1
|
Souissi A, Ben Maaouia G, Dergaa I, Ghram A, Ben Saad H. The fat burning ability of melatonin during submaximal exercise. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2157531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Ghazwa Ben Maaouia
- Research Unit Physical Activity, Sport & Health, National Observatory of Sports, Tunis, Tunisia
| | - Ismail Dergaa
- Preventative Health Department, PHCC, Primary Health Care Corporation, Wellness, Doha, Qatar
| | - Amine Ghram
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
2
|
Ren S, Yao C, Liu Y, Feng G, Dong X, Gao B, Qian S. Antioxidants for Treatment of Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. Eur Neurol 2022; 85:377-388. [PMID: 35697003 DOI: 10.1159/000525045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Increasing evidence has shown that oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD). Oxidative stress impairs muscle function, reduces regenerative capacity, and leads to atrophy and muscle weakness. The present study aimed to evaluate the effectiveness and safety of antioxidants in treatment of DMD patients. METHODS Medline, Embase, EBSCOhost, and Cochrane Library databases were searched using relevant keywords regarding DMD and antioxidants. The risk of bias for all included studies was assessed using the Cochrane risk of bias tool. The effectiveness of antioxidants in improving pulmonary function and muscle strength in DMD patients and their rate of adverse events was evaluated by meta-analysis. RESULTS A total of nine eligible studies were identified. Among these, two studies involving 85 patients compared idebenone with placebo. Pooled data showed a significant improvement in pulmonary function after idebenone treatment. Flavonoids- and omega 3-based compounds (FLAVOMEGA) significantly improved muscle strength. Two studies evaluated coenzyme Q10 (CoQ10) and reported clinical improvement in physical activity. The remaining four studies evaluated pentoxifylline, superoxide dismutase, vitamin E combination with penicillamine and penicillamine alone, respectively, and found no significant differences between the intervention and placebo groups, measured by pulmonary function, muscle strength, movement function, or quality of life. Most adverse events were mild, while the rates of dropout and serious adverse events were low with respect to antioxidants. CONCLUSIONS Idebenone appeared to be safe and effective in improving pulmonary function in DMD patients, while pentoxifylline, superoxide dismutase, penicillamine, or a combination of vitamin E with penicillamine did not show a significant therapeutic effect. CoQ10 and FLAVOMEGA might be beneficial in improving muscle strength or physical activity in DMD patients. However, additional trials with more participants are warranted in the future.
Collapse
Affiliation(s)
- Shouchen Ren
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunmei Yao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guoshuang Feng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaohuan Dong
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
3
|
Dudley RWR, Comtois AS, St-Pierre DH, Danialou G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv 2021; 3:639-651. [PMID: 34377959 PMCID: PMC8332474 DOI: 10.1096/fba.2020-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that results in the absence of dystrophin, a cytoskeletal protein. Individuals with this disease experience progressive muscle destruction, which leads to muscle weakness. Studies have been conducted to find solutions for the relief of individuals with this disease, several of which have shown that utrophin, a protein closely related to dystrophin, when overexpressed in mdx neonatal mice (the murine model of DMD), is able to prevent the progressive muscle destruction observed in the absence of dystrophin. Furthermore, recent studies have shown that L‐arginine induces utrophin upregulation in adult mdx mice. We hypothesized that L‐arginine treatment also induces utrophin upregulation to prevent the development of muscle weakness in neonatal mdx mice. Hence, L‐arginine should also prevent progressive muscle destruction via utrophin upregulation in mdx neonatal mice. Mdx neonatal mice were injected intraperitoneally daily with 800 mg/kg of L‐arginine for 6 weeks, whereas control mice were injected with a physiological saline. The following experiments were performed on the tibialis anterior (TA) muscle: muscle contractility and resistance to mechanical stress; central nucleation and peripheral nucleation, utrophin, and creatine kinase quantification as well as a nitric oxide (NO) assay. Our findings show that early administration of L‐arginine in mdx neonatal mice prevents the destruction of the tibialis anterior (TA) muscle. However, this improvement was related to nitric oxide (NO) production rather than the expected utrophin upregulation.
Collapse
Affiliation(s)
- Roy W R Dudley
- Meakins Christie Laboratories McGill University Montreal QC Canada
| | - Alain S Comtois
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada.,Centre de Recherche du CHU Sainte-Justine Montréal QC Canada
| | - Gawiyou Danialou
- Meakins Christie Laboratories McGill University Montreal QC Canada.,Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Royal Military College Saint-Jean Saint-Jean-sur-Richelieu QC Canada
| |
Collapse
|
4
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
5
|
β2-adrenoceptor agonists can both stimulate and inhibit glucose uptake in mouse soleus muscle through ligand-directed signalling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:761-73. [PMID: 23564017 DOI: 10.1007/s00210-013-0860-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
The β-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the β2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle β2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-(14)C]-glucose, β-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 μM), the phosphodiesterase inhibitor rolipram (10 μM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 μM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total β2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the β2-adrenoceptor partly to Gαi, possibly mediated by β2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the β2-adrenoceptor to Gαs. Ligand-directed signalling may explain why β2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.
Collapse
|
6
|
Ding S, Riddoch-Contreras J, Contrevas JR, Abramov AY, Qi Z, Duchen MR. Mild stress of caffeine increased mtDNA content in skeletal muscle cells: the interplay between Ca2+ transients and nitric oxide. J Muscle Res Cell Motil 2012; 33:327-37. [PMID: 22926241 DOI: 10.1007/s10974-012-9318-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
Caffeine increases mitochondrial biogenesis in myotubes by evoking Ca(2+) transients. Nitric oxide (NO) also induces mitochondrial biogenesis in skeletal muscle cells via upregulation of AMP-activated protein kinase (AMPK) activity and PGC-1α. However, the interplay and timing sequence between Ca(2+) transients and NO releases remain unclear. Herein, we tested the hypothesis that caffeine-evoked Ca(2+) transients triggered NO production to increase mtDNA in skeletal muscle cells. Ca(2+) transients were recorded with Fura-2 AM and confocal microscopy; mtDNA staining, mitochondrial membrane potential and NO level were determined using fluorescent probes PicoGreen, tetramethylrhodamine methyl ester (TMRM) and DAF-FM, respectively. In primary cultured myotubes, a subtle and moderate stress of caffeine increased mtDNA exclusively. Mitochondrial membrane potential and mtDNA were increased by 1 mM as well as 5 mM caffeine, whereas 10 mM caffeine did not change the fluorescence intensity of PicoGreen and TMRM. NO level in myocytes increased gradually following the first jump of Ca(2+) transients evoked by caffeine (5 mM) till the end of recording, when Fura-2 indicated that Ca(2+) transients recovered partly and even disappeared. Importantly, nitric oxide synthase (NOS) inhibitor (L-NAME) suppressed caffeine-induced mtDNA biogenesis, whereas NO donor (DETA-NO) increased mtDNA content. These data strongly suggest that caffeine-induced mtDNA biogenesis is dose-sensitive and dependent on a certain level of stress. Further, an increasing level of NO following Ca(2+) transients is required for caffeine-induced mtDNA biogenesis. Additionally, Ca(2+) transients, a usual and first response to caffeine, was either suppressed or attenuated by L-NAME, DETA-NO, AICAR and U0126, suggesting an inability to control [Ca(2+)](i) in these treated cells. There may be an important interplay between NO and Ca(2+) transients in intracellular signaling system involving NOS, AMPK and MEK.
Collapse
Affiliation(s)
- Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, East China Normal University, Shanghai 200241, China.
| | | | | | | | | | | |
Collapse
|
7
|
Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 2012; 30:197-209. [PMID: 22084027 PMCID: PMC3378700 DOI: 10.1002/stem.783] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7+/Myf5− cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. Stem Cells 2012; 30:197–209.
Collapse
Affiliation(s)
- Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
9
|
Martins KJB, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, Putman CT, Michel RN. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol 2012; 590:1427-42. [PMID: 22219342 DOI: 10.1113/jphysiol.2011.223370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering L-NAME (0.75 mg ml(−1)) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day(−1)) of rat fast-twitch muscles (L+Stim; n = 30) and outcomes were compared with control rats receiving only CLFS (Stim; n = 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling.
Collapse
Affiliation(s)
- Karen J B Martins
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Razny U, Kiec-Wilk B, Wator L, Polus A, Dyduch G, Solnica B, Malecki M, Tomaszewska R, Cooke JP, Dembinska-Kiec A. Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance. Cardiovasc Diabetol 2011; 10:68. [PMID: 21781316 PMCID: PMC3212914 DOI: 10.1186/1475-2840-10-68] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background High fat diet impairs nitric oxide (NO) bioavailability, and induces insulin resistance. The link between NO availability and the metabolic adaptation to a high fat diet is not well characterized. The purpose of this study was to investigate the effect of high fat diet on metabolism in mice with decreased (eNOS-/-) and increased (DDAH overexpressed) NO bioavailability. Methods eNOS-/- (n = 16), DDAH (n = 24), and WT (n = 19) mice were fed a high fat diet (HFD) for 13 weeks. Body weight, biochemical parameters, adipokines and insulin were monitored. The matrigel in vivo model with CD31 immunostaining was used to assess angiogenesis. Gene expression in adipose tissues was analyzed by microarray and Real Time PCR. Comparisons of the mean values were made using the unpaired Student t test and p < 0.05 were considered statistically significant. Results eNOS-/- mice gained less weight than control WT and DDAH mice. In DDAH mice, a greater increase in serum adiponectin and a lesser increment in glucose level was observed. Fasting insulin and cholesterol levels remained unchanged. The angiogenic response was increased in DDAH mice. In adipose tissue of DDAH mice, genes characteristic of differentiated adipocytes were down-regulated, whereas in eNOS-/- mice, genes associated with adipogenesis, fatty acid and triglyceride synthesis were upregulated. Conclusions Our results indicate that increased NO availability attenuates some HFD induced alterations in metabolism and gene expression associated with insulin resistance.
Collapse
Affiliation(s)
- Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a Street, 31-501 Cracow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wasserman DH, Kang L, Ayala JE, Fueger PT, Lee-Young RS. The physiological regulation of glucose flux into muscle in vivo. ACTA ACUST UNITED AC 2011; 214:254-62. [PMID: 21177945 DOI: 10.1242/jeb.048041] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Skeletal muscle glucose uptake increases dramatically in response to physical exercise. Moreover, skeletal muscle comprises the vast majority of insulin-sensitive tissue and is a site of dysregulation in the insulin-resistant state. The biochemical and histological composition of the muscle is well defined in a variety of species. However, the functional consequences of muscle biochemical and histological adaptations to physiological and pathophysiological conditions are not well understood. The physiological regulation of muscle glucose uptake is complex. Sites involved in the regulation of muscle glucose uptake are defined by a three-step process consisting of: (1) delivery of glucose to muscle, (2) transport of glucose into the muscle by GLUT4 and (3) phosphorylation of glucose within the muscle by a hexokinase (HK). Muscle blood flow, capillary recruitment and extracellular matrix characteristics determine glucose movement from the blood to the interstitium. Plasma membrane GLUT4 content determines glucose transport into the cell. Muscle HK activity, cellular HK compartmentalization and the concentration of the HK inhibitor glucose 6-phosphate determine the capacity to phosphorylate glucose. Phosphorylation of glucose is irreversible in muscle; therefore, with this reaction, glucose is trapped and the uptake process is complete. Emphasis has been placed on the role of the glucose transport step for glucose influx into muscle with the past assertion that membrane transport is rate limiting. More recent research definitively shows that the distributed control paradigm more accurately defines the regulation of muscle glucose uptake as each of the three steps that define this process are important sites of flux control.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics and the Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
12
|
Pattillo CB, Bir SC, Branch BG, Greber E, Shen X, Pardue S, Patel RP, Kevil CG. Dipyridamole reverses peripheral ischemia and induces angiogenesis in the Db/Db diabetic mouse hind-limb model by decreasing oxidative stress. Free Radic Biol Med 2011; 50:262-9. [PMID: 21070849 PMCID: PMC4413947 DOI: 10.1016/j.freeradbiomed.2010.10.714] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/23/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022]
Abstract
Dipyridamole anti-platelet therapy has previously been suggested to ameliorate chronic tissue ischemia in healthy animals. However, it is not known if dipyridamole therapy represents a viable approach to alleviating chronic peripheral tissue ischemia associated with type 2 diabetes. Here we examine the hypothesis that dipyridamole treatment restores reperfusion of chronic hind-limb ischemia in the murine B6.BKS-Lepr(db/db) diabetic model. Dipyridamole therapy quickly rectified ischemic hind-limb blood flow to near preligation levels within 3 days of the start of therapy. Restoration of ischemic tissue blood flow was associated with increased vascular density and endothelial cell proliferation observed only in ischemic limbs. Dipyridamole significantly increased total nitric oxide metabolite levels in tissue, which were not associated with changes in endothelial NO synthase expression or phosphorylation. Interestingly, dipyridamole therapy significantly decreased ischemic tissue superoxide and protein carbonyl levels, identifying a dominant antioxidant mechanistic response. Dipyridamole therapy also moderately reduced diabetic hyperglycemia and attenuated development of dyslipidemia over time. Together, these data reveal that dipyridamole therapy is an effective modality for the treatment of chronic tissue ischemia during diabetes and highlights the importance of dipyridamole antioxidant activity in restoring tissue NO bioavailability during diabetes.
Collapse
Affiliation(s)
| | - Shyamal C. Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Billy G. Branch
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Eric Greber
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Rakesh P. Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
13
|
Percival JM, Adamo CM, Beavo JA, Froehner SC. Evaluation of the therapeutic utility of phosphodiesterase 5A inhibition in the mdx mouse model of duchenne muscular dystrophy. Handb Exp Pharmacol 2011:323-44. [PMID: 21695647 DOI: 10.1007/978-3-642-17969-3_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating and ultimately fatal disease characterized by progressive muscle wasting and weakness. DMD is caused by the absence of a functional dystrophin protein, which in turn leads to reduced expression and mislocalization of dystrophin-associated proteins including neuronal nitric oxide (NO) synthase mu (nNOSμ). Disruption of nNOSμ signaling results in muscle fatigue and unopposed sympathetic vasoconstriction during exercise, thereby increasing contraction-induced damage in dystrophin-deficient muscles. The loss of normal nNOSμ signaling during exercise is central to the vascular dysfunction proposed over 40 years ago to be an important pathogenic mechanism in DMD. Recent preclinical studies focused on circumventing defective nNOSμ signaling in dystrophic skeletal and cardiac muscle by inhibiting phosphodiesterase 5A (PDE5A) have shown promising results. This review addresses nNOS signaling in normal and dystrophin-deficient muscles and the potential of PDE5A inhibition as a therapeutic approach for the treatment of cardiovascular deficits in DMD.
Collapse
Affiliation(s)
- Justin M Percival
- Department of Physiology and Biophysics, University of Washington, 357290, 98195-7290, Seattle, WA, USA.
| | | | | | | |
Collapse
|
14
|
Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010; 49:307-16. [PMID: 20388537 PMCID: PMC2900489 DOI: 10.1016/j.freeradbiomed.2010.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where it is being produced. The organ where nitric oxide is produced is relevant, and within the organ, which types of cells are actually contributing to this production seem to play a major determinant of its effect. Subcellular compartmentalization of specific nitric oxide synthase enzymes has been shown to play a major role in health and disease. Pathophysiological conditions affect the cellular expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this study, we describe the compartmentalization of nitric oxide in organs, cells, and subcellular organelles and how its localization relates to several relevant clinical conditions. Understanding the complexity of the compartmentalization of nitric oxide production and the implications of this compartmentalization in terms of cellular targets and downstream effects will eventually contribute toward the development of better strategies for treating or preventing pathological events associated with the increase, inhibition, or mislocalization of nitric oxide production.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F. 11320
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
- Corresponding author: Dr. Cecilia Giulivi, Department of Molecular Biosciences, 1120 Haring Hall, University of California, Davis, CA. 95616, Tel. 530 754 8603, Fax. 530 754 9342,
| |
Collapse
|