1
|
Wang YC, Yuan Y, Zhang J, Zhang Y, Kao WWY, Liu CY. β-Catenin gain of function mutant in mouse periocular neural crest-derived mesenchymal cells impairs embryonic eyelid morphogenesis and leads to blepharophimosis syndrome in mice. Ocul Surf 2024; 34:267-276. [PMID: 39197676 DOI: 10.1016/j.jtos.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE The aberrant canonical Wnt-β-catenin signaling can cause devastating outcomes of tissue morphogenesis and tumor formation. In this study, we examined the impact of overexpression of constitutive active β-catenin in mouse periocular neural crest-derived mesenchymal cells during embryonic eyelid morphogenesis. METHODS We expressed a stabilized β-catenin in which the exon 3 of the Ctnnb1 gene was deleted in periocular neural crest (PONC)-derived eyelid stromal cells (Ctnnb1Δex3-PONC). Histopathological examinations were performed to examine the eyelid morphogenetic alterations in Ctnnb1Δex3-PONC mice. Immunohistochemical investigations for cell proliferation, apoptosis, and differentiation were also assessed. RESULTS We discovered that nuclear accumulation of β-catenin resulted in a reduction of nuclear Ki-67 and phospho-Erk1/2 expression levels and elevation of apoptosis in PONC cells during embryonic eyelid closure morphogenesis. Interestingly, however, the eyelid epithelial migration was not affected, which resulted in only eyelid epidermal closure but lacked underneath dermal formation at embryonic (E) day 16.5. The sequelae of Ctnnb1Δex3-PONC revealed the malformation of the eyelid margin and Meibomian gland and deficiency of Muller's smooth muscle fibers formation. Consequently, Ctnnb1Δex3-PONC mice manifested blepharophimosis syndrome at P21. CONCLUSION Our data suggested that aberrant expression of β-catenin gain of function in PONC interrupts the interplay between epithelium and stroma for the morphogenesis of eyelid closure during embryonic development.
Collapse
Affiliation(s)
- Yen-Chiao Wang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Yong Yuan
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Jianhua Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Yujin Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Winston W-Y Kao
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Chia-Yang Liu
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA.
| |
Collapse
|
2
|
Wang J, Xiao B, Kimura E, Mongan M, Hsu WW, Medvedovic M, Puga A, Xia Y. Crosstalk of MAP3K1 and EGFR signaling mediates gene-environment interactions that block developmental tissue closure. J Biol Chem 2024; 300:107486. [PMID: 38897570 PMCID: PMC11294703 DOI: 10.1016/j.jbc.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Eiki Kimura
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Wei-Wen Hsu
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
3
|
Wang J, Kimura E, Mongan M, Xia Y. Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells 2021; 11:cells11010034. [PMID: 35011600 PMCID: PMC8750206 DOI: 10.3390/cells11010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ying Xia
- Correspondence: ; Tel.: +1-513-558-0371
| |
Collapse
|
4
|
Sun W, Li Y, Li J, Zhang X, Feng Q, Zhang Z, Kang J, Huang X. Cytokine fibroblast growth factor 10 (FGF10) polymorphisms are associated with risk of myopia in young children. J Cell Biochem 2019; 120:15241-15247. [PMID: 31021460 DOI: 10.1002/jcb.28790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Myopia has become a major public health issue worldwide. Identification of genetic loci related to myopia in young children may advance our knowledge of the pathogenesis of myopia. Fibroblast growth factor 10 (FGF10) plays essential roles for the development of myopia through modulating extracellular matrix-associated genes. Studies revealed that genetic variants of FGF10 were associated with extreme myopia in adults. However, their associations with susceptibility of myopia in young children, which are less affected by confounding factors and more suitable for studying genetic factors of myopia, have not been explored. In the current study, we evaluated 13 tagSNPs that captured 100% of genetic variation in the FGF10 gene region for their associations with myopia in a large Chinese case-control study with 900 myopia children and 900 nonmyopia children. We found rs2973644 was significantly associated with increased risk of myopia (odds ratio [OR]: 1.26; 95% confidence intervals [CI]: 1.06-1.49; P = 0.009). furthermore, rs339501 (OR: 1.73; 95% CI: 1.18-2.53; P = 0.005), rs2973644 (OR: 1.57; 95% CI: 1.13-2.19; P = 0.007), and rs79002828 (OR: 1.83; 95% CI: 1.20-2.77; P = 0.005) were significantly associated with increased risk of high myopia in young children. Functional assessment of rs2973644 by luciferase assays revealed the risk G allele causes a higher expression level of FGF10 than the protective A allele. Our results do support that genetic variants of cytokine FGF10 are associated with susceptibility of myopia (as well as high myopia) in young children and further exploration are needed for myopia in children.
Collapse
Affiliation(s)
- Wei Sun
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Yinan Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medcial University, Guangzhou, Guangdong, China
| | - Jing Li
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Xiaoming Zhang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Qingyang Feng
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Zhenyu Zhang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| | - Jianfang Kang
- Department of Ophthalmology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Xuelin Huang
- Department of Ophthalmology, Guangdong Women And Children Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Meng Q, Mongan M, Wang J, Xia Y. Repression of MAP3K1 expression and JNK activity by canonical Wnt signaling. Dev Biol 2018; 440:129-136. [PMID: 29787744 DOI: 10.1016/j.ydbio.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
Morphogenesis is a complex and highly coordinated process orchestrated by temporal spatial activity of developmental pathways. How the different pathways interact to guide the developmental program remains an intriguing and open question. MAP3K1-JNK and Wnt are signaling pathways crucial for embryonic eyelid closure, an epithelial morphogenetic event conserved in mammals. Here we used a mouse model of eyelid development and genetic and biochemistry tools to investigate the relationships between the two pathways. We found that Wnt activation repressed MAP3K1 expression. Using Axin-LacZ reporter mice, spatial Wnt activity was detected in the leading edge of the developing eyelid. Conditional knockout of Wntless (Wls) in ocular surface ectoderm blocked eyelid formation, and significantly increased MAP3K1 expression in eyelid cells at the nasal canthus region. Conversely, knockout of Dkk2, encoding a canonical Wnt antagonist, resulted in an increase of Wnt activity in cells at the upper eyelid margin near the nasal canthus. Up-regulation of Wnt signaling in the Dkk2-knockout embryos corresponded to down-regulation of MAP3K1 expression. In vitro data showed that Wnt3a treatment decreased MAP3K1 promoter activity, whereas activation of Wnt by lithium chloride inhibited MAP3K1 expression, and attenuated MAP3K1-mediated JNK activity. Our data identify a unique signal crosstalk between Wnt signaling and the MAP3K1-JNK pathway in epithelial morphogenesis.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Maureen Mongan
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Jingjing Wang
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Role of EGF receptor signaling on morphogenesis of eyelid and meibomian glands. Exp Eye Res 2017; 163:58-63. [PMID: 28950938 DOI: 10.1016/j.exer.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) signaling has a pivotal role in the regulation of morphogenesis during development and maintenance of homeostasis in adult eyelid and its adnexa. Studies have demonstrated that during eyelid morphogenesis the EGFR signaling pathway is responsible for keratinocyte and mesenchymal cell proliferation and migration at the eyelid tip. For meibomian gland morphogenesis, EGFR signaling activation stimulates meibomian gland epithelial cell proliferation. EGFR signaling pathway functions through multiple downstream signals such as ERK, Rho/ROCK and integrin and is regulated by a variety of upstream signals including Adam17, GPR48 and FGFR signaling. Herein we review the literature that describe the role of EGFR and its related signaling pathways in eyelid and meibomian gland morphogenesis.
Collapse
|
7
|
Wang J, Call M, Mongan M, Kao WWY, Xia Y. Meibomian gland morphogenesis requires developmental eyelid closure and lid fusion. Ocul Surf 2017; 15:704-712. [PMID: 28284825 DOI: 10.1016/j.jtos.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Meibomian glands (MGs) play an important role in the maintenance of ocular surface health, but the mechanisms of their development are still poorly understood. The MGs arise from the epithelium at the junction of eyelid fusion, raising the possibility that defective eyelid fusion disturbs the formation of MGs. METHODS We examined, histologically and functionally, the development of MGs in mice with either normal or defective eyelid fusion, displaying eye-closed at birth (ECB) or eye-open at birth (EOB) phenotypes, respectively. RESULTS The Meibomian anlage was detected in the epithelium at the eyelid fusion junction immediately after birth at postnatal day 0 (PD0), and it extended into the eyelid stroma at PD1 and started to branch and produce meibum at PD7 in the ECB mice. In contrast, few if any MG structures were detectable in the EOB mice in the early postnatal periods. The Meibomian gland ductile system was seen aligned along the eyelid margin in the adult ECB mice, but was absent or scarce in that of the EOB mice. While MG abnormalities were found in all EOB mice, the severity varied and corresponded to the position and the size of eye opening but not the genetic defects of the mice. CONCLUSION Proper Meibomian gland formation and development require eyelid closure and fusion.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Mindy Call
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Maureen Mongan
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Winston Whei-Yang Kao
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA; Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA.
| |
Collapse
|
8
|
Abstract
Purpose: To review the recent data about eyelid morphogenesis, and outline a timeline for eyelid development from the very early stages during embryonic life till final maturation of the eyelid late in fetal life. Methods: The authors extensively review major studies detailing human embryologic and fetal eyelid morphogenesis. These studies span almost a century and include some more recent cadaver studies. Numerous studies in the murine model have helped to better understand the molecular signals that govern eyelid embryogenesis. The authors summarize the current findings in molecular biology, and highlight the most significant studies in mice regarding the multiple and interacting signaling pathways involved in regulating normal eyelid morphogenesis. Results: Eyelid morphogenesis involves a succession of subtle yet strictly regulated morphogenetic episodes of tissue folding, proliferation, contraction, and even migration, which may occur simultaneously or in succession. Conclusions: Understanding the extraordinary process of building eyelid tissue in embryonic life, and deciphering its underlying signaling machinery has far reaching clinical implications beyond understanding the developmental abnormalities involving the eyelids, and may pave the way for achieving scar-reducing therapies in adult mammalian wounds, or control the spread of malignancies. The authors describe in detail the recent advances in the knowledge of embryological and fetal development of the eyelids, and briefly outline the molecular basis of eyelid morphogenesis.
Collapse
|
9
|
Rubinstein TJ, Weber AC, Traboulsi EI. Molecular biology and genetics of embryonic eyelid development. Ophthalmic Genet 2016; 37:252-9. [PMID: 26863902 DOI: 10.3109/13816810.2015.1071409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways.
Collapse
Affiliation(s)
| | - Adam C Weber
- a Cleveland Clinic Cole Eye Institute , Cleveland , Ohio , USA
| | | |
Collapse
|
10
|
Congenital upper eyelid coloboma: embryologic, nomenclatorial, nosologic, etiologic, pathogenetic, epidemiologic, clinical, and management perspectives. Ophthalmic Plast Reconstr Surg 2015; 31:1-12. [PMID: 25419956 PMCID: PMC4334304 DOI: 10.1097/iop.0000000000000347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: To review the recent literature and describe the authors’ experience with congenital upper eyelid coloboma. Methods: In this review, we will summarize the embryologic and etiopathogenetic bases of congenital upper eyelid coloboma, and study the published clinical reports. We will also attempt to briefly shed some light on the rarer syndromic curiosities associated with upper eyelid coloboma. Results: Congenital upper eyelid colobomas are one of the few nontraumatic oculoplastic emergencies that may occasionally present in the first few days of life with a corneal ulcer and may even present with impending perforation. They can present with or without corneopalpebral adhesions, may be isolated findings or a part of a larger spectrum of congenital anomalies as in the case of Fraser syndrome or Goldenhar syndrome, or could be associated with other rare curiosities that could challenge the clinician with a huge diagnostic dilemma. Conclusions: Existing literature dealing with congenital colobomas of the upper eyelid is fraught with nosologic problems, confusing etiologies, and overlapping clinical features. We attempted to clarify the salient clinical features, outline the management principles, and until a time in the not-so-distant future where advances in molecular genetic testing would help redefine the etiology and the diverse clinical spectrum of genetic diseases associated with upper eyelid colobomas, we propose a simplified classification scheme based on the relation of the coloboma to the cornea, the presence or absence of systemic features, and all the syndromic and nonsyndromic associations of congenital coloboma of the upper eyelid known today. In this review, the authors will describe the pathogenesis of upper eyelid coloboma, suggest a new simplified classification system, describe the clinical picture in detail, clarify the various syndromic associations of upper eyelid coloboma, and lay out the basic surgical principles of management.
Collapse
|
11
|
Meng Q, Mongan M, Carreira V, Kurita H, Liu CY, Kao WWY, Xia Y. Eyelid closure in embryogenesis is required for ocular adnexa development. Invest Ophthalmol Vis Sci 2014; 55:7652-61. [PMID: 25377219 DOI: 10.1167/iovs.14-15155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Mammalian eye development requires temporary fusion of the upper and lower eyelids in embryogenesis. Failure of lid closure in mice leads to an eye open at birth (EOB) phenotype. Many genetic mutant strains develop this phenotype and studies of the mutants lead to a better understanding of the signaling mechanisms of morphogenesis. The present study investigates the roles of lid closure in eye development. METHODS Seven mutant mouse strains were generated by different gene ablation strategies that inactivated distinct signaling pathways. These mice, including systemic ablation of Map3k1 and Dkk2, ocular surface epithelium (OSE) knockout of c-Jun and Egfr, conditional knockout of Shp2 in stratified epithelium (SE), as well as the Map3k1/Jnk1 and Map3k1/Rhoa compound mutants, all exhibited defective eyelid closure. The embryonic and postnatal eyes in these mice were characterized by histology and immunohistochemistry. RESULTS Some eye abnormalities, such as smaller lens in the Map3k1-null mice and Harderian gland hypoplasia in the Dkk2-null mice, appeared to be mutant strain-specific, whereas other abnormalities were seen in all mutants examined. The common defects included corneal erosion/ulceration, meibomian gland hypoplasia, truncation of the eyelid tarsal muscles, failure of levator palpebrae superioris (LPS) extension into the upper eyelid and misplacement of the inferior oblique (IO) muscle and inferior rectus (IR) muscle. The muscle defects were traced to the prenatal fetuses. CONCLUSIONS In addition to providing a protective barrier for the ocular surface, eyelid closure in embryogenesis is required for the development of ocular adnexa, including eyelid and extraocular muscles.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Maureen Mongan
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Vinicius Carreira
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Hisaka Kurita
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Chia-Yang Liu
- Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Winston W-Y Kao
- Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
12
|
Meng Q, Jin C, Chen Y, Chen J, Medvedovic M, Xia Y. Expression of signaling components in embryonic eyelid epithelium. PLoS One 2014; 9:e87038. [PMID: 24498290 PMCID: PMC3911929 DOI: 10.1371/journal.pone.0087038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022] Open
Abstract
Closure of an epithelium opening is a critical morphogenetic event for development. An excellent example for this process is the transient closure of embryonic eyelid. Eyelid closure requires shape change and migration of epithelial cells at the tip of the developing eyelids, and is dictated by numerous signaling pathways. Here we evaluated gene expression in epithelial cells isolated from the tip (leading edge, LE) and inner surface epithelium (IE) of the eyelid from E15.5 mouse fetuses by laser capture microdissection (LCM). We showed that the LE and IE cells are different at E15.5, such that IE had higher expression of muscle specific genes, while LE acquired epithelium identities. Despite their distinct destinies, these cells were overall similar in expression of signaling components for the “eyelid closure pathways”. However, while the LE cells had more abundant expression of Fgfr2, Erbb2, Shh, Ptch1 and 2, Smo and Gli2, and Jag1 and Notch1, the IE cells had more abundant expression of Bmp5 and Bmpr1a. In addition, the LE cells had more abundant expression of adenomatosis polyposis coli down-regulated 1 (Apcdd1), but the IE cells had high expression of Dkk2. Our results suggest that the functionally distinct LE and IE cells have also differential expression of signaling molecules that may contribute to the cell-specific responses to morphogenetic signals. The expression pattern suggests that the EGF, Shh and NOTCH pathways are preferentially active in LE cells, the BMP pathways are effective in IE cells, and the Wnt pathway may be repressed in LE and IE cells via different mechanisms.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Chang Jin
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yinglei Chen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jing Chen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mario Medvedovic
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wakayama Symposium: Epithelial-mesenchymal interactions in eyelid development. Ocul Surf 2012; 10:212-6. [PMID: 23084141 DOI: 10.1016/j.jtos.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/06/2012] [Accepted: 07/01/2012] [Indexed: 12/20/2022]
Abstract
Various congenital anomalies of the eyelids can result from abnormal tissue proliferation, fusion, and reopening of the eyelids. Therefore, it is important to study the molecular mechanisms underlying eyelid development, focusing on cell behaviors. Mammalian eyelid development occurs in four steps: specification, growth, epithelial fusion, and reopening. Epithelial-mesenchymal interactions are fundamental processes during eyelid formation, and epithelial factors functioning within the eyelid epithelium are also critical. Studies with mutant and genetically modified mice have revealed that various signaling pathways and transcriptional factors are involved in mouse eyelid development. In this review, eyelid morphogenetic factors or pathways are described, as revealed by their mutant phenotype, eye-open at birth (EOB). These include FGFR2b-FGF10, EGFR-ERK, MEKK-JNK, BMP, Shh, Wnt, GPR48, Jun, Forkhead, and Grainyhead.
Collapse
|
14
|
Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure. Proc Natl Acad Sci U S A 2011; 108:17349-54. [PMID: 21969564 DOI: 10.1073/pnas.1102297108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Developmental eyelid closure is an evolutionarily conserved morphogenetic event requiring proliferation, differentiation, cytoskeleton reorganization, and migration of epithelial cells at the tip of the developing eyelid. Many signaling events take place during eyelid closure, but how the signals converge to regulate the morphogenetic process remains an open and intriguing question. Here we show that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) highly expressed in the developing eyelid epithelium, forms with c-Jun, a regulatory axis that orchestrates morphogenesis by integrating two different networks of eyelid closure signals. A TGF-α/EGFR-RhoA module initiates one of these networks by inducing c-Jun expression which, in a phosphorylation-independent manner, binds to the Map3k1 promoter and causes an increase in MAP3K1 expression. RhoA knockout in the ocular surface epithelium disturbs this network by decreasing MAP3K1 expression, and causes delayed eyelid closure in Map3k1 hemizygotes. The second network is initiated by the enzymatic activity of MAP3K1, which phosphorylates and activates a JNK-c-Jun module, leading to AP-1 transactivation and induction of its downstream genes, such as Pai-1. MAP3K1 inactivation reduces AP-1 activity and PAI-1 expression both in cells and developing eyelids. MAP3K1 is therefore the nexus of an intracrine regulatory loop connecting the TGF-α/EGFR/RhoA-c-Jun and JNK-c-Jun-AP-1 pathways in developmental eyelid closure.
Collapse
|
15
|
Yu Z, Bhandari A, Mannik J, Pham T, Xu X, Andersen B. Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 2008; 319:56-67. [PMID: 18485343 PMCID: PMC2494567 DOI: 10.1016/j.ydbio.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/03/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
Grainyhead transcription factors play an evolutionarily conserved role in regulating epidermal terminal differentiation. One such factor, the mammalian Grainyhead-like epithelial transactivator (Get1/Grhl3), is important for epidermal barrier formation. In addition to a role in barrier formation, Grainyhead genes play roles in closure of several structures such as the mouse neural tube and Drosophila wounds. Consistent with these observations, we found that Get1 knockout mice have an eye-open at birth phenotype. The failure of eyelid closure appears to be due to critical functions of Get1 in promoting F-actin polymerization, filopodia formation, and the cell shape changes that are required for migration of the keratinocytes at the leading edge during eyelid closure. The expression of TGFalpha, a known regulator of leading edge formation, is decreased in the eyelid tip of Get1(-/-) mice. Levels of phospho-EGFR and phospho-ERK are also decreased at the leading edge tip. Furthermore, in an organ culture model, TGFalpha can increase levels of phospho-EGFR and promote cell shape changes as well as leading edge formation in Get1(-/-) eyelids, indicating that in eyelid closure Get1 acts upstream of TGFalpha in the EGFR/ERK pathway.
Collapse
Affiliation(s)
- Zhengquan Yu
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Ambica Bhandari
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Jaana Mannik
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Thu Pham
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Xiaoman Xu
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine, California 92697-4030
| |
Collapse
|
16
|
|
17
|
Taniguchi K, Ayada T, Ichiyama K, Kohno RI, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 2007; 352:896-902. [PMID: 17156747 DOI: 10.1016/j.bbrc.2006.11.107] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/28/2022]
Abstract
Sprouty genes encode cytoplasmic membrane-associated proteins that inhibit receptor tyrosine kinase signaling. Four orthologs of Drosophila Sprouty (dSpry) (Sprouty1-4) have been identified in mammals. Physiological function of Sprouty1 and Sprouty2 has been investigated using gene targeting approaches, however to date detailed examination of Sprouty4 knockout (KO) mice has not been reported. In this study, Sprouty4 KO mice were generated and characterized. Although a significant fraction of Sprouty4 KO mice died shortly after birth due to mandible defects, the remainder were viable and fertile. Growth retardation was observed for most Sprouty4-deficient mice, with nearly all Sprouty4 KO mice having polysyndactyly. ERK activation was sustained in Sprouty4 KO mouse embryonic fibroblasts (MEFs) in response to FGF, but not to EGF. Sprouty2 and Sprouty4 double KO (DKO) mice were embryonic lethal and showed severe defects in craniofacial, limb, and lung morphogenesis. These findings suggest both redundant and non-redundant functions for Sprouty2 and Sprouty4 on embryonic development and FGF signaling.
Collapse
Affiliation(s)
- Koji Taniguchi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|