1
|
Zhuang XL, Zhu ZL, Huang QH, Yan FR, Zheng SY, Lai SM, Jiao HX, Lin MJ. High magnesium mitigates the vasoconstriction mediated by different types of calcium influx from monocrotaline-induced pulmonary hypertensive rats. Exp Physiol 2022; 107:359-373. [PMID: 35193162 DOI: 10.1113/ep090029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to examine and explore the involvement of Mg2+ in mitigating the vasoconstriction in PAs and sPAs in the MCT-PAH rat model. What are the main finding and its importance? 1.Both SOCE- and ROCE-mediated vasoconstriction enhanced in the MCT-PAH model. 2.High magnesium inhibited vasoconstriction due to directly antagonizing Ca2+ and increasing NO release. 3.The inhibition effect of high magnesium was more notable in sPA. ABSTRACT Increased extracellular magnesium concentration ([Mg2+ ]e ) has been evidenced to attenuate the endothelin-1 (ET-1)-induced contractile response via the release of nitric oxide (NO) from the endothelium in proximal pulmonary arteries (PAs) of chronic hypoxic (CH) mice. Here we further examined the involvement of Mg2+ in the inhibition of vasoconstriction in PAs and distal smaller pulmonary arteries (sPAs) in a monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) rat model. The data showed that in control rats, vasoconstriction in sPAs is more intense than that in PAs. In MCT-PAH rats, the store-operated Ca2+ entry (SOCE)-, and receptor-operated Ca2+ entry (ROCE)-mediated contraction was significantly strengthened. However, there was no upregulation of the vasoconstriction mediated by voltage-dependent calcium entry (VDCE). Furthermore, high magnesium greatly inhibited the VDCE-mediated contraction in PAs instead of sPAs, which was opposite to the ROCE-mediated contraction. Moreover, MCT pretreatment partly eliminated the endothelium-dependent vasodilation in PAs, which in sPAs, however, was still promoted by magnesium due to the increased NO release in pulmonary microvascular endothelial cells (PMVECs). In conclusion, the findings suggest that both SOCE- and ROCE-mediated vasoconstriction in the MCT-PAH model are enhanced, especially in sPAs. The inhibition effect of high magnesium on vasoconstriction can be achieved partly by its direct role as a Ca2+ antagonist and partly by increasing the NO release in PMVECs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Ling Zhuang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,Department of Pathology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Provinece, PR China
| | - Zhuang-Li Zhu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Qiu-Hong Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,School of Basic Medicine, Quanzhou Medical College, Quanzhou, Fujian Provinece, PR China
| | - Fu-Rong Yan
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,Center for Molecular Diagnosis and Therapy, Respiratory Medicine Center of Fujian Provinece, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Si-Yi Zheng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Hai-Xia Jiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| |
Collapse
|
2
|
Neumaier F, Kotliar K, Haeren RHL, Temel Y, Lüke JN, Seyam O, Lindauer U, Clusmann H, Hescheler J, Schubert GA, Schneider T, Albanna W. Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice-An in-vivo Evaluation Using Retinal Vessel Analysis (RVA). Front Neurol 2021; 12:659890. [PMID: 33927686 PMCID: PMC8076560 DOI: 10.3389/fneur.2021.659890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Metabolic demand increases with neuronal activity and adequate energy supply is ensured by neurovascular coupling (NVC). Impairments of NVC have been reported in the context of several diseases and may correlate with disease severity and outcome. Voltage-gated Ca2+-channels (VGCCs) are involved in the regulation of vasomotor tone. In the present study, we compared arterial and venous responses to flicker stimulation in Cav2.3-competent (Cav2.3[+/+]) and -deficient (Cav2.3[-/-]) mice using retinal vessel analysis. Methods: The mice were anesthetized and the pupil of one eye was dilated by application of a mydriaticum. An adapted prototype of retinal vessel analyzer was used to perform dynamic retinal vessel analysis. Arterial and venous responses were quantified in terms of the area under the curve (AUCart/AUCven) during flicker application, mean maximum dilation (mMDart/mMDven) and time to maximum dilation (tMDart/tMDven) during the flicker, dilation at flicker cessation (DFCart/DFCven), mean maximum constriction (mMCart/mMCven), time to maximum constriction (tMCart/tMCven) after the flicker and reactive magnitude (RMart/RMven). Results: A total of 33 retinal scans were conducted in 22 Cav2.3[+/+] and 11 Cav2.3[-/-] mice. Cav2.3[-/-] mice were characterized by attenuated and partially reversed arterial and venous responses, as reflected in significantly lower AUCart (p = 0.031) and AUCven (p = 0.047), a trend toward reduced DFCart (p = 0.100), DFCven (p = 0.100), mMDven (p = 0.075), and RMart (p = 0.090) and a trend toward increased tMDart (p = 0.096). Conclusion: To our knowledge, this is the first study using a novel, non-invasive analysis technique to document impairment of retinal vessel responses in VGCC-deficient mice. We propose that Cav2.3 channels could be involved in NVC and may contribute to the impairment of vasomotor responses under pathophysiological conditions.
Collapse
Affiliation(s)
- Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | | | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Osama Seyam
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | - Ute Lindauer
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Tranlational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
4
|
Hashad AM, Sancho M, Brett SE, Welsh DG. Reactive Oxygen Species Mediate the Suppression of Arterial Smooth Muscle T-type Ca 2+ Channels by Angiotensin II. Sci Rep 2018; 8:3445. [PMID: 29472601 PMCID: PMC5823855 DOI: 10.1038/s41598-018-21899-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular T-type Ca2+ channels (CaV3.1 and CaV3.2) play a key role in arterial tone development. This study investigated whether this conductance is a regulatory target of angiotensin II (Ang II), a vasoactive peptide that circulates and which is locally produced within the arterial wall. Patch clamp electrophysiology performed on rat cerebral arterial smooth muscle cells reveals that Ang II (100 nM) inhibited T-type currents through AT1 receptor activation. Blocking protein kinase C failed to eliminate channel suppression, a finding consistent with unique signaling proteins enabling this response. In this regard, inhibiting NADPH oxidase (Nox) with apocynin or ML171 (Nox1 selective) abolished channel suppression highlighting a role for reactive oxygen species (ROS). In the presence of Ni2+ (50 µM), Ang II failed to modulate the residual T-type current, an observation consistent with this peptide targeting CaV3.2. Selective channel suppression by Ang II impaired the ability of CaV3.2 to alter spontaneous transient outward currents or vessel diameter. Proximity ligation assay confirmed Nox1 colocalization with CaV3.2. In closing, Ang II targets CaV3.2 channels via a signaling pathway involving Nox1 and the generation of ROS. This unique regulatory mechanism alters BKCa mediated feedback giving rise to a “constrictive” phenotype often observed with cerebrovascular disease.
Collapse
Affiliation(s)
- Ahmed M Hashad
- Deptartment of Physiology & Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada
| | - Maria Sancho
- Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Suzanne E Brett
- Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Donald G Welsh
- Deptartment of Physiology & Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada. .,Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
5
|
Multiple Actions of Phencyclidine and (+)MK-801 on Isolated Bovine Cerebral Arteries. J Neurosurg Anesthesiol 2017; 30:359-367. [PMID: 29076977 DOI: 10.1097/ana.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study examines the direct effects of 3 noncompetitive N-methyl-D-aspartate receptor antagonists, phencyclidine (PCP), (+)MK-801, and (-)MK-801, on bovine middle cerebral arteries (BMCA). Rings of BMCA were mounted in isolated tissue chambers equipped with isometric tension transducers to obtain pharmacologic dose-response curves. In the absence of endogenous vasoconstrictors, the 3 N-methyl-D-aspartate antagonists each produced direct constriction of BMCA. The thromboxane A2 receptor antagonist SQ-29,548, the TxA2 synthase inhibitor furegrelate, the calcium antagonist nimodipine, and calcium-deficient media all inhibited maximal phencyclidine or (+)MK-801-induced constriction. Direct constriction by PCP or (+)MK-801 was independent of the presence of endothelium. When BMCA were preconstricted with potassium-depolarizing solution, PCP, (+)MK-801, and (-)MK-801 each produced only concentration-dependent relaxation. When BMCA were preconstricted with the stable TxA2 analog U-46,619 and exposed to increasing concentrations of PCP, (+)MK-801, or (-)MK-801, tension increased. Thromboxane A2 may contract BMCA by acting as a potassium channel blocker; iberiotoxin and tetraethylammonium both constrict BMCA. In Ca-deficient media containing either potassium or U-46,619, phencyclidine and (+)MK-801 each produced competitive inhibition of subsequent Ca-induced constriction. In additional experiments, arterial strips were mounted in isolated tissue chambers to directly measure calcium uptake, using Calcium as a radioactive tracer. Both phencyclidine and (+)MK-801 blocked potassium-stimulated or U-46,619-stimulated Ca uptake into arterial strips. These results suggest that phencyclidine and (+)MK-801 have 2 separate actions on BMCA. They may constrict arterial rings by releasing TxA2 from cerebrovascular smooth muscle, and relax arterial rings by acting as calcium antagonists.
Collapse
|
6
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Thuesen AD, Lyngsø KS, Rasmussen L, Stubbe J, Skøtt O, Poulsen FR, Pedersen CB, Rasmussen LM, Hansen PBL. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients. Acta Physiol (Oxf) 2017; 219:640-651. [PMID: 27273014 DOI: 10.1111/apha.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/21/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
AIM Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. METHODS Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. RESULTS The P/Q-type antagonist ω-agatoxin IVA (10-8 mol L-1 ) and the T-type calcium blocker mibefradil (10-7 mol L-1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Cav 2.1), T-type (Cav 3.1 and Cav 3.2) and L-type (Cav 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Cav 2.1 in endothelial and smooth muscle cells. Cav 3.1 was also detected in mammary arteries. CONCLUSION P/Q- and T-type Cav are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients.
Collapse
Affiliation(s)
- A. D. Thuesen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - K. S. Lyngsø
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - L. Rasmussen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - J. Stubbe
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - O. Skøtt
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - F. R. Poulsen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
- Clinical Institute; University of Southern Denmark; Odense Denmark
| | - C. B. Pedersen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - L. M. Rasmussen
- Clinical Institute; University of Southern Denmark; Odense Denmark
- Department of Clinical Biochemistry and Pharmacology; Centre for Individualized Medicine in Arterial Diseases; Odense University Hospital; Odense Denmark
| | - P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
8
|
Pushparaj C, Das A, Purroy R, Nàger M, Herreros J, Pamplona R, Cantí C. Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. Int J Biochem Cell Biol 2015; 68:166-75. [PMID: 26429067 DOI: 10.1016/j.biocel.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/04/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Voltage-gated calcium channel blockers are widely used for the management of cardiovascular diseases, however little is known about their effects on cardiac cells in vitro. We challenged neonatal ventricular cardiomyocytes (CMs) with therapeutic L-type and T-type Ca(2+) channel blockers (nifedipine and mibefradil, respectively), and measured their effects on cell stress and survival, using fluorescent microscopy, Q-PCR and Western blot. Both nifedipine and mibefradil induced a low-level and partially transient up-regulation of three key mediators of the Unfolded Protein Response (UPR), indicative of endoplasmic (ER) reticulum stress. Furthermore, nifedipine triggered the activation of macroautophagy, as evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), decreased levels of polyubiquitin-binding protein p62/SQSTM1 and ubiquitinated protein aggregates, that was followed by cell death. In contrast, mibefradil inhibited CMs constitutive macroautophagy and did not promote cell death. The siRNA-mediated gene silencing approach confirmed the pharmacological findings for T-type channels. We conclude that L-type and T-type Ca(2+) channel blockers induce ER stress, which is divergently transduced into macroautophagy induction and inhibition, respectively, with relevance for cell viability. Our work identifies VGCCs as novel regulators of autophagy in the heart muscle and provides new insights into the effects of VGCC blockers on CMs homeostasis, that may underlie both noxious and cardioprotective effects.
Collapse
Affiliation(s)
- Charumathi Pushparaj
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Arindam Das
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Rosa Purroy
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Mireia Nàger
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Judit Herreros
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Reinald Pamplona
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Carles Cantí
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain.
| |
Collapse
|
9
|
Hansen PBL. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R227-37. [DOI: 10.1152/ajpregu.00276.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However, the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3.2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several cardiovascular pathologies, but the use of T-type blockers should be specifically directed to the disease and to the channel subtype.
Collapse
Affiliation(s)
- Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
10
|
Mamo YA, Angus JA, Ziogas J, Soeding PF, Wright CE. The role of voltage-operated and non-voltage-operated calcium channels in endothelin-induced vasoconstriction of rat cerebral arteries. Eur J Pharmacol 2014; 742:65-73. [PMID: 25218985 DOI: 10.1016/j.ejphar.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
Endothelin-1 has been identified as a potential mediator in the pathogenesis of ischaemic stroke and cerebral vasospasm. The aim of this study was to analyse the role of voltage-operated calcium channels (VOCC) and non-VOCC in endothelin-1 induced vasoconstriction of rat cerebral arteries. Arterial segments were dissected from different regions of the cerebral circulation and responses assessed using wire myography. Endothelin-1 concentration-contraction curves were constructed in calcium-free medium or in the presence of nifedipine, NNC 55-0396 ((1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride) or SK&F 96365 (1-(2-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenylethyl)-1H-imidazole) to inhibit the l-type VOCC, T-type VOCC and non-VOCC, respectively. Inhibition of the calcium channels or removal of calcium from the medium variably decreased the maximum effects (Emax) of endothelin-1, however its potency (pEC50) was unaltered. Endothelin-1 caused a small contraction (<22%) in calcium-free solution. Pre-treatment with nifedipine (1µM) did not affect responses to low concentrations of endothelin-1 but decreased Emax, while NNC 55-0396 (1µM) and SK&F 96365 (30-100µM) generally attenuated the endothelin-1-induced contraction. Combination of nifedipine with SK&F 96365 further decreased the Emax. The relaxant effect of the calcium channel antagonists was also assessed in pre-contracted arteries. Only nifedipine and SK&F 96365 relaxed the arteries pre-contracted with endothelin-1. In conclusion, VOCC and non-VOCC calcium channels are involved in different phases of the endothelin-1 contraction in rat cerebral vessels. T-type VOCC may be involved in contraction induced by low concentrations of endothelin-1, while l-type VOCC mediate the maintenance phase of contraction. VOCC and non-VOCC may work in concert in mediating contraction induced by endothelin-1.
Collapse
Affiliation(s)
- Yohannes A Mamo
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James Ziogas
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Paul F Soeding
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
11
|
T-type Ca2+ channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflugers Arch 2014; 466:2205-14. [DOI: 10.1007/s00424-014-1492-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
|
12
|
Role of T-type channels in vasomotor function: team player or chameleon? Pflugers Arch 2014; 466:767-79. [PMID: 24482062 DOI: 10.1007/s00424-013-1430-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 01/28/2023]
Abstract
Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of isolated vascular smooth muscle cells have in general failed to demonstrate these low-voltage-activated calcium currents. By contrast, the channels which are blocked by T-type channel antagonists are high-voltage activated but distinguishable from their L-type counterparts by their T-type biophysical properties and small negative shifts in activation and inactivation voltages. These changes in T-channel properties may result from vascular-specific expression of splice variants of Cav3 genes, particularly in exon 25/26 of the III-IV linker region. Recent physiological studies suggest that T-type channels make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited to the plasma membrane, coupled with their subtype-specific localisation in signalling microdomains where they could modulate the function of calcium-dependent ion channels and pathways, provides a mechanism for rapid up- and downregulation of vasoconstriction. Future investigation into the molecules which govern these changes may illuminate novel targets for the treatment of conditions such as therapy-resistant hypertension and vasospasm.
Collapse
|
13
|
Shi X, Fu Y, Liao D, Chen Y, Liu J. Alterations of voltage-dependent calcium channel currents in basilar artery smooth muscle cells at early stage of subarachnoid hemorrhage in a rabbit model. PLoS One 2014; 9:e84129. [PMID: 24392110 PMCID: PMC3879272 DOI: 10.1371/journal.pone.0084129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the changes in the currents of voltage-dependent calcium channels (VDCCs) in smooth muscle cells of basilar artery in a rabbit model of subarachnoid hemorrhage (SAH). Methods New Zealand white rabbits were randomly divided into five groups: sham (C), normal (N), 24 hours (S1), 48 hours (S2) and 72 hours (S3) after SAH. Non-heparinized autologous arterial blood (1ml/kg) was injected into the cisterna magna to create SAH after intravenous anesthesia, and 1 ml/kg of saline was injected into cisterna magna in the sham group. Rabbits in group N received no injections. Basilar artery in S1, S2, S3 group were isolated at 24, 48, 72 hours after SAH. Basilar artery in group C was isolated at 72 hours after physiological saline injection. Basilar artery smooth muscle cells were isolated for all groups. Whole-cell patch-clamp technique was utilized to record cell membrane capacitance and VDCCs currents. The VDCCs antagonist nifedipine was added to the bath solution to block the Ca++ channels currents. Results There were no significant differences in the number of cells isolated, the cell size and membrane capacitance among all the five groups. VDCC currents in the S1–S3 groups had higher amplitudes than those in control and sham groups. The significant change of current amplitude was observed at 72 hours after SAH, which was higher than those of 24 and 48 hours. The VDCCs were shown to expression in human artery smooth muscle cells. Conclusions The changes of activation characteristics and voltage-current relationship at 72 hours after SAH might be an important event which leads to a series of molecular events in the microenvironment of the basilar artery smooth muscle cells. This may be the key time point for potential therapeutic intervention against subarachnoid hemorrhage.
Collapse
MESH Headings
- Animals
- Basilar Artery/drug effects
- Basilar Artery/metabolism
- Basilar Artery/physiopathology
- Blood Pressure
- Body Weight
- Brain/blood supply
- Brain/metabolism
- Calcium Channels/metabolism
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Disease Models, Animal
- Evoked Potentials
- Heart Rate
- Humans
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nifedipine/pharmacology
- Patch-Clamp Techniques
- Rabbits
- Subarachnoid Hemorrhage/metabolism
- Subarachnoid Hemorrhage/physiopathology
Collapse
Affiliation(s)
- Xianqing Shi
- Intensive Care Unit, Guizhou Province People's Hospital, Guiyang, China
| | - Yongjian Fu
- Intensive Care Unit, Guizhou Province People's Hospital, Guiyang, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Medicine, West China hospital, Sichuan University, Chengdou, China
| | - Yanfang Chen
- Laboratory of Anesthesia and Critical Medicine, West China hospital, Sichuan University, Chengdou, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Medicine, West China hospital, Sichuan University, Chengdou, China
- * E-mail:
| |
Collapse
|
14
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
15
|
Harraz OF, Welsh DG. T-Type Ca2+Channels in Cerebral Arteries: Approaches, Hypotheses, and Speculation. Microcirculation 2013; 20:299-306. [DOI: 10.1111/micc.12038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/07/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Osama F. Harraz
- Department of Physiology & Pharmacology; Hotchkiss Brain and Libin Cardiovascular Research Institutes; University of Calgary; Calgary AB Canada
| | - Donald G. Welsh
- Department of Physiology & Pharmacology; Hotchkiss Brain and Libin Cardiovascular Research Institutes; University of Calgary; Calgary AB Canada
| |
Collapse
|
16
|
Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin HS, Hansen PB, Hill CE. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 2013; 98:449-57. [DOI: 10.1093/cvr/cvt043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat 2012; 2012:382146. [PMID: 23251831 PMCID: PMC3518967 DOI: 10.1155/2012/382146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022] Open
Abstract
Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 2012; 304:H58-71. [PMID: 23103495 DOI: 10.1152/ajpheart.00476.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
L-type Ca(2+) channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca(2+) channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca(2+) channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the α(1)-subunit of L-type (Ca(v)1.2) and T-type (Ca(v)3.1 and Ca(v)3.2) Ca(2+) channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba(2+) currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca(2+) channels. The nifedipine-insensitive Ba(2+) current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca(2+) channel inhibitors. Pressure myography revealed that L-type Ca(2+) channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca(2+) channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca(2+) blockade could alter arterial flow by ∼20-50%. Overall, our findings indicate that L- and T-type Ca(2+) channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal.
Collapse
Affiliation(s)
- Rasha R Abd El-Rahman
- Hotchkiss Brain and Libin Cardiovascular Research Institute and Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Queiroz TM, Machado NT, Furtado FF, Oliveira-Filho AA, Alustau MC, Figueiredo CS, Miranda GEC, Barbosa-Filho JM, Braga VA, Medeiros IA. Vasorelaxation, induced by Dictyota pulchella (Dictyotaceae), a brown alga, is mediated via inhibition of calcium influx in rats. Mar Drugs 2011; 9:2075-2088. [PMID: 22073010 PMCID: PMC3210619 DOI: 10.3390/md9102075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the cardiovascular effects elicited by Dictyota pulchella, a brown alga, using in vivo and in vitro approaches. In normotensive conscious rats, CH(2)Cl(2)/MeOH Extract (CME, 5, 10, 20 and 40 mg/kg) from Dictyota pulchella produced dose-dependent hypotension (-4 ± 1; -8 ± 2; -53 ± 8 and -63 ± 3 mmHg) and bradycardia (-8 ± 6; -17 ± 11; -257 ± 36 and -285 ± 27 b.p.m.). In addition, CME and Hexane/EtOAc Phase (HEP) (0.01-300 μg/mL) from Dictyota pulchella induced a concentration-dependent relaxation in phenylephrine (Phe, 1 μM)-pre-contracted mesenteric artery rings. The vasorelaxant effect was not modified by the removal of the vascular endothelium or pre-incubation with KCl (20 mM), tetraethylammonium (TEA, 3 mM) or tromboxane A(2) agonist U-46619 (100 nM). Furthermore, CME and HEP reversed CaCl(2)-induced vascular contractions. These results suggest that both CME and HEP act on the voltage-operated calcium channel in order to produce vasorelaxation. In addition, CME induced vasodilatation after the vessels have been pre-contracted with L-type Ca(2+) channel agonist (Bay K 8644, 200 nM). Taken together, our data show that CME induces hypotension and bradycardia in vivo and that both CME and HEP induce endothelium-independent vasodilatation in vitro that seems to involve the inhibition of the Ca(2+) influx through blockade of voltage-operated calcium channels.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Biological Products/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Dose-Response Relationship, Drug
- Male
- Muscle, Smooth, Vascular/drug effects
- Phaeophyceae/chemistry
- Phenylephrine/pharmacology
- Potassium Chloride/pharmacology
- Rats
- Rats, Wistar
- Tetraethylammonium/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Thyago M. Queiroz
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Natália T. Machado
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Fabíola F. Furtado
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Abrahão A. Oliveira-Filho
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Maria C. Alustau
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Camila S. Figueiredo
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - George E. C. Miranda
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - José M. Barbosa-Filho
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Valdir A. Braga
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| | - Isac A. Medeiros
- Biotechnology Center, Federal University of Paraiba, João Pessoa, PB 58.051-900, Brazil; E-Mails: (T.M.Q.); (N.T.M.); (F.F.F.); (A.A.O.-F); (M.C.A); (C.S.F.); (G.E.C.M.); (J.M.B.-F.); (I.A.M.)
| |
Collapse
|
20
|
Mani BK, Brueggemann LI, Cribbs LL, Byron KL. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br J Pharmacol 2011; 164:237-49. [PMID: 21323904 PMCID: PMC3174403 DOI: 10.1111/j.1476-5381.2011.01273.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/03/2010] [Accepted: 01/12/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebral vasospasm is the persistent constriction of large conduit arteries in the base of the brain. This pathologically sustained contraction of the arterial myocytes has been attributed to locally elevated concentrations of vasoconstrictor agonists (spasmogens). We assessed the presence and function of KCNQ (K(v) 7) potassium channels in rat basilar artery myocytes, and determined the efficacy of K(v) 7 channel activators in relieving spasmogen-induced basilar artery constriction. EXPERIMENTAL APPROACH Expression and function of K(v) 7 channels in freshly isolated basilar artery myocytes were evaluated by reverse transcriptase polymerase chain reaction and whole-cell electrophysiological techniques. Functional responses to K(v) 7 channel modulators were studied in intact artery segments using pressure myography. KEY RESULTS All five mammalian KCNQ subtypes (KCNQ1-5) were detected in the myocytes. K(v) currents were attributed to K(v) 7 channel activity based on their voltage dependence of activation (V(0.5) ∼-34 mV), lack of inactivation, enhancement by flupirtine (a selective K(v) 7 channel activator) and inhibition by 10,10-bis(pyridin-4-ylmethyl)anthracen-9-one (XE991; a selective K(v) 7 channel blocker). XE991 depolarized the myocytes and constricted intact basilar arteries. Celecoxib, a clinically used anti-inflammatory drug, not only enhanced K(v) 7 currents but also inhibited voltage-sensitive Ca(2+) currents. In arteries pre-constricted with spasmogens, both celecoxib and flupirtine were more effective in dilating artery segments than was nimodipine, a selective L-type Ca(2+) channel blocker. CONCLUSIONS AND IMPLICATIONS K(v) 7 channels are important determinants of basilar artery contractile status. Targeting the K(v) 7 channels using flupirtine or celecoxib could provide a novel strategy to relieve basilar artery constriction in patients with cerebral vasospasm. LINKED ARTICLES To view two letters to the Editor regarding this article visit http://dx.doi.org/10.1111/j.1476-5381.2011.01454.x and http://dx.doi.org/10.1111/j.1476-5381.2011.01457.x.
Collapse
Affiliation(s)
- Bharath K Mani
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
21
|
Carlson BE, Beard DA. Mechanical control of cation channels in the myogenic response. Am J Physiol Heart Circ Physiol 2011; 301:H331-43. [PMID: 21572020 DOI: 10.1152/ajpheart.00131.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculatory vessel response to changes in pressure, known as the myogenic response, is a key component of a tissue's ability to regulate blood flow. Experimental studies have not clearly elucidated the mechanical signal in the vessel wall governing steady-state reduction in vessel diameter upon an increase in intraluminal pressure. In this study, a multiscale computational model is constructed from established models of vessel wall mechanics, vascular smooth muscle (VSM) force generation, and VSM Ca(2+) handling and electrophysiology to compare the plausibility of vessel wall stress or strain as an effective mechanical signal controlling steady-state vascular contraction in the myogenic response. It is shown that, at the scale of a resistance vessel, wall stress, and not stretch (strain), is the likely physiological signal controlling the steady-state myogenic response. The model is then used to test nine candidate VSM stress-controlled channel variants by fitting two separate sets of steady-state myogenic response data. The channel variants include nonselective cation (NSC), supplementary Ca(2+) and Na(+), L-type Ca(2+), and large conductance Ca(2+)-activated K(+) channels. The nine variants are tested in turn, and model fits suggest that stress control of Ca(2+) or Na(+) influx through NSC, supplementary Ca(2+) or Na(+), or L-type Ca(2+) channels is sufficient to produce observed steady-state diameter changes with pressure. However, simulations of steady-state VSM membrane potential, cytosolic Ca(2+), and Na(+) with pressure show only that Na(+) influx through NSC channel also generates known trends with increasing pressure, indicating that stress-controlled Na(+) influx through NSC is sufficient to generate the myogenic response.
Collapse
Affiliation(s)
- Brian E Carlson
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53213, USA
| | | |
Collapse
|
22
|
Wölfle SE, Chaston DJ, Goto K, Sandow SL, Edwards FR, Hill CE. Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J Physiol 2011; 589:2607-23. [PMID: 21486765 DOI: 10.1113/jphysiol.2010.202580] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Blood flow is adjusted to tissue demand through rapidly ascending vasodilatations resulting from conduction of hyperpolarisation through vascular gap junctions. We investigated how these dilatations can spread without attenuation if mediated by an electrical signal. Cremaster muscle arterioles were studied in vivo by simultaneously measuring membrane potential and vessel diameter. Focal application of acetylcholine elicited hyperpolarisations which decayed passively with distance from the local site,while dilatation spread upstream without attenuation. Analysis of simultaneous recordings at the local site revealed that hyperpolarisation and dilatation were only linearly related over a restricted voltage range to a threshold potential, beyond which dilatation was maximal. Experimental data could be simulated in a computational model with electrotonic decay of hyperpolarisation but imposition of this threshold. The model was tested by reducing the amplitude of the local hyperpolarisation which led to entry into the linear range closer to the local site and decay of dilatation. Serial section electron microscopy and light dye treatment confirmed that the spread of dilatation occurred through the endothelium and that the two cell layers were tightly coupled. Generality of the mechanism was demonstrated by applying the model to the attenuated propagation of dilatation found in larger arteries.We conclude that long distance spread of locally initiated dilatations is not due to a regenerative electrical phenomenon, but rather a restricted linear relationship between voltage and vessel tone, which minimises the impact of electrotonic decay of voltage. Disease-related alterations in endothelial coupling or ion channel expression could therefore decrease the ability to adjust blood flow to meet metabolic demand.
Collapse
Affiliation(s)
- Stephanie E Wölfle
- John Curtin School of Medical Research, GPO Box 334, Australian National University, Canberra, ACT, 2601, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Kuo IYT, Wölfle SE, Hill CE. T-type calcium channels and vascular function: the new kid on the block? J Physiol 2010; 589:783-95. [PMID: 21173074 DOI: 10.1113/jphysiol.2010.199497] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While L-type voltage-dependent calcium channels have long been considered the predominant source of calcium for myogenic constriction, recent studies of both cerebral and systemic circulations have provided evidence for the prominent expression of other members of the voltage-dependent calcium channel family, in particular the low voltage activated T-type channels. Although physiological studies have not supported the involvement of a classical low voltage activated, T-type channel in vascular function, evidence is accumulating that points to the involvement of a non-L-type, high voltage activated channel with sensitivity to T-type channel antagonists. We propose that this may arise due to expression of a T-type channel splice variant with unique biophysical characteristics resulting in a more depolarised profile. Expression of these channels in smooth muscle cells would broaden the voltage range over which sustained calcium influx occurs, while expression of T-type channels in endothelial cells could provide a feedback mechanism to prevent excessive vasoconstriction. Perturbation of this balance during pathophysiological conditions by upregulation of channel expression and endothelial dysfunction could contribute to vasospastic conditions and therapy-refractory hypertension.
Collapse
Affiliation(s)
- Ivana Y-T Kuo
- Department of Neuroscience, John Curtin School of Medical Research, GPO Box 334, Canberra, ACT, Australia 0200
| | | | | |
Collapse
|
24
|
McNeish AJ, Jimenez Altayo F, Garland CJ. Evidence both L-type and non-L-type voltage-dependent calcium channels contribute to cerebral artery vasospasm following loss of NO in the rat. Vascul Pharmacol 2010; 53:151-9. [PMID: 20601125 PMCID: PMC3191278 DOI: 10.1016/j.vph.2010.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/01/2010] [Accepted: 06/12/2010] [Indexed: 11/25/2022]
Abstract
We recently found block of NO synthase in rat middle cerebral artery caused spasm, associated with depolarizing oscillations in membrane potential (Em) similar in form but faster in frequency (circa 1 Hz) to vasomotion. T-type voltage-gated Ca2+ channels contribute to cerebral myogenic tone and vasomotion, so we investigated the significance of T-type and other ion channels for membrane potential oscillations underlying arterial spasm. Smooth muscle cell membrane potential (Em) and tension were measured simultaneously in rat middle cerebral artery. NO synthase blockade caused temporally coupled depolarizing oscillations in cerebrovascular Em with associated vasoconstriction. Both events were accentuated by block of smooth muscle BKCa. Block of T-type channels or inhibition of Na+/K+-ATPase abolished the oscillations in Em and reduced vasoconstriction. Oscillations in Em were either attenuated or accentuated by reducing [Ca2+]o or block of KV, respectively. TRAM-34 attenuated oscillations in both Em and tone, apparently independent of effects against KCa3.1. Thus, rapid depolarizing oscillations in Em and tone observed after endothelial function has been disrupted reflect input from T-type calcium channels in addition to L-type channels, while other depolarizing currents appear to be unimportant. These data suggest that combined block of T and L-type channels may represent an effective approach to reverse cerebral vasospasm.
Collapse
Affiliation(s)
- A J McNeish
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
25
|
Kuo IY, Ellis A, Seymour VAL, Sandow SL, Hill CE. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 2010; 30:1226-39. [PMID: 20125181 PMCID: PMC2949209 DOI: 10.1038/jcbfm.2010.11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although dihydropyridines are widely used for the treatment of vasospasm, their effectiveness is questionable, suggesting that other voltage-dependent calcium channels (VDCCs) contribute to control of cerebrovascular tone. This study therefore investigated the role of dihydropyridine-insensitive VDCCs in cerebrovascular function. Using quantitative PCR and immunohistochemistry, we found mRNA and protein for L-type (Ca(V)1.2) and T-type (Ca(V)3.1 and Ca(V)3.2) channels in adult rat basilar and middle cerebral arteries and their branches. Immunoelectron microscopy revealed both L- and T-type channels in smooth muscle cell (SMC) membranes. Using patch clamp electrophysiology, we found that a high-voltage-activated calcium current, showing T-type channel kinetics and insensitivity to nifedipine and nimodipine, comprised approximately 20% of current in SMCs of the main arteries and approximately 45% of current in SMCs from branches. Both components were abolished by the T-type antagonists mibefradil, NNC 55-0396, and efonidipine. Although nifedipine completely blocked vasoconstriction in pressurized basilar arteries, a nifedipine-insensitive constriction was found in branches and this increased in magnitude as vessel size decreased. We conclude that a heterogeneous population of VDCCs contributes to cerebrovascular function, with dihydropyridine-insensitive channels having a larger role in smaller vessels. Sensitivity of these currents to nonselective T-type channel antagonists suggests that these drugs may provide a more effective treatment for therapy-refractory cerebrovascular constriction.
Collapse
Affiliation(s)
- Ivana Y Kuo
- John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
26
|
Wölfle SE, Navarro-Gonzalez MF, Grayson TH, Stricker C, Hill CE. Involvement of nonselective cation channels in the depolarisation initiating vasomotion. Clin Exp Pharmacol Physiol 2010. [DOI: 10.1111/j.1440-1681.2010.05350.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Shcheglovitov A, Vitko I, Bidaud I, Baumgart JP, Navarro-Gonzalez MF, Grayson TH, Lory P, Hill CE, Perez-Reyes E. Alternative splicing within the I-II loop controls surface expression of T-type Ca(v)3.1 calcium channels. FEBS Lett 2008; 582:3765-70. [PMID: 18930057 DOI: 10.1016/j.febslet.2008.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 11/30/2022]
Abstract
Molecular diversity of T-type/Ca(v)3 Ca2+ channels is created by expression of three genes and alternative splicing of those genes. Prompted by the important role of the I-II linker in gating and surface expression of Ca(v)3 channels, we describe here the properties of a novel variant that partially deletes this loop. The variant is abundantly expressed in rat brain, even exceeding transcripts with the complete exon 8. Electrophysiological analysis of the Delta8b variant revealed enhanced current density compared to Ca(v)3.1a, but similar gating. Luminometry experiments revealed an increase in the expression of Delta8b channels at the plasma membrane. We conclude that alternative splicing of Ca(v)3 channels regulates surface expression and may underlie disease states in which T-channel current density is increased.
Collapse
|