptidase 9 (MMP-9) in a concentration-dependent manner. Moreover, this flavonoid also exhibited the capacity to significantly induce apoptosis and suppress proliferation of MM cells. Interestingly, this agent also significantly potentiated the apoptotic effects of bortezomib through the suppression of STAT3 activation in MM cells. Altogether, our data indicates that the potential application of icariin as a STAT3 blocker in myeloma therapy.
Collapse
Affiliation(s)
- Young Yun Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong Hyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Dongwoo Nam
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | | | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC, United States
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC, United States
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
37
|
Zhou L, Yang F, Li G, Huang J, Liu Y, Zhang Q, Tang Q, Hu C, Zhang R. Coptisine Induces Apoptosis in Human Hepatoma Cells Through Activating 67-kDa Laminin Receptor/cGMP Signaling. Front Pharmacol 2018; 9:517. [PMID: 29867512 PMCID: PMC5968218 DOI: 10.3389/fphar.2018.00517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver. Hence, new anti-liver cancer treatment strategies need to be urgently developed. Coptisine is a natural alkaloid extracted from rhizoma coptidis which exhibits anticancer activity in various preclinical models, including liver cancer. However, the molecular mechanisms underlying the anti-liver cancer effects of coptisine remains unclear. We used flow cytometry to assess the binding of coptisine to 67LR expressed on the surface of SMMC7721, HepG2, LO2 and H9 cells. Then SMMC7721, HepG2 and BEL7402 cells, belonging to the HCC cell lines, were treated with coptisine. The cell viability was detected using a cell counting kit-8 assay. Apoptosis was evaluated using flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assay. Apoptotic-related proteins and tumor death receptor 67-kDa laminin receptor (67LR) were detected using Western blot analysis. The cyclic guanosine 3′,5′-monophosphate (cGMP) concentration was determined using enzyme-linked immunosorbent assay. sh67LR lentivirus, anti67LR antibody, and cGMP inhibitor NS2028 were used to determine how a 67LR/cGMP signaling pathway regulated coptisine-induced apoptosis. Tumor growth inhibited by coptisine was confirmed in a SMMC7721 cell xenograft mouse model. Coptisine selectively exhibited cell viability in human hepatoma cells but not in normal human hepatocyte cell line LO2 cells. Coptisine promoted SMMC7721 and HepG2 cell apoptosis by increasing 67LR activity. Both 67LR antibody and sh67LR treatment blocked coptisine-induced apoptosis and inhibition of cell viability. Coptisine upregulated the expression of cGMP. Moreover, cGMP inhibitor NS2028 significantly decreased coptisine-induced apoptosis and inhibition of cell viability. In vivo experiments confirmed that coptisine could significantly suppress the tumor growth and induce apoptosis in SMMC7721 xenografts through a 67LR/cGMP pathway. Coptisine-mediated 67LR activation may be a new therapeutic strategy for treating hepatic malignancy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fan Yang
- Department of Orthopaedic, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Qiu H, Sun S, Ma X, Cui C, Chen G, Liu Z, Li H, Liu M. Jatrorrhizine Hydrochloride Suppresses Proliferation, Migration, and Secretion of Synoviocytes In Vitro and Ameliorates Rat Models of Rheumatoid Arthritis In Vivo. Int J Mol Sci 2018; 19:E1514. [PMID: 29783696 PMCID: PMC5983572 DOI: 10.3390/ijms19051514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022] Open
Abstract
Jatrorrhizine hydrochloride (JH), an active component isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, antihypercholesterolemic, and neuroprotective activities. However, its antirheumatoid arthritis (RA) property remains unknown. In this study, a collagen-induced arthritis (CIA) rat model was used to evaluate the therapeutic effects of JH on RA by using arthritis score, radiological evaluation, and histopathological assessment. The in vitro effects of JH on proliferation, migration, and production of inflammatory mediators in RA-derived fibroblast-like synoviocyte MH7A cells were determined by the EdU incorporation assay, wound healing assay, real-time PCR, and ELISA, respectively. The in vivo studies showed that JH treatment significantly prevented the progression and development of RA in CIA rats through anti-inflammation and suppressing bone destruction. The in vitro studies revealed that JH could effectively attenuate the destructive phenotypes of MH7A cells, including inhibiting proliferation, migration, and production of inflammatory mediators. Further mechanistic analysis demonstrated that JH suppressed tumor necrosis factor alpha (TNFα)-stimulated activations of nuclear factor of kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) leading to the downregulation of proinflammatory cytokines, which might be beneficial to the antiproliferative and antimigratory activities of FLS cells. Collectively, our results demonstrated that JH has a great potential to be developed into a novel therapeutic agent for treating RA.
Collapse
Affiliation(s)
- Haiwen Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Shengnan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Congcong Cui
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhenzhou Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Hui Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
39
|
Huang CH, Huang ZW, Ho FM, Chan WH. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2018; 33:280-294. [PMID: 29168595 DOI: 10.1002/tox.22515] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H2 O2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Zi-Wei Huang
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
| | - Feng-Ming Ho
- Health and Longevity Biotechnology Company; Feng-Kwan Medical Clinic, Taichung, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
40
|
Li Y, Li X, Cole A, McLaughlin S, Du W. Icariin improves Fanconi anemia hematopoietic stem cell function through SIRT6-mediated NF-kappa B inhibition. Cell Cycle 2018; 17:367-376. [PMID: 29355456 DOI: 10.1080/15384101.2018.1426413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Icariin (ICA) is a flavonoid glucoside derived from the Epimedium plant genus, which has potent regenerative properties and is used in western medicine to treat impotence. Recently, ICA has generated great interest in improving hepatic stellate cell function and cardiac rejuvenation. However, how this natural component functions in hematopoiesis remains unexplored. Here we have examined the role of ICA on hematopoietic stem cells (HSCs) using the cancer-prone disease model of Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic predisposition. We show that ICA reverses the less quiescent status of HSCs deficient for the Fanca or Fancd2 gene, and improves the ability of these mutant stem cells to form colony formation units (CFU) in vitro and reconstitutes hematopoiesis in transplanted recipients. Further analysis reveals that ICA upregulates enzyme activity of the chromatin binding protein SIRT6 in Fanca-/- and Fancd2-/- HSCs, both of which have an intrinsic low SIRT6 activity. Furthermore, forced expression of SIRT6 blocks the natural decline of quiescent HSCs in Fanca-/- or Fancd2-/- mice and improves the repopulating capacity of these mutant HSCs in irradiated recipients. Mechanistically, ICA enhances SIRT6-mediated H3K9 deacetylation on the promoter of NF-κB and represses the expression of NF-κB target genes. Together, our findings indicate that ICA improves the function of HSCs by stimulating SIRT6 activity and contributes to the regenerative effect of ICA.
Collapse
Affiliation(s)
- Yibo Li
- a Institue for Brain Research and Rehabilitation , South China Normal University , Guangzhou , China
| | - Xue Li
- a Institue for Brain Research and Rehabilitation , South China Normal University , Guangzhou , China
| | - Allison Cole
- b Department of Pharmaceutical Sciences , West Virginia University School of Pharmacy , Morgantown , WV 26506
| | - Sarah McLaughlin
- c Animal Models and Imaging Facility , West Virginia University , Morgantown , WV 26506
| | - Wei Du
- b Department of Pharmaceutical Sciences , West Virginia University School of Pharmacy , Morgantown , WV 26506.,d Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program , West Virginia University Cancer Institute , Morgantown , WV 26506
| |
Collapse
|
41
|
Zhang H, Li P, Li J, Song T, Wang L, Li E, Wang J, Wang L, Wei N, Wang Z. Icariin induces apoptosis in acute promyelocytic leukemia by targeting PIM1. Pharmacol Rep 2017; 69:1270-1281. [DOI: 10.1016/j.pharep.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022]
|
42
|
Pan J, Chen H, Guo B, Liu C. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo. PLoS One 2017; 12:e0182348. [PMID: 28786984 PMCID: PMC5546586 DOI: 10.1371/journal.pone.0182348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/17/2017] [Indexed: 02/02/2023] Open
Abstract
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes.
Collapse
Affiliation(s)
- Junqian Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing, P.R. China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing, P.R. China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
43
|
Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun 2017; 490:231-238. [DOI: 10.1016/j.bbrc.2017.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
44
|
Chuang TY, Wu HL, Min J, Diamond M, Azziz R, Chen YH. Berberine regulates the protein expression of multiple tumorigenesis-related genes in hepatocellular carcinoma cell lines. Cancer Cell Int 2017; 17:59. [PMID: 28572744 PMCID: PMC5450260 DOI: 10.1186/s12935-017-0429-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the seventh most common malignancy and the third leading cause of cancer-related death worldwide with an extremely grim prognosis. Berberine (BBR) has been found to inhibit proliferation of human HCC cells, although the underlying mechanism(s) are unclear. Methods Protein expression was detected by Western blots. Cell viability was determined by using the CellTiter Assay kit. Results We confirm that BBR treatment inhibits HepG2, Hep3B, and SNU-182 cell viability, and suggest that it regulates this proliferation via the modulation of multiple tumorigenesis-related genes protein expression. BBR treatment up-regulated protein expression of tumor suppressor genes, including Kruppel-like factor 6 (KLF6), activating transcription factor 3 (ATF3) and p21, while down-regulating the expression of selected oncogenes, including E2F transcription factor 1 (E2F1) and pituitary tumor transforming gene 1 (PTTG1). The specific extracellular signal–regulated kinases 1/2 (ERK1/2) inhibitor, PD98059, partially inhibited BBR effects including reduction of cell viability, and up-regulation of KLF6 and ATF3 expressions; although, PD98059 did not alter the down-regulation of E2F1 and PTTG1 expression by BBR. Conclusions Our results suggest that BBR inhibits HCC cell viability by modulating multiple tumorigenesis-related genes, and that up-regulation of tumor suppressor genes by BBR is in part the result of ERK1/2 action. The results of this study augment our understanding of the mechanisms underlying the effect of BBR on hepatocellular cancers and provide further evidence as to the biological plausibility of this agent’s role in the treatment of these malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0429-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tung-Yueh Chuang
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Hsiao-Li Wu
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Jie Min
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael Diamond
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| | - Ricardo Azziz
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Yen-Hao Chen
- Department of Obstetrics/Gynecology, Augusta University, 1120 15th Street, CA-2020, Augusta, GA 30912 USA
| |
Collapse
|
45
|
Xu X, Yokoyama S, Hayakawa Y, Saiki I. Coptidis Rhizoma induces intrinsic apoptosis through BAX and BAK activation in human melanoma. Oncol Rep 2017; 38:538-544. [PMID: 28560413 DOI: 10.3892/or.2017.5672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma has exhibited a rising incidence in recent years worldwide. Although various molecular targeted drugs are being researched and developed for melanoma patients, their efficacy appears to be unsatisfactory. Over the past few years, several reports have demonstrated that Coptidis Rhizoma water extracts (CR) or its major active chemical component, berberine, has anticancer activities in various types of cancer, including melanoma. However, their underlying mechanisms have not been well understood. In the present study, we determined that CR suppressed melanoma cell viability, which was mainly mediated through apoptosis. In addition, the expression levels of anti-apoptotic proteins, BCL2A1, MCL1 and BCL-w, were strongly suppressed by CR treatment. Furthermore, multi-domain pro-apoptotic proteins BAX and BAK were activated by CR treatment and were also required for the CR-induced apoptosis. Collectively, CR or some formulations containing CR, may be effective safe treatment strategies for human melanoma.
Collapse
Affiliation(s)
- Xiaoou Xu
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
46
|
Rao PC, Begum S, Sahai M, Sriram DS. Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells. Tumour Biol 2017; 39:1010428317694565. [PMID: 28351307 DOI: 10.1177/1010428317694565] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study aimed to explore the effect of coptisine on non-small-cell lung cancer and its mechanism through various in vitro cellular models (A549). Results claimed significant inhibition of proliferation by coptisine against A549, H460, and H2170 cells with IC50 values of 18.09, 29.50, and 21.60 µM, respectively. Also, coptisine exhibited upregulation of pH2AX, cell cycle arrest at G2/M phase, and downregulation of the expression of cyclin B1, cdc2, and cdc25C and upregulation of p21 dose dependently. Furthermore, induction of apoptosis in A549 cells by coptisine was characterized by the activation of caspase 9, caspase 8, and caspase 3, and cleavage of poly adenosine diphosphate ribose polymerase. In addition, coptisine was found to increase reactive oxygen species generation, upregulate Bax/Bcl-2 ratio, disrupt mitochondrial membrane potential, and cause cytochrome c release into the cytosol. Besides, treatment with a reactive oxygen species inhibitor (N-acetyl cysteine) abrogated coptisine-induced growth inhibition, apoptosis, reactive oxygen species generation, and mitochondrial dysfunction. Thus, the mediation of reactive oxygen species in the apoptosis-induced effect of coptisine in A549 cells was corroborated. These findings have offered new insights into the effect and mechanisms of action of coptisine against non-small-cell lung cancer.
Collapse
Affiliation(s)
- Poorna Chandra Rao
- 1 Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad, India
| | - Sajeli Begum
- 1 Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad, India
| | - Mahendra Sahai
- 2 Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - D Saketh Sriram
- 3 Biological Research Department, Incozen Therapeutics Pvt. Ltd., Hyderabad, India
| |
Collapse
|
47
|
Chou ST, Hsiang CY, Lo HY, Huang HF, Lai MT, Hsieh CL, Chiang SY, Ho TY. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. Altern Ther Health Med 2017; 17:121. [PMID: 28219365 PMCID: PMC5319192 DOI: 10.1186/s12906-017-1586-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/14/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Zuo-Jin-Wan (ZJW), a two-herb formula consisting of Coptis chinensis (CC) and Evodia rutaecarpa (ER), is commonly used in traditional Chinese medicine for the treatment of cancers. However, the efficacies and mechanisms of ZJW and its alkaloid components on cancers are still unclear. METHODS Here we investigated the anti-cancer effects and mechanisms of ZJW, CC, ER, berberine, and evodiamine in cells and in intrahepatic xenograft mice. RESULTS Treatment of HepG2 cells with ZJW, CC, ER, berberine, and evodiamine significantly displayed cytotoxic effects in a dose- and time-dependent manner. Hierarchical cluster analysis of gene expression profiles showed that CC and ZJW shared a similar mechanism for the cytotoxic effects, suggesting that CC was the active ingredient of ZJW for anti-cancer activity. Network analysis further showed that c-myc was the likely key molecule involved in the regulation of ZJW-affected gene expression. A human hepatoma xenograft model was established by intrahepatic injection of HepG2 cells containing nuclear factor-κB-driven luciferase genes in immunocompetent mice. In vivo bioluminescence imaging showed that cells had been successfully transplanted in mouse liver. Oral administration of ZJW for 28 consecutive days led to a significant decrease in the accumulation of ascites, the ratio of tumor-to-liver, and the number of transplanted cells in livers. CONCLUSIONS In conclusion, our findings suggested for the first time that ZJW significantly suppressed human cancer cell growth in orthotopic HepG2 xenograft-bearing immunocompetent mice. Moreover, c-myc might play a potent role in the cytotoxic mechanisms of ZJW, CC, ER, berberine, and evodiamine.
Collapse
|
48
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2017; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
49
|
Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan-Zuojin Formulas. Molecules 2017; 22:molecules22020214. [PMID: 28146096 PMCID: PMC6155683 DOI: 10.3390/molecules22020214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Zuojin formula (ZJ) is a traditional Chinese medicine (TCM) prescription consisted of Coptidis Rhizoma (CR) and Euodiae Fructus (EF), and has been used to treat gastrointestinal (GI) disease for more than 700 years. Fan-Zuojin formula (FZJ) is a related TCM prescription also consisted of CR and EF with the opposite proportion. In recent years, ZJ was getting more attention for its antitumor potential, but the indeterminate pharmacokinetic (PK) behavior restricted its clinical applications, and the PK differences between ZJ and FZJ were also largely unknown. Consequently it is necessary to carry out a full-scale PK study to demonstrate the physiological disposition of ZJ, as well as the comparative PK study between ZJ and FZJ to illustrate the compatibility dose effects. Therefore a liquid chromatographic–tandem mass spectrometry (LC–MS/MS) method was established and validated for the determinations of coptisine, epiberberine, palmatine, berberine, 8-oxocoptisine, 8-oxoepiberberine, noroxyhydrastinine, corydaldine, dehydroevodiamine, evodiamine, wuchuyuamide-I, and evocarpine in rat plasma. PK characteristics of 12 alkaloids after oral administration of ZJ and FZJ were compared, and the result was analyzed and discussed with the help of an in silico study. Then an integrated PK study was carried out with the AUC-based weighting method and the total drug concentration method. The established method has been successfully applied to reveal the PK profiles of the 12 alkaloids in rat plasma after oral administration of ZJ and FZJ. The results showed that: (1) double peaks were observed in the plasma concentration-time (C–T) curves of the alkaloids after ZJ administration; but the C–T curves approximately matched the two-compartment model after FZJ administration; (2) There were wide variations in the absorption levels of these alkaloids; and even for a certain alkaloid, the dose modified systemic exposure levels and elimination rate also varied significantly after administration of ZJ and FZJ extracts. The results could be interpreted as follows: firstly, inhibition effect on GI motility caused by the high content CR alkaloids (especially berberine) in ZJ could delay the Tmax, and increase the absorption and systemic exposure levels of the other alkaloids, and also lead to the double peak phenomenon of these alkaloids. However, for quaternary protoberberine alkaloids (QPA), double peaks were primarily caused by the different Ka value in two intestinal absorption sites; Secondly, absorption was the major obstacle to the systemic exposure level of the alkaloids from CR and EF. In silico and PK studies suggested that the absorption of these alkaloids, except QPAs, mainly depended on their solubility rather than permeability; Thirdly, EF could promote the absorption and accelerate the elimination of QPAs, and had a greater influence on the former than the latter. At last the integrated PK analysis suggested that berberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviors of CR and EF alkaloids after administration of ZJ and FZJ. In conclusion, the absorption, elimination and systemic exposure level of these alkaloids were mainly influenced by the proportion of EF and CR, the pharmacological effect on GI motility, and the physicochemical property of these alkaloids. These findings would be helpful for a better understanding of the activities and clinical applications of ZJ, FZJ and other related TCM prescriptions.
Collapse
|
50
|
Abstract
Although As2O3 (ATO) has been recommended as the front-line agent for treatment of acute promyelocytic leukemia (APL), particularly for relapsed or refractory APL, it has been associated with profound toxicity. Icariin is a natural compound with activity against a variety of cancers. This study was designed to investigate the effect of Icariin on APL cells and to determine whether Icariin can potentiate the antitumor activity of ATO in APL cells. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry, respectively. The expression of apoptosis and proliferation-related molecules was detected by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential were determined with florescence staining. Icariin inhibited proliferation in a dose-dependent manner and induced apoptosis in both of the tested APL cell lines. Icariin enhanced the in vitro antitumor activity of ATO against APL. The antitumor activity of Icariin and its enhancement of the antitumor activity of ATO correlated with the increase in accumulation of intracellular ROS. Our results showed that Icariin, by increasing intracellular ROS, exhibited antitumor activity and potentiated the antitumor activity of ATO against APL. Therefore, combination treatment with Icariin and ATO might offer a novel therapeutic option for patients with APL, although further studies are needed.
Collapse
|