1
|
de Oliveira AA, Mendoza VO, Priviero F, Webb RC, Nunes KP. Age-Related Decline in Vascular Responses to Phenylephrine Is Associated with Reduced Levels of HSP70. Biomolecules 2022; 12:1125. [PMID: 36009019 PMCID: PMC9405859 DOI: 10.3390/biom12081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aging impairs the expression of HSP70, an emergent player in vascular biology. However, it is unknown if age-related alterations in HSP70 are linked to a decline in arterial function. In this study, we test the hypothesis that the contributions of HSP70 to vascular contraction are diminished in middle-aged animals. We determined the basal levels of HSP70 in the aorta of young and middle-aged Sprague Dawley male rats using Western blotting. Functional studies were performed in a wire myograph system. Force development in response to phenylephrine was assessed in the presence or absence of extracellular calcium (Ca2+), and in aortic rings treated or non-treated with an HSP70 inhibitor. Fluorescent probes were used to evaluate vascular oxidative stress and nitric oxide levels. We report that middle-aged rats have significantly lower levels of HSP70. Blockade of HSP70 attenuated vascular phasic and tonic contraction in isolated aortas. It appears that a functional HSP70 is required for proper Ca2+ handling as inhibition of this protein led to reduced force-displacement in response to Ca2+ dynamics. Furthermore, middle-aged aortic rings exposed to the HSP70 inhibitor display higher reactive oxygen species levels without changes in nitric oxide. In summary, we show that middle-aged animals have lower levels of HSP70 in aortas, which associates with an age-related decline in vascular responses to α-1 adrenergic stimulation.
Collapse
Affiliation(s)
- Amanda A. de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Valentina O. Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208, USA
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208, USA
| | - Kenia P. Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
2
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
3
|
de Oliveira AA, Priviero F, Tostes RC, Webb RC, Nunes KP. Dissecting the interaction between HSP70 and vascular contraction: role of [Formula: see text] handling mechanisms. Sci Rep 2021; 11:1420. [PMID: 33446873 PMCID: PMC7809064 DOI: 10.1038/s41598-021-80966-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.
Collapse
Affiliation(s)
- Amanda A. de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia P. Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| |
Collapse
|
4
|
An additional physiological role for HSP70: Assistance of vascular reactivity. Life Sci 2020; 256:117986. [PMID: 32585245 DOI: 10.1016/j.lfs.2020.117986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
AIMS HSP70, a molecular chaperone, helps to maintain proteostasis. In muscle biology, however, evidence suggests HSP70 to have a more versatile range of functions, as genetic deletion of its inducible genes impairs Ca2+ handling, and consequently, cardiac and skeletal muscle contractility. Still, it is unknown whether HSP70 is involved in vascular reactivity, an intrinsic physiological mechanism of blood vessels. Therefore, we designed this study to test the hypothesis that proper vascular reactivity requires the assistance of HSP70. MAIN METHODS We performed functional studies in a wire-myograph using thoracic aorta isolated from male Sprague Dawley rats. Experiments were conducted with and without an HSP70 inhibitor as well as in heat-stressed vessels. The expression levels of HSP70 were evaluated with Western blotting. NO and ROS levels were assessed with fluorescence microscopy. KEY FINDINGS We report that blockade of HSP70 weakens contraction in response to phenylephrine (dose-response) in the aorta. Additionally, we demonstrated that inhibition of HSP70 affects the amplitude of the fast and of the slow components of the time-force curve. Corroborating these findings, we found that inhibition of HSP70, in vessels over-expressing this protein, partly rescues the contractile phenotype of aortic rings. Furthermore, we show that blockade of HSP70 facilitates relaxation in response to acetylcholine and clonidine without affecting the basal levels of NO and ROS. SIGNIFICANCE Our work introduces an additional physiological role for HSP70, the assistance of vascular reactivity, which highlights this protein as a new player in vascular physiology, and therefore, uncovers a promising research avenue for vascular diseases.
Collapse
|
5
|
Lee DH, Kulkarni KP, Kim BO, Seok YM, Song JT, Lee JD. Comparative assessment of quality characteristics of Chungkookjang made from soybean seeds differing in oleic acid concentration. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
6
|
Kim YH, Hwang JH, Kim KS, Noh JR, Gang GT, Oh WK, Jeong KH, Kwak TH, Choi HS, Lee IK, Lee CH. Enhanced activation of NAD(P)H: quinone oxidoreductase 1 attenuates spontaneous hypertension by improvement of endothelial nitric oxide synthase coupling via tumor suppressor kinase liver kinase B1/adenosine 5'-monophosphate-activated protein kinase-mediated guanosine 5'-triphosphate cyclohydrolase 1 preservation. J Hypertens 2014; 32:306-17. [PMID: 24241058 DOI: 10.1097/hjh.0000000000000018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS Guanosine 5'-triphosphate cyclohydrolase-1 (GTPCH-1) is a rate-limiting enzyme in de-novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for endothelial nitric oxide synthase (eNOS) coupling. Adenosine 5'-monophosphate-activated protein kinase (AMPK) is crucial for GTPCH-1 preservation, and tumor suppressor kinase liver kinase B1 (LKB1), an upstream kinase of AMPK, is activated by NAD-dependent class III histone deacetylase sirtuin 1 (SIRT1)-mediated deacetylation. β-Lapachone has been shown to increase cellular NAD/NADH ratio via NAD(P)H quinone oxidoreductase 1 (NQO1) activation. In this study, we have evaluated whether β-lapachone-induced NQO1 activation modulates blood pressure (BP) through preservation of GTPCH-1 in a hypertensive animal model. METHODS AND RESULTS Spontaneously hypertensive rats (SHRs), primary aortic endothelial cells, and endothelial cell line were used to investigate the hypotensive effect of β-lapachone and its action mechanism. β-Lapachone treatment dramatically lowered BP and vascular tension in SHRs and induced eNOS activation in endothelial cells. Consistent with these effects, β-lapachone treatment also elevated levels of both aortic cGMP and plasma nitric oxide in SHRs. Meanwhile, β-lapachone-treated SHRs showed significantly increased levels of aortic NAD, LKB1 deacetylation, and AMPK Thr phosphorylation followed by increased GTPCH-1 and tetrahydrobiopterin/dihydrobiopterin ratio. In-vitro study revealed that AMPK inhibition by overexpression of dominant-negative AMPK nearly abolished GTPCH-1 protein conservation. Enhanced LKB1 deacetylation and AMPK activation were also elicited by β-lapachone in endothelial cells. However, inhibition of LKB1 deacetylation by blocking of NQO1 or SIRT1 blunted AMPK activation by β-lapachone. CONCLUSION This is the first study demonstrating that eNOS coupling can be regulated by NQO1 activation via LKB1/AMPK/GTPCH-1 modulation, which is possibly correlated with relieving hypertension. These findings provide strong evidence to suggest that NQO1 might be a new therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yong-Hoon Kim
- aLaboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon bKorea Bioactive Natural Material Bank, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul cDiabetes and Metabolic Disease Research Center, Lee Gil Ya Cancer & Diabetes Institute, Gachon University of Medicine, Incheon dKT&G Life Sciences Corporation/R&D Center, Suwon eHormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju fDepartment of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Seok YM, Kim HY, Garmaa O, Cha BY, Woo JT, Kim IK. Effects of magnolol on vascular contraction in rat aortic rings. Clin Exp Pharmacol Physiol 2011; 39:28-36. [DOI: 10.1111/j.1440-1681.2011.05629.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Kim JG, Sung HJ, Ok SH, Kwon SC, Cheon KS, Kim HJ, Chang KC, Shin IW, Lee HK, Chung YK, Sohn JT. Calcium sensitization involved in dexmedetomidine-induced contraction of isolated rat aorta. Can J Physiol Pharmacol 2011; 89:681-9. [DOI: 10.1139/y11-065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dexmedetomidine, a full agonist of the α2B-adrenoceptor that is mainly involved in vascular smooth muscle contraction, is primarily used for analgesia and sedation in intensive care units. High-dose dexmedetomidine produces hypertension in children and adults. The goal of this in vitro study was to investigate the role of the calcium (Ca2+) sensitization mechanism involving Rho-kinase, protein kinase C (PKC), and phosphoinositide 3-kinase (PI3-K) in mediating contraction of isolated rat aortic smooth muscle in response to dexmedetomidine. The effect of dexmedetomidine on the intracellular Ca2+ level ([Ca2+]i) and tension was measured simultaneously. Dexmedetomidine concentration–response curves were generated in the presence or absence of the following antagonists: rauwolscine, Y 27632, LY 294002, GF 109203X, and verapamil. Dexmedetomidine-induced phosphorylation of PKC and membrane translocation of Rho-kinase were detected with Western blotting. Rauwolscine, Y 27632, GF 109203X, LY 294002, and verapamil attenuated dexmedetomidine-induced contraction. The slope of the [Ca2+]i–tension curve for dexmedetomidine was higher than that for KCl. Dexmedetomidine induced phosphorylation of PKC and membrane translocation of Rho-kinase. These results suggest that dexmedetomidine-induced contraction involves a Ca2+ sensitization mechanism mediated by Rho-kinase, PKC, and PI3-K that is secondary to α2-adrenoceptor stimulation in rat aortic smooth muscle.
Collapse
Affiliation(s)
- Jae-Gak Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju 660-702, Korea
| | - Hui-Jin Sung
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju 660-702, Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju 660-702, Korea
| | - Seong-Chun Kwon
- Department of Physiology, Kwandong University College of Medicine, Kangneung 201-701, Korea
| | - Kwang Seong Cheon
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju 660-702, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Korea
| | - Ki Churl Chang
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-772, Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Heon-Keun Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Young-Kyun Chung
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-702, Korea
| |
Collapse
|
9
|
Kim YH, Hwang JH, Noh JR, Gang GT, Kim DH, Son HY, Kwak TH, Shong M, Lee IK, Lee CH. Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity. Cardiovasc Res 2011; 91:519-27. [PMID: 21502369 DOI: 10.1093/cvr/cvr110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Hypertension is one of the most common human diseases worldwide, and extensive research efforts are focused upon the identification and utilizing of novel therapeutic drug targets. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is an important regulator of blood pressure (BP). β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase (NQO1), increases the cellular NAD(+)/NADH ratio via the activation of NQO1. In this study, we evaluated whether βL-induced activation of NQO1 modulates BP in an animal model of hypertension. METHODS AND RESULTS Spontaneously hypertensive rats (SHR), primary human aortic endothelial cells (HAEC), and endothelial cell lines were used to investigate the hypotensive effect of βL and its mode of action. βL treatment stimulated endothelium-dependent vascular relaxation in response to acetylcholine in aorta of SHR and dramatically lowered BP in SHR, but the hypotensive effect was completely blocked by eNOS inhibition with ω-nitro-l-arginine methyl ester. Aortic eNOS phosphorylation and eNOS protein expression were significantly increased in βL-treated SHR. In vitro studies revealed that βL treatment elevated the intracellular NAD(+)/NADH ratio and concentration of free Ca(2+) ([Ca(2+)]i), and resulted in Akt/AMP-activated protein kinase/eNOS activation. These effects were abolished by NQO1 siRNA and [Ca(2+)]i inhibition through a ryanodine receptor blockade. CONCLUSION This study is the first to demonstrate that NQO1 activation has a hypotensive effect mediated by eNOS activation via cellular NAD(+)/NADH ratio modulation in an animal model. These results provide strong evidence suggesting NQO1 might be a new therapeutic target for hypertension.
Collapse
Affiliation(s)
- Yong-Hoon Kim
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Seok YM, Jin F, Shin HM, Sung SH, Sohn UD, Cho JY, Kim IK. HMC05 attenuates vascular contraction through inhibition of RhoA/Rho-kinase signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:484-489. [PMID: 20965238 DOI: 10.1016/j.jep.2010.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/13/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY HMC05, an extract from eight different herbal mixtures, has been developed to treat cardiovascular disease. This extract has a vasorelaxant and anti-atherosclerotic action. We hypothesized that HMC05 attenuates vascular contraction through inhibition of the RhoA/Rho-kinase signaling pathway. MATERIALS AND METHODS Rat aortic ring preparations were mounted in organ baths and subjected to contraction and relaxation. Phosphorylation of 20 kDa myosin light chains (MLC(20)) and myosin phosphatase targeting subunit 1 (MYPT1) were examined by immunoblot. We also measured the amount of GTP RhoA as a marker for RhoA activation. RESULTS In endothelium-denuded aortic ring preparations, HMC05 relaxed vascular contraction induced by 6.0 mM NaF, 100 nM phenylephrine, 30 nM thromboxane A(2) agonist U46619 or 1.0 μM protein kinase C (PKC) activator phorbol-12,13-dibutyrate (PDBu) in a decreasing order. HMC05 relaxed aortic ring preparations precontracted with sodium fluoride (NaF) whether endothelium was intact or denuded. Pre-incubation with HMC05 for 30 min dose-dependently inhibited the NaF-induced contractile response. In vascular strips, HMC05 decreased the phosphorylation level of both MLC(20) and MYPT1(Thr855) induced by 6.0 mM NaF. Furthermore, HMC05 decreased the amount of GTP RhoA activated by NaF. CONCLUSIONS HMC05 attenuates vascular contraction through inhibition of the RhoA/Rho-kinase signaling pathway. HMC05 may be useful for the treatment and/or prevention of cardiovascular diseases associated with activation of RhoA/Rho-kinase signaling pathway.
Collapse
Affiliation(s)
- Young Mi Seok
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Seok YM, Choi YW, Kim GD, Kim HY, Takuwa Y, Kim IK. Effects of gomisin A on vascular contraction in rat aortic rings. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:45-56. [DOI: 10.1007/s00210-010-0571-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/08/2010] [Indexed: 01/06/2023]
|
12
|
Kim JI, Jung SW, Yang E, Park KM, Eto M, Kim IK. Heat shock augments angiotensin II-induced vascular contraction through increased production of reactive oxygen species. Biochem Biophys Res Commun 2010; 399:452-7. [PMID: 20688045 DOI: 10.1016/j.bbrc.2010.07.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
A temporal increase in temperature triggers a series of stress responses and alters vascular smooth muscle (VSM) contraction induced by agonist stimulation. Here we examined the role of reactive oxygen species (ROS) in heat shock-dependent augmentation of angiotensin II (AngII)-induced VSM contraction. Endothelium-denuded rat aortic rings were treated with heat shock for 45 min at 42 degrees C and then subjected to assays for the production of force, ROS, and the expression of ROS-related enzymes. AngII-induced contraction was enhanced in heat shock-treated aorta. AngII-induced production of hydrogen peroxide and superoxide were elevated in response to the heat shock treatment. Pre-treatment with superoxide dismutases (SOD) mimetic and inhibitors for glutathione peroxidase and NADPH oxidase but not for xanthine oxidase eliminated an increase in the AngII-induced contraction in the heat shock-treated aorta. Heat shock increased the expression of p47phox, a cytosolic subunit of NADPH oxidase, but not Cu-Zn-SOD and Mn-SOD. In addition, heat shock increased contraction that was evoked by hydrogen peroxide and pyrogallol. These results suggest that heat shock causes an elevation of ROS as well as a sensitization of ROS signal resulting in an augmentation of VSM contraction in response to agonist.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Pharmacology and Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Seok YM, Baek I, Kim YH, Jeong YS, Lee IJ, Shin DH, Hwang YH, Kim IK. Isoflavone attenuates vascular contraction through inhibition of the RhoA/Rho-kinase signaling pathway. J Pharmacol Exp Ther 2008; 326:991-8. [PMID: 18577703 DOI: 10.1124/jpet.108.138529] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoflavones decrease blood pressure, improve lipid profiles, and restore vascular function. We hypothesized that isoflavone attenuates vascular contraction by inhibiting RhoA/Rho-kinase signaling pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with 11,9 epoxymethano-prostaglandin F(2alpha) (U46619), a thromboxane A2 analog, or KCl 30 min after the pretreatment with genistein (4',5,7-trihydroxyisoflavone), daidzein (4',7-dihydroxyisoflavone), or vehicle. We determined the phosphorylation level of the myosin light chain (MLC(20)), myosin phosphatase-targeting subunit 1 (MYPT1), and protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light-chain phosphatase of 17 kDa (CPI17) by means of the Western blot. We also measured the amount of GTP RhoA as a marker regarding RhoA activation. The cumulative additions of U46619 or KCl increased vascular tension in a concentration-dependent manner, which were inhibited by pretreatment with genistein or daidzein. Both U46619 (30 nM) and KCl (50 mM) increased MLC(20) phosphorylation levels, which were inhibited by genistein and daidzein. Furthermore, both genistein and daidzein decreased the amount of GTP RhoA activated by either U46619 or KCl. U46619 (30 nM) increased phosphorylation of the MYPT1(Thr855) and CPI17(Thr38), which were also inhibited by genistein or daidzein. However, neither genistein nor daidzein inhibited phorbol 12,13-dibutyrate-induced vascular contraction and CPI17 phosphorylation. In conclusion, isoflavone attenuates vascular contraction, at least in part, through inhibition of the RhoA/Rho-kinase signaling pathway.
Collapse
Affiliation(s)
- Young Mi Seok
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim JI, Jeon SB, Baek I, Seok YM, Shin HM, Kim IK. Heat shock augments myosin phosphatase target-subunit phosphorylation. Biochem Biophys Res Commun 2007; 356:718-22. [PMID: 17382904 DOI: 10.1016/j.bbrc.2007.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 03/07/2007] [Indexed: 11/19/2022]
Abstract
Our previous study demonstrated that heat shock augmented vascular contraction. In the present study, we hypothesized that heat shock augments myosin phosphatase target-subunit (MYPT1) phosphorylation resulting in augmented vascular contraction. Endothelium-denuded rat aortic rings were mounted in organ baths, exposed to heat shock (42 degrees C for 45 min), and subjected to contraction 4 h after the heat shock followed by Western blot analysis for MLC(20) (the 20 kDa light chains of myosin II) or MYPT1. The contractile responses in both control and heat shock-treated aorta were inhibited by Y27632, an inhibitor of Rho-kinase. The level of the MLC(20) and MYPT1(Thr855) phosphorylation in response to KCl was higher in heat shock-treated aorta than that in timed-control. The increased MYPT1(Thr855) phosphorylation was inhibited by Y27632 (1.0 microM) in parallel with inhibition of MLC(20) phosphorylation and vascular contraction. These results indicate that heat shock augments MYPT1 phosphorylation resulting in augmented vascular contraction.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|