1
|
Beacom MJ, Gunn AJ, Bennet L. Preterm Brain Injury: Mechanisms and Challenges. Annu Rev Physiol 2025; 87:79-106. [PMID: 39532110 DOI: 10.1146/annurev-physiol-022724-104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases. We highlight research showing that preterm fetuses can survive hypoxia-ischemia and continue development in utero with evolving brain injury. Early detection of fetal brain injury would provide an opportunity for treatments to reduce adverse neurodevelopmental outcomes, including cerebral palsy. However, this requires that we can detect injury using noninvasive methods. We discuss how circadian changes in fetal heart rate variability may offer utility as a biomarker for detecting injury and phases of injury.
Collapse
Affiliation(s)
- Michael J Beacom
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| |
Collapse
|
2
|
Lear BA, Zhou KQ, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Preventive, rescue and reparative neuroprotective strategies for the fetus and neonate. Semin Fetal Neonatal Med 2024; 29:101542. [PMID: 39472238 DOI: 10.1016/j.siny.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Neonatal encephalopathy remains a major contributor to death and disability around the world. Acute hypoxia-ischaemia before, during or after birth creates a series of events that can lead to neonatal brain injury. Understanding the evolution of injury underpinned the development of therapeutic hypothermia. This review discusses the determinants of injury, including maturity, the pattern of exposure to HI, impaired placental function, often associated with fetal growth restriction and in the long-term, socio-economic deprivation. Chorioamnionitis has been associated with the presence of NE, but it is important to note that experimentally, inflammation can either sensitize to greater neural injury after HI or alleviate injury, depending on its precise timing. As fetal surveillance tools improve it is likely that improved detection of specific pathways will offer future opportunities for preventive and reparative interventions in utero and after birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Dhillon SK, Gunn ER, Pedersen MV, Lear CA, Wassink G, Davidson JO, Gunn AJ, Bennet L. Alpha-adrenergic receptor activation after fetal hypoxia-ischaemia suppresses transient epileptiform activity and limits loss of oligodendrocytes and hippocampal neurons. J Cereb Blood Flow Metab 2023; 43:947-961. [PMID: 36703575 DOI: 10.1177/0271678x231153723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham-HI (n = 10) or HI induced by complete umbilical cord occlusion for 25 minutes. From 15 minutes to 8 hours after HI, fetuses received either an intravenous infusion of a non-selective alpha-adrenergic antagonist, phentolamine (10 mg bolus, 10 mg/h infusion, n = 10), or saline (n = 10). Fetal brains were processed for histology 72 hours post-HI. Phentolamine infusion was associated with increased epileptiform transient activity and a greater fall in cerebral oxygenation in the early post-HI recovery phase. Histologically, phentolamine was associated with greater loss of oligodendrocytes and hippocampal neurons. In summary, contrary to our hypothesis, alpha-adrenergic inhibition increased epileptiform transient activity with an exaggerated fall in cerebral oxygenation, and increased neural injury, suggesting that alpha-adrenergic receptor activation after HI is an important endogenous neuroprotective mechanism.
Collapse
Affiliation(s)
| | - Eleanor R Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mette V Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Gostelow T, Stöhr EJ. The Effect of Preterm Birth on Maximal Aerobic Exercise Capacity and Lung Function in Healthy Adults: A Systematic Review and Meta-analysis. Sports Med 2022; 52:2627-2635. [PMID: 35759177 PMCID: PMC9584843 DOI: 10.1007/s40279-022-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND A negative impact of premature birth on health in adulthood is well established. However, it is not clear whether healthy adults who were born prematurely but have similar physical activity levels compared to adults born at term have a reduced maximal aerobic exercise capacity (maximum oxygen consumption [VO2max]). OBJECTIVE We aimed to determine the effect of premature birth on aerobic exercise capacity and lung function in otherwise healthy, physically active individuals. METHODS A broad literature search was conducted in the PubMed database. Search terms included 'preterm/premature birth' and 'aerobic exercise capacity'. Maximal oxygen consumption (mL/kg/min) was the main variable required for inclusion, and amongst those investigations forced expiratory volume in 1 s (FEV1, % predicted) was evaluated as a secondary parameter. For the systematic review, 29 eligible articles were identified. Importantly, for the meta-analysis, only studies which reported similar activity levels between healthy controls and the preterm group/s were included, resulting in 11 articles for the VO2max analysis (total n = 688, n = 333 preterm and n = 355 controls) and six articles for the FEV1 analysis (total n = 296, n = 147 preterm and n = 149 controls). Data were analysed using Review Manager ( Review Manager. RevMan version 5.4 software. The Cochrane Collaboration; 2020.). RESULTS The systematic review highlighted the broad biological impact of premature birth. While the current literature tends to suggest that there may be a negative impact of premature birth on both VO2max and FEV1, several studies did not control for the potential influence of differing physical activity levels between study groups, thus justifying a focused meta-analysis of selected studies. Our meta-analysis strongly suggests that prematurely born humans who are otherwise healthy do have a reduced VO2max (mean difference: - 4.40 [95% confidence interval - 6.02, - 2.78] mL/kg/min, p < 0.00001, test for overall effect: Z = 5.32) and FEV1 (mean difference - 9.22 [95% confidence interval - 13.54, - 4.89] % predicted, p < 0.0001, test for overall effect: Z = 4.18) independent of physical activity levels. CONCLUSIONS Whilst the current literature contains mixed findings on the effects of premature birth on VO2max and FEV1, our focused meta-analysis suggests that even when physical activity levels are similar, there is a clear reduction in VO2max and FEV1 in adults born prematurely. Therefore, future studies should carefully investigate the underlying determinants of the reduced VO2max and FEV1 in humans born preterm, and develop strategies to improve their maximal aerobic capacity and lung function beyond physical activity interventions.
Collapse
Affiliation(s)
- Thomas Gostelow
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Eric J Stöhr
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- COR-HELIX (CardiOvascular Regulation and Exercise Laboratory-Integration and Xploration), Institute of Sport Science, Leibniz University Hannover, Am Moritzwinkel 6, Building 1806, 30167, Hannover, Germany.
| |
Collapse
|
5
|
Dhillon SK, Gunn ER, Lear BA, King VJ, Lear CA, Wassink G, Davidson JO, Bennet L, Gunn AJ. Cerebral Oxygenation and Metabolism After Hypoxia-Ischemia. Front Pediatr 2022; 10:925951. [PMID: 35903161 PMCID: PMC9314655 DOI: 10.3389/fped.2022.925951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment. Post-HI recovery is associated with a typical neurophysiological profile, with stereotypic changes in cerebral perfusion and oxygenation. After the initial recovery, there is a delayed, prolonged reduction in cerebral perfusion related to metabolic suppression, followed by secondary deterioration with hyperperfusion and increased cerebral oxygenation, associated with altered neurovascular coupling and impaired cerebral autoregulation. These changes in cerebral perfusion are associated with the stages of evolution of injury and injury severity. Further, iatrogenic factors can also affect cerebral oxygenation during the early period of deranged metabolism, and improving clinical management may improve neuroprotection. We will review recent evidence that changes in cerebral oxygenation and metabolism after HI may be useful biomarkers of prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Dhillon SK, Wassink G, Lear CA, Davidson JO, Gunn AJ, Bennet L. Adverse neural effects of delayed, intermittent treatment with rEPO after asphyxia in preterm fetal sheep. J Physiol 2021; 599:3593-3609. [PMID: 34032286 DOI: 10.1113/jp281269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We have previously shown that high-dose constant infusion of recombinant human erythropoietin (rEPO) from 30 min to 72 h after asphyxia in preterm fetal sheep reduced histological injury and improved electrophysiological recovery. This study shows that a high-dose infusion of rEPO from 6 to 72 h after asphyxia did not improve EEG recovery, oligodendrocyte and neuronal survival at 1 week post-asphyxia. Of concern, intermittent rEPO boluses started 6 h after asphyxia were associated with impaired EEG recovery and bilateral cystic injury of temporal lobe intragyral white matter. Intermittent boluses of rEPO were associated with significantly increased cerebral vascular resistance and hypoperfusion, particularly after the first dose, but did not affect seizures, suggesting mismatch between perfusion and brain activity. ABSTRACT Recombinant human erythropoietin (rEPO) is a promising treatment for hypoxic-ischaemic brain injury. Disappointingly, a large randomized controlled trial in preterm infants found that prophylactic, repeated high-dose rEPO boluses started within 24 h of birth did not improve neurodevelopmental outcomes. We examined whether initiation of a continuous infusion of rEPO at the end of the latent phase after hypoxic-ischaemia (HI) might improve outcomes compared with intermittent bolus injections. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham asphyxia or asphyxia induced by complete umbilical cord occlusion for 25 min. Six hours after asphyxia, fetuses received either a continuous infusion of rEPO (loading dose 2000 IU, infusion at 520 IU/h) from 6 to 72 h post-asphyxia or intravenous saline or 5000 IU rEPO, with repeated doses every 48 h for 5 days. Continuous infusion of rEPO did not improve EEG recovery, oligodendrocyte and neuronal survival at 1 week post-asphyxia. By contrast, intermittent rEPO boluses were associated with impaired EEG recovery and bilateral cystic injury of temporal lobe intragyral white matter in 6/8 fetuses. These studies demonstrate for the first time that initiation of intermittent rEPO boluses 6 h after HI, at a dose comparable with recent clinical trials, exacerbated neural injury. These data reinforce the importance of early initiation of many potential neuroprotective therapies.
Collapse
Affiliation(s)
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Sorensen DW, Carreon D, Williams JM, Pearce WJ. Hypoxic modulation of fetal vascular MLCK abundance, localization, and function. Am J Physiol Regul Integr Comp Physiol 2021; 320:R1-R18. [PMID: 33112654 PMCID: PMC7847055 DOI: 10.1152/ajpregu.00212.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.
Collapse
Affiliation(s)
- Dane W Sorensen
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Desirelys Carreon
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - James M Williams
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - William J Pearce
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
8
|
Cho KHT, Fraser M, Wassink G, Dhillon SJ, Davidson JO, Dean JM, Gunn AJ, Bennet L. TLR7 agonist modulation of postasphyxial neurophysiological and cardiovascular adaptations in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 318:R369-R378. [PMID: 31913689 DOI: 10.1152/ajpregu.00295.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of Toll-like receptors (TLRs) after hypoxic-ischemic brain injury can exacerbate injury but also alleviate cell loss, as recently demonstrated with the TLR7 agonist Gardiquimod (GDQ). However, TLR agonists also modulate vascular function and neuronal excitability. Thus, we examined the effects of TLR7 activation with GDQ on cardiovascular function and seizures after asphyxia in preterm fetal sheep at 0.7 gestation (104 days, term ∼147 days). Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 min or asphyxia followed by a continuous intracerebroventricular infusion of 3.34 mg of GDQ from 1 to 4 h after asphyxia. Fetuses were monitored continuously for 72 h postasphyxia. GDQ treatment was associated with sustained, moderate hypertension for 72 h (P < 0.05), with a transient increase in heart rate. Electroencephalographic (EEG) power was suppressed for the entire postasphyxial period in both groups, whereas EEG spectral edge transiently increased during the GDQ infusion compared with asphyxia alone (P < 0.05), with higher β- and lower δ-EEG frequencies (P < 0.05). This increase in EEG frequency was not related to epileptiform activity. After the GDQ infusion, there was earlier onset of high-amplitude stereotypic evolving seizures, with increased numbers of seizures and seizure burden (P < 0.05). Hemodynamic function and seizure activity are important indices of preterm wellbeing. These data highlight the importance of physiological monitoring during preclinical testing of potential neuroprotective strategies.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Stojanovska V, Barton SK, Tolcos M, Gill AW, Kluckow M, Miller SL, Zahra V, Hooper SB, Galinsky R, Polglase GR. The Effect of Antenatal Betamethasone on White Matter Inflammation and Injury in Fetal Sheep and Ventilated Preterm Lambs. Dev Neurosci 2019; 40:497-507. [PMID: 30840951 DOI: 10.1159/000496466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Antenatal administration of betamethasone (BM) is a common antecedent of preterm birth, but there is limited information about its impact on the acute evolution of preterm neonatal brain injury. We aimed to compare the effects of maternal BM in combination with mechanical ventilation on the white matter (WM) of late preterm sheep. At 0.85 of gestation, pregnant ewes were randomly assigned to receive intra-muscular (i.m.) saline (n = 9) or i.m. BM (n = 13). Lambs were delivered and unventilated controls (UVCSal, n = 4; UVCBM, n = 6) were humanely killed without intervention; ventilated lambs (VentSal, n = 5; VentBM, n = 7) were injuriously ventilated for 15 min, followed by conventional ventilation for 75 min. Cardiovascular and cerebral haemodynamics and oxygenation were measured continuously. The cerebral WM underwent assessment of inflammation and injury, and oxidative stress was measured in the cerebrospinal fluid (CSF). In the periventricular and subcortical WM tracts, the proportion of amoeboid (activated) microglia, the density of astrocytes, and the number of blood vessels with protein extravasation were higher in UVCBM than in UVCSal (p < 0.05 for all). During ventilation, tidal volume, mean arterial pressure, carotid blood flow, and oxygen delivery were higher in -VentBM lambs (p < 0.05 vs. VentSal). In the subcortical WM, microglial infiltration was increased in the VentSal group compared to UVCSal. The proportion of activated microglia and protein extravasation was higher in the VentBM group compared to VentSal within the periventricular and subcortical WM tracts (p < 0.05). CSF oxidative stress was increased in the VentBM group compared to UVCSal, UVCBM, and VentSal groups (p < 0.05). Antenatal BM was associated with inflammation and vascular permeability in the WM of late preterm fetal sheep. During the immediate neonatal period, the increased carotid perfusion and oxygen delivery in BM-treated lambs was associated with increased oxidative stress, microglial activation and microvascular injury.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Samantha K Barton
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew W Gill
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley, Washington, Australia
| | - Martin Kluckow
- Department of Neonatal Medicine, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Valerie Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia, .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia,
| |
Collapse
|
10
|
Dhillon SK, Lear CA, Galinsky R, Wassink G, Davidson JO, Juul S, Robertson NJ, Gunn AJ, Bennet L. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol 2018; 596:5571-5592. [PMID: 29774532 DOI: 10.1113/jp274949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia.
Collapse
Affiliation(s)
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Department of Physiology, University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Bennet L, Walker DW, Horne RSC. Waking up too early - the consequences of preterm birth on sleep development. J Physiol 2018; 596:5687-5708. [PMID: 29691876 DOI: 10.1113/jp274950] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Department of Paediatrics, Monash University and Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Lio A, Aurilia C, Zahra V, Moss TJ, LaRosa DA, Hooper SB, Gill AW, Kluckow M, Nitsos I, Vento G, Polglase GR. Ventilation Prior to Umbilical Cord Clamping Improves Cardiovascular Stability and Oxygenation in Preterm Lambs After Exposure to Intrauterine Inflammation. Front Pediatr 2018; 6:286. [PMID: 30410874 PMCID: PMC6209675 DOI: 10.3389/fped.2018.00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background: Delaying umbilical cord clamping until after aeration of the lung (physiological-based cord clamping; PBCC) maintains cardiac output and oxygenation in preterm lambs at birth, however, its efficacy after intrauterine inflammation is not known. Given the high incidence of chorioamnionitis in preterm infants, we investigated whether PBCC conferred any benefits compared to immediate cord clamping (ICC) in preterm lambs exposed antenatally to 7 days of intrauterine inflammation. Methods: Ultrasound guided intraamniotic injection of 20 mg Lipopolysaccharide (from E. coli:055:B5) was administered to pregnant ewes at 0.8 gestation. Seven days later, ewes were anesthetized, preterm fetuses exteriorised via cesarean section, and instrumented for continuous measurement of pulmonary, systemic and cerebral pressures and flows, and systemic, and cerebral oxygenation. Lambs were then randomized to either PBCC, whereupon ventilation was initiated and maintained for 3 min prior to umbilical cord clamping, or ICC where the umbilical cord was cut and ventilation initiated 30 s later. Ventilation was maintained for 30 min. Results: ICC caused a rapid fall in systemic (by 25%) and cerebral (by 11%) oxygen saturation in ICC lambs, concurrent with a rapid increase in carotid arterial pressure and heart rate. The overshoot in carotid arterial pressure was sustained in ICC lambs for the first 20 min of the study. PBCC maintained cardiac output and prevented the fall in cerebral oxygen delivery at birth. PBCC lambs had lower respiratory compliance and higher respiratory requirements throughout the study. Conclusion: PBCC mitigated the adverse effects of ICC on oxygenation and cardiac output, and therefore could be more beneficial in preterm babies exposed to antenatal inflammation as it maintains cardiac output and oxygen delivery. The increased respiratory requirements require further investigation in this sub-group of preterm infants.
Collapse
Affiliation(s)
- Alessandra Lio
- Division of Neonatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Aurilia
- Division of Neonatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerie Zahra
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Timothy J Moss
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Domenic A LaRosa
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew W Gill
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia
| | - Martin Kluckow
- Department of Neonatology, Royal North Shore Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ilias Nitsos
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Giovanni Vento
- Division of Neonatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Division of Neonatology, Universita Cattolica del Sacro Cuore, Rome, Italy
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
13
|
JAVORKA K, LEHOTSKA Z, KOZAR M, UHRIKOVA Z, KOLAROVSZKI B, JAVORKA M, ZIBOLEN M. Heart Rate Variability in Newborns. Physiol Res 2017; 66:S203-S214. [DOI: 10.33549/physiolres.933676] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Heart rate (HR) and heart rate variability (HRV) in newborns is influenced by genetic determinants, gestational and postnatal age, and other variables. Premature infants have a reduced HRV. In neonatal HRV evaluated by spectral analysis, a dominant activity can be found in low frequency (LF) band (combined parasympathetic and sympathetic component). During the first postnatal days the activity in the high frequency (HF) band (parasympathetic component) rises, together with an increase in LF band and total HRV. Hypotrophy in newborn can cause less mature autonomic cardiac control with a higher contribution of sympathetic activity to HRV as demonstrated by sequence plot analysis. During quiet sleep (QS) in newborns HF oscillations increase – a phenomenon less expressed or missing in premature infants. In active sleep (AS), HRV is enhanced in contrast to reduced activity in HF band due to the rise of spectral activity in LF band. Comparison of the HR and HRV in newborns born by physiological vaginal delivery, without (VD) and with epidural anesthesia (EDA) and via sectio cesarea (SC) showed no significant differences in HR and in HRV time domain parameters. Analysis in the frequency domain revealed, that the lowest sympathetic activity in chronotropic cardiac chronotropic regulation is in the VD group. Different neonatal pathological states can be associated with a reduction of HRV and an improvement in the health conditions is followed by changes in HRV what can be use as a possible prognostic marker. Examination of heart rate variability in neonatology can provide information on the maturity of the cardiac chronotropic regulation in early postnatal life, on postnatal adaptation and in pathological conditions about the potential dysregulation of cardiac function in newborns, especially in preterm infants.
Collapse
Affiliation(s)
- K. JAVORKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Commenius University in Bratislava, Martin, Slovakia
| | | | | | | | | | | | | |
Collapse
|
14
|
Smolich JJ, Kenna KR, Esler MD, Phillips SE, Lambert GW. Greater sympathoadrenal activation with longer preventilation intervals after immediate cord clamping increases hemodynamic lability at birth in preterm lambs. Am J Physiol Regul Integr Comp Physiol 2017; 312:R903-R911. [PMID: 28330965 DOI: 10.1152/ajpregu.00064.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/15/2022]
Abstract
This study tested the hypothesis that varying degrees of hemodynamic fluctuations seen after birth following immediate cord clamping were related to development of asphyxia with longer cord clamp-to-ventilation intervals, resulting in higher perinatal circulating levels of the catecholamines norepinephrine (NE) and epinephrine (Epi), and thus increased heart rate, blood pressures, and cardiac contractility after birth. Anesthetized preterm fetal lambs were instrumented with 1) aortic (AoT) and pulmonary trunk (PT) micromanometers to obtain pressures and the maximal rate of pressure rise (dP/dtmax) as a surrogate measure of ventricular contractility, and 2) an AoT catheter to obtain samples for blood gas and catecholamine analyses. After delivery, immediate cord clamping was followed by ventilation ∼40 s (n = 7), ∼60 s (n = 8), ∼90 s (n = 9), or ∼120 s later (n = 8), with frequent blood sampling performed before and after ventilation. AoT O2 content fell rapidly after immediate cord clamping (P < 0.001), with an asphyxial state evident at ≥60 s. Plasma NE and Epi levels increased progressively with longer cord clamp-to-ventilation intervals, with an exponential relation between falling AoT O2 content and rising catecholamines (R2 = 0.64-0.67). Elevated circulating catecholamines persisted for some minutes after ventilation onset, with postbirth surges in heart rate, AoT and PT pressures, and AoT and PT dP/dtmax linearly related to loge of catecholamine levels (R2 = 0.41-0.54, all P < 0.001). These findings suggest that 1) a greater degree of asphyxia-induced sympathoadrenal activation (reflected in elevated circulating catecholamine levels) occurs with longer intervals between immediate cord clamping and subsequent ventilation, and 2) this activation is a major determinant of hemodynamic fluctuations evident with birth.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Childrens Research Institute, Parkville, Australia;
| | - Kelly R Kenna
- Heart Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - Murray D Esler
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Prahran, Australia; and
| | - Sarah E Phillips
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Prahran, Australia; and.,Iverson Health Innovations Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Prahran, Australia; and.,Iverson Health Innovations Research Institute, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
15
|
Bennet L. Sex, drugs and rock and roll: tales from preterm fetal life. J Physiol 2017; 595:1865-1881. [PMID: 28094441 DOI: 10.1113/jp272999] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Premature fetuses and babies are at greater risk of mortality and morbidity than their term counterparts. The underlying causes are multifactorial, but include exposure to hypoxia. Immaturity of organs and their functional control may impair the physiological defence responses to hypoxia and the preterm fetal responses, or lack thereof, to moderate hypoxia appear to support this concept. However, as this review demonstrates, despite immaturity, the preterm fetus responds to asphyxia in a qualitatively similar manner to that seen at term. This highlights the importance in understanding metabolism versus homeostatic threat when assessing fetal responses to adverse challenges such as hypoxia. Data are presented to show that the preterm fetal adaptation to asphyxia is triphasic in nature. Phase one represents the rapid institution of maximal defences, designed to maintain blood pressure and central perfusion at the expense of peripheral organs. Phase two is one of adaptive compensation. Controlled reperfusion partially offsets peripheral tissue oxygen debt, while maintaining sufficient vasoconstriction to limit the fall in perfusion. Phase three is about decompensation. Strikingly, the preterm fetus generally performs better during phases two and three, and can survive for longer without injury. Paradoxically, however, the ability to survive can lead to longer exposure to hypotension and hypoperfusion and thus potentially greater injury. The effects of fetal sex, inflammation and drugs on the triphasic adaptations are reviewed. Finally, the review highlights the need for more comprehensive studies to understand the complexity of perinatal physiology if we are to develop effective strategies to improve preterm outcomes.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
16
|
van den Heuij LG, Wassink G, Gunn AJ, Bennet L. Using Pregnant Sheep to Model Developmental Brain Damage. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3014-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Smolich JJ, Kenna KR, Cheung MM. Onset of asphyxial state in nonrespiring interval between cord clamping and ventilation increases hemodynamic lability of birth transition in preterm lambs. J Appl Physiol (1985) 2015; 118:675-83. [PMID: 25614604 DOI: 10.1152/japplphysiol.01147.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimentally, a typical ∼2-min cord clamp-to-ventilation interval in preterm lambs is accompanied by increased hemodynamic lability of the birth transition. However, whether this lability is related to development of asphyxia after cord clamping, or can be avoided with a shorter clamp-to-ventilation interval, is unknown. To address these questions, anesthetized preterm fetal lambs (gestation 127 ± 2 days) were instrumented with ductus arteriosus and left pulmonary artery flow probes to obtain right ventricular (RV) output, brachiocephalic trunk and aortic isthmus flow probes to measure left ventricular (LV) output, and aortic trunk catheters for pressure measurement and blood gas analysis. With hemodynamics recorded continuously, fetuses were delivered onto the ewe's abdomen and the cord clamped for 1.5 min before ventilation (n = 8), with aortic sampling at 15, 30, 45, and 60 s, or for 0.5 min, with sampling at 15 s (n = 4). With 1.5-min cord clamping, an asphyxial state (Po2 < 10 mmHg) was evident at ≥45 s, with bradycardia and marked falls in LV and RV outputs (by 60% and 50%, P < 0.001), followed after ventilation onset by tachycardia and LV and RV output surges (4- and 3-fold, P < 0.001). By contrast, heart rate and outputs remained stable after 0.5-min cord clamping, with no postventilation change in heart rate or RV output, and a lesser rise in LV output (22%, P < 0.005). In preterm lambs, rapid development of an asphyxial state within 45 s in the cord clamp-to-ventilation interval increased hemodynamic lability of the birth transition, which was reduced with a shorter (∼0.5 min) cord clamp-to-ventilation interval.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research Group, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Kelly R Kenna
- Heart Research Group, Murdoch Childrens Research Institute, Parkville, Australia
| | - Michael M Cheung
- Heart Research Group, Murdoch Childrens Research Institute, Parkville, Australia; Department of Cardiology, Royal Children's Hospital, Parkville, Australia; and Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Lear CA, Koome ME, Davidson JO, Drury PP, Quaedackers JS, Galinsky R, Gunn AJ, Bennet L. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep. J Physiol 2014; 592:5493-505. [PMID: 25384775 DOI: 10.1113/jphysiol.2014.281253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml(-1)) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Miriam E Koome
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Josine S Quaedackers
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Barton SK, Moss TJM, Hooper SB, Crossley KJ, Gill AW, Kluckow M, Zahra V, Wong FY, Pichler G, Galinsky R, Miller SL, Tolcos M, Polglase GR. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury. PLoS One 2014; 9:e112402. [PMID: 25379714 PMCID: PMC4224447 DOI: 10.1371/journal.pone.0112402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/15/2014] [Indexed: 01/25/2023] Open
Abstract
Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
Collapse
Affiliation(s)
- Samantha K. Barton
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Timothy J. M. Moss
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Kelly J. Crossley
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Andrew W. Gill
- School of Women's and Infants' Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Martin Kluckow
- Department of Neonatal Medicine, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, 2065, Australia
| | - Valerie Zahra
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Flora Y. Wong
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Gerhard Pichler
- Department of Pediatrics, Medical University Graz, Auenbruggerplatz 30, Graz, Austria, 8036
| | - Robert Galinsky
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
- * E-mail:
| |
Collapse
|
20
|
Herrera EA, Macchiavello R, Montt C, Ebensperger G, Díaz M, Ramírez S, Parer JT, Serón-Ferré M, Reyes RV, Llanos AJ. Melatonin improves cerebrovascular function and decreases oxidative stress in chronically hypoxic lambs. J Pineal Res 2014; 57:33-42. [PMID: 24811332 DOI: 10.1111/jpi.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/μm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Children surviving premature birth have a high risk of cognitive and learning disabilities and attention deficit. In turn, adverse outcomes are associated with persistent reductions in cerebral growth on magnetic resonance imaging (MRI). It is striking that modern care has been associated with a dramatic reduction in the risk of cystic white matter damage, but modest improvements in terms of neurodevelopmental impairment. This review will explore the hypothesis that the disability is primarily associated with impaired neural connectivity rather than cell death alone. Very preterm infants exhibit reduced thalamocortical connectivity and cortical neuroplasticity compared with term-born controls. In preterm fetal sheep, moderate cerebral ischemia with no neuronal loss, but significant diffuse failure of maturation of cortical pyramidal neurons, was associated with impaired dendritic growth and synapse formation, consistent with altered connectivity. These changes were associated with delayed decline in cortical fractional anisotropy (FA) on MRI. Supporting these preclinical findings, preterm human survivors showed similar enduring impairment of microstructural development of the cerebral cortex defined by FA, consistent with delayed formation of neuronal processes. These findings offer the promise that better understanding of impairment of neural connectivity may allow us to promote normal development and growth of the cortex after preterm birth.
Collapse
|
22
|
Mallard C, Davidson JO, Tan S, Green CR, Bennet L, Robertson NJ, Gunn AJ. Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res 2014; 75:234-40. [PMID: 24336433 PMCID: PMC11908707 DOI: 10.1038/pr.2013.188] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
Cerebral palsy is one of the most devastating consequences of brain injury around the time of birth, and nearly a third of cases are now associated with premature birth. Compared with term babies, preterm babies have an increased incidence of complications that may increase the risk of disability, such as intraventricular hemorrhage, periventricular leukomalacia, sepsis, and necrotizing enterocolitis. The response to injury is highly dependent on brain maturity, and although cellular vulnerability is well documented, there is now evidence that premyelinating axons are also particularly sensitive to ischemic injury. In this review, we will explore recent evidence highlighting a central role for glia in mediating increased risk of disability in premature infants, including excessive activation of microglia and opening of astrocytic gap junction hemichannels in spreading injury after brain ischemia, in part likely involving release of adenosine triphosphate (ATP) and overactivation of purinergic receptors, particularly in white matter. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious circle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing effective neuroprotective strategies for preterm infants requires a detailed understanding of glial responses.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University Health System and University of Chicago, Evanston, Illinois
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Alistair Jan Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Bennet L. Functio laesa: the consequences of the fifth cardinal sign of inflammation in preterm infants. J Physiol 2013; 591:2023-4. [PMID: 23588500 DOI: 10.1113/jphysiol.2013.253856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|